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0. Introduction

This paper is concerned with a specific question in harmonic analysis on reductive groups over a local

field. Central to it is the notion of an endoscopic group ([Sh; L2], and for a perhaps definitive treatment [K-S]).

This notion is still exotic and difficult to grasp, partly because its origins lie beyond the periphery of harmonic

analysis, in the L-group (which first arose in the theory of Eisenstein series) and in the study of Shimura varieties,

and partly because it still has not achieved in sufficient generality its original purpose, the analysis of the internal

structure of L-packets of irreducible representations.

Roughly speaking, L-packets occur in the classification of the irreducible representations of the group

G(F ) of F -valued points on a reductive group over the local field F because there are two types of conjugacy

within G(F ), that realized by elements of G(F ) and that realized by elements of G(F̄ ). Only the first appears

when the harmonic analysis is treated from a strictly analytic viewpoint, but the second intervenes when the

harmonic analysis is applied to problems in number theory, especially to the study of L-functions, and leads to

a coarser classification of irreducible representations than equivalence. The coarse classes are called L-packets,

and they are to be analyzed individually with the help of endoscopic groups.

An endoscopic group H is not a subgroup of G, but we can associate to a conjugacy class in H(F ) several

conjugacy classes in G(F ), and the harmonic analysis on G(F ) is related to that on H(F ) by means of the transfer

of orbital integrals. This refers to pairs of functions, one f on G(F ) and one fH on H(F )whose orbital integrals

on associated conjugacy classes are related by transfer factors [see (1.4)].

The definition of transfer factors that not only allow one to attach to each f at least one fH but also behave

well with respect to functoriality has not been easy, and if it were not that they had been proved to exist over the

real field [Sh], it would have been difficult to maintain confidence in the possibility of transfer or in the usefulness

of endoscopy.

The contribution of this paper is not to prove the existence of the transfer, that is to attach to f at least one

fH , but simply to define the transfer factor, disentangling the conditions imposed or suggested by the harmonic

analysis, by Galois cohomology, by the trace formula, and by the constructions over R to arrive at an explicit

definition that clearly must be the transfer factor if it exists at all and that even over the real field is an improvement

over the construction of [Sh] which was not sufficiently explicit. We flatter ourselves that this definition is an
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advance and that it is not merely our lack of skill that has made it so hard to come by, but the difficulty of the

subject.

In Sect. 1 we are more explicit about the transfer of orbital integrals and transfer factors, recalling in

particular the first example that was studied, the group SL(2). Their definition appears in Sect. 3, where it will

be seen that the transfer factor is the product of five terms, two,∆II and∆IV , serving to meet basic requirements

of harmonic analysis. A third∆I incorporates the basic idea of endoscopy and transfer, weighted sums of orbital

integrals, often referred to as κ-orbital integrals. The two others,∆1 and∆2, are cohomological in nature and are

there to compensate the arbitrary elements that had to be used in the definition of ∆II . It should be observed

that∆I does not appear in [Sh] where it had to be replaced by an existence argument.

The definitions of∆1 and ∆2 are quite elaborate, involving a number of general arguments and construc-

tions that we have preferred to place in a separate Sect. 2 which also prepares for the product formula of Sect.

6.

Although we do not discuss the existence of the transfer, thus of fH for a given f , the result of Sect. 5 is

evidence that it will be available, and is in addition the source of the factors ∆I and ∆II . The limit formula of

(5.5) shows that the dominant term near the identity of the combination of orbital integrals of f appearing in the

transfer can be made equal to the dominant term of the stable orbital integral of an fH . This is clearly a necessary

condition for the existence of fH , and is what guarantees that the choice of the correction factor ∆I is correct.

The factor∆2 does not affect the asymptotic behavior, and is dictated by experience with the real field.

The properties of the transfer factor that in addition to (5.5) in all probability characterize it are the Local

Hypothesis, which relates the transfer factor on an arbitrary group to that on a quasi-split inner twisting, the Global

Hypothesis, which is a product formula, and the transfer factor over archimedean fields, already introduced in

[Sh]. We prove the first two here, in Sects. 4 and 6, reserving the proof that the transfer factor of this paper

coincides over R with that of [Sh] for a later paper.

It is a pleasure to dedicate this paper to Friedrich Hirzebruch, for one of us first realized the significance

of L-packets during a long stay in Bonn many years ago under the auspices of the SFB, when he was able to

study Shimura’s papers on automorphic forms. At the same time the other was beginning the study of character

identities for real groups, and L-packets and character identities together led to endoscopy.

I. Preliminaries

(1.1) An Example

Suppose that F is a local field of characteristic zero and G is SL2. Take H to be a one-dimensional torus split over

the quadratic extension E of F and anisotropic over F . Then H is an endoscopic group for G. To γH ∈ H(E)
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we attach the conjugacy class in G(E) consisting of semisimple elements with eigenvalues γ±1
H . Assume that

γH |= ±1 lies in H(F ). Then the associated class meets SL2(F ) in a stable conjugacy class of regular semisimple

elements. Call γH an image of any γ in this stable class.

For f ∈ C∞
c (G(F )) form the integral Φ(γ, f) of f along the conjugacy class of regular semisiimple γ in

G(F )with respect to the G-invariant measure prescribed by a choice of invariant forms of highest degree over F

on G and H . Then transfer between G and H requires a function∆, a transfer factor, such that

fH : γH →
∑
γ

∆(γH , γ)Φ(γ, f)

extends smoothly to γH = ±1. Here
∑
γ

indicates summation over representatives for the regular semisimple

conjugacy classes in G(F );∆(γH , γ) is to be zero unless γH is an image of γ, so that the sum contains at most

two non-zero terms.

We modify slightly the prescription for ∆ in [L-L]. For reasons of functoriality ∆ will depend not on H

alone but on a set (H,H, s, ζ) of endoscopic data: H = Ĥ �W is the L-group of H , s lies in the conjugacy class of

Ĝ = PGL(2,C) determined by the elements of GL2(C) with eigenvalues ± z, z ∈ C, and ξ is an embedding of

H in Ĝ � W = LG that carries Ĥ into Cent (s, Ĝ). Here we may take for W the Weil group of E/F . Equivalent,

or Ĝ-conjugate, data will yield the same factor∆.

We first define a factor ∆0 which depends in addition on the choice of an F -splitting of G. The quotients

∆0(γH , γ)/∆0(γH , γ) will, however, be canonical. To prescribe ∆ we fix some (γH , γ) with γH an image of γ,

specify∆(γH , γ) arbitrarily, and then set

(1.1.1) ∆(γH , γ) = ∆(γH , γ)
∆0(γH , γ)
∆0(γH , γ)

if γH is an image of γ. Thus∆ is canonical, up to the constant∆(γH , γ).

The factor∆0 will be a product of several terms. Only the first depends on the choice of F -splitting. Here

we will describe it for the standard splitting (B,T, X) : B is the upper triangular subgroup, T the diagonal

subgroup and X =
[
0 1
0 0

]
. For the general case and for the fact that the relative factor is independent of the

choice of splitting we refer to (3.2).

Other choices are needed to define the terms in ∆0: an admissible embedding of H in G, and a-data

and χ-data for the image of H under that embedding. Let Γ = Gal(E/F ). An embedding of the torus H in

G is admissible if it is dual to a composition Ĥ → T → T̂ , where T is some maximal torus in Ĝ containing

s, T → T̂ is the isomorphism attached to (B, T ) and some pair (B, T ) chosen so that T is defined over F and

Ĥ → T̂ is a Γ-isomorphism. See (1.2) and (1.3). The a-data for T consist of elements aα, a−α of E× such that

aα = −aα = a−α, where ±α are the roots of T and the bar denotes conjugation in E.
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The χ-data are characters χα, χ−α on E× which extend the quadratic character on F× attached to E and

satisfy χ−α = χ−1
α .

Here then are the terms in∆0.

(I) 〈λ(T ), sT 〉,

where λ(T ) is the class in H1(T ) = H1(Γ, T (E)) of the cocycle

σ → h

[
0 aα

−a−1
α 0

]
σ(h−1)

for σ nontrivial in Γ. The element h is given by h−1Th = T and h−1Bh = B, with B some Borel subgroup

containing T . Then α is the root of T in B. The element sT is the unique nontrivial Γ-invariant element in T̂ ; it

is also the image of s under T → T̂ . Finally, the pairing is the Tate-Nakayama pairing.

(II) χα

(
α(γT )− 1

aα

)
,

where γT is the image of γH under H → T , and α is either root of T in G.

(III1) 〈inv(γH , γ), sT 〉−1,

where inv(γH , γ) is the class in H1(T ) of the cocycle σ → gσ(g)−1 and g is given by g−1γg = γT .

(III2) 〈a, γT 〉,

where a is an element of H1(W, T̂ ) which, roughly speaking, measures the difference between the Ĝ-conjugacy

class of the embedding ξ : LH → LG and the class of embeddings canonically attached to the χ-data for T [see

(2.6)]. The pairing is the usual one between H1(W, T̂ ) and T (F ) [B, Sect. 9].

(IV ) |(α(γT )− 1)(α(γT )−1 − 1)|1/2F .

The image T of H in G may be replaced only by g−1Tg, where g ∈ A(T ) = {g ∈ G(E) : gσ(g−1) ∈ T }. If

(T, {aα}, {χα}) is replaced by a triple conjugate under A(T ) in the obvious sense then we see that only the terms

(I) and (III1) are affected, but then clearly the effects cancel. Thus it remains to consider T fixed and the a-data,

χ-data changed. Only (I) and (II) involve a-data. If aα is replaced by a′α = aαbα where bα ∈ F× then λ(T ) is

multiplied by the class b of the cocycle σ → bα
∨

α . Note that bα
∨

α lies in E× ⊗ X∗(T ) = T (E). To show that the

product of the terms (I) and (II) is unaffected by replacing aα with a′α we have only to check that

〈b, sT 〉 = χα(bα).



SLOn the definition of transfer factors 6

This is clear since b is trivial if and only if b lies in NmE×.

On the other hand, only the terms (II) and (III2) depend on χ-data. Suppose that χα is replaced by

χ′
α = χαζα. Then ζα must be trivial on F×. We use the fact that the norm map δ → δδ from T (E) to T (F ) is

surjective to write γT as δT δT . Then α(γT ) = α(δT )/α(δT ) and

ζα

(
α(δT )− 1

aα

)
= ζα

(
α(δT )− α(δT )

aα

)
· ζα(α(δT ))

or ζα(α(δT )) since a−1
α (α(δT )− α(δT )) lies in F×. Thus we have to show that when χα is replaced by χαζα the

class a appearing in the term (III2) is multiplied by a class a(ζα) such that

〈a(ζα), γT 〉 = ζα(α(δT ))−1.

We will see later (3.5) that in fact a is multiplied by the class of a cocycle which is given on E× by χ → ζα(χ)−α.

That the class pairs with γT in the desired way is the Base Change Identity in this simple case, which follows

from the remarks in [B, Sect. 9].

Lemma [L-L]. For f ∈ C∞
c (G(F )) the function

fH : γH →
∑
γ

∆(γH , γ)Φ(γ, f)

extends smoothly to H(F ).

(1.2) Notation

Throughout F will be a local or a global field of characteristic zero; F will be an algebraic closure of F , and Γ

and WF the Galois group and Weil group of F/F . Let G be a connected reductive group over F . Then G∗ will

denote a quasi-split inner form of G and LG the L-group of G. More precisely, we fix:

(i) (G∗, ψ) with G∗ quasi-split over F and ψ : G → G∗ an inner twist, and

(ii) (Ĝ, #, ηG)with Ĝ connected, reductive and defined over C, # an L-action of Γ on Ĝ, and ηG : Ψ(G)∨ →

Ψ(Ĝ) a Γ-bijection.

HereΨ(−) denotes canonical based root data (see [K2]).

We have then for each pair (B, T ) in G and (B, T ) in Ĝ a canonical isomorphism T̂ → T , where by a pair

we mean a Borel subgroup and a maximal torus contained in it.

As L-group data, that is, the data of (ii), for G∗ we take (Ĝ, #, ηG∗)where ηG∗ is given by

Ψ(G∗)∨
ψ−→Ψ(G)∨

ηG−→Ψ(Ĝ).
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Finally, LG will be the semidirect product Ĝ � WF with WF acting by WF → Γ
�−→ Aut Ĝ.

We shall specify endoscopic data in a way useful for extension to the twisted case [K-S]. First note that if

1→ Ĝ → G → WF → 1 is a split extension then G is not necessarily an L-group. Nevertheless we attach to G an

L-action#G on Ĝ as follows. Let spl = (B, T , {Xα})be a splitting of Ĝ. We shall require that spl is preserved by the

# appearing in (ii), that is, it is aΓ-splitting (or F -splitting). If c : WF → G splits the extension then for w ∈ WF we

multiply

Int c(w) acting on Ĝ by an element of Int Ĝ to obtain #G(w) preserving spl. Then #G is an L-action which

is independent of the choice for c. Clearly if #G coincides with # for some choice of spl then it coincides for all

choices.

Let (H,H, s, ξ) be endoscopic data for G. By this we will mean:

(i) H is a quasi-split group over F .

Its L-group data will be denoted (Ĥ, #H , ηH), and LH = Ĥ � WF .

(ii) H is a split extension of WF by Ĥ and #H coincides with #H .

(iii) s is a semisimple element of Ĝ.

(iv) ξ : H → LG is an L-homomorphism, that is, a homomorphism of extensions of WF , such that

(a) Int s ◦ ξ = a⊗ ξ,

where a is a locally trivial 1-cocycle of WF in the center Z(Ĝ) of Ĝ if F is global, or a trivial 1-cocycle of

WF in Z(Ĝ) if F is local, and

(b) ξ|Ĥ is an isomorphism of Ĥ with the connected component of the centralizer of s in Ĝ.

Here a⊗ ξ(h) = a(w(h))ξ(h), h ∈ H, with w(h) denoting the image of h under H → WF .

Data (H ′,H′, s′, ξ′) are equivalent to (H,H, s, ξ) if there exist an F -isomorphism α : H → H ′, an

L-isomorphism β : H′ → H and an element g of Ĝ such that:

(i) Ψ(H) α−→Ψ(H ′) and Ψ(Ĥ ′)
β−→Ψ(Ĥ) are dual,

(ii) Int g ◦ ξ ◦ β = ξ′ and:

(iii) gsg−1 lies in Z(Ĝ)Z(ξ′)0s′, where Z(ξ′) is the centralizer in G of the image of H′ under ξ′.

Up to equivalence and the choice of ξ, which amounts to the choice of an embedding of LH in LG in the

case H is an L-group, these are the endoscopic data of [L2, p. 20]. Note that in the definitions of [L2] the group

H generated by LH0 and the elements n(w), w ∈ WF , is a split extension of WF by LH0 (see L1, Lemma 4]).

If H is an L-group then we may assume that H = LH . This will be our assumption until (4.4) as it greatly

simplifies notation. The minor modification needed for the general case, a passage to certain central extensions

of H , will be dealt with in that section.
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(1.3) Point Correspondences

The isomorphism T̂G → TG attached to pairs (BG, TG) in G and (BG, TG) in Ĝ transports the coroots of TG in G to

the roots of TG in Ĝ, the BG-simple coroots to the BG-simple roots and the Weyl group of T , with contragredient

action, to the Weyl group of TG. If (BH , TH) is a pair in Ĥ then there is an x in Ĝ such that Intx ◦ ξ maps TH
to TG and BH into BG. Finally, if (BH , TH) is a pair in H then we have an isomorphism T̂H → T̂G defined by

the composition T̂H → TH −→ TG −→ T̂G and thus also an isomorphism TH −→ TG. These isomorphisms

transport the coroots of TH in H into a subsystem of the coroots of TG in G, the Weyl group ΩH of TH into a

subgroup of the Weyl group ΩG of TG, and the roots of TH into a subset of the roots of TG. The map

TH/ΩH −→ TG/ΩG

of orbits of ΩH in TH onto orbits of ΩG in TG is independent of all choices. Since these orbits classify the

conjugacy classes of semisimple elements in H(F ) and G(F ), and the choice of tori is of no consequence, we

have a canonical map

AH/G : C+ss(H(F )) −→ C+ss(G(F )).

We call semisimple γH ∈ H(F ) G-regular if the image of its conjugacy class under AH/G consists of regular

semisimple elements, and strongly G-regular if the image consists of strongly regular elements, that is, elements

whose centralizer is a torus. A strongly G-regular element is strongly regular.

The group Γ = Gal(F/F ) acts on conjugacy classes.

Lemma 1.3.A. AH/G is a Γ-map.

Proof. AH/G = AG∗/G · AH/G∗ and AG∗/G is the map induced by ψ. Since ψ is an inner twist AG∗/G is a

Γ-bijection. Thus we may assume that G is quasi-split over F . Then if TH is defined over F Steinberg’s Theorem

[K1] allows us to choose (BG, TG)with both TG and TH −→ TG defined over F . The lemma follows.

Suppose that TH is defined over F . If (BG∗ , TG∗) is chosen so that TG∗ , and TH −→ TG∗ are defined over

F , as in the proof of the lemma, then we callTH −→ TG∗ an admissible embedding ofTH inG∗. It is uniquely deter-

mined up to A(TG∗)-conjugacy, that is, up to composition with

Int g−1, where g lies in

A(TG∗) = {g ∈ G∗(F ) : gσ(g−1) ∈ TG∗(F ), σ ∈ Γ}.

Note that we may take g in G∗
sc, the simply-connected cover of the derived group of G∗.

For strongly regular elements in G(F ) or H(F ) stable conjugacy is the same as conjugacy under G(F ) or

H(F ), and we may apply Lemma 1.3.A directly to define a correspondence of points. Thus, if γH ∈ H(F ) is

strongly G-regular then its stable conjugacy class consists of the F -rational points in its conjugacy class in H(F ).
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The image of this class in H(F ) under AH/G is a conjugacy class of strongly regular elements in G(F ). The class

is defined over F and so its F -rational points are either nonexistent or form a single stable conjugacy class of

strongly regular elements in G(F ). We call strongly G-regular γH ∈ H(F ) an image of γG ∈ G(F ) if γG lies in

the image under AH/G of the conjugacy class of γH in H(F ). The twisted analogue of image is norm [K-S] which

explains why we have labelled γH , and not γG, as the image.

For arbitrary G-regular semisimple γH in H(F )we set TH = Cent(γH , H)0 and choose an admissible em-

bedding TH −→ TG∗ of TH in G∗. If γG is regular semisimple in G(F ) and TG = Cent(γ,G)0 then we say that γH

is an image of γG if there exists x ∈ G∗ such that

Int x ◦ ψ maps γG to the image γG∗ of γH under TH −→ TG∗ and TG to TG∗ . The correspondence (γH , γG)

is independent of the choice of admissible embedding TH −→ TG∗ and extends that for the strongly regular

elements. Further we have:

(i) a G-regular semisimple element of H(F ) is either the image of no element or the image of exactly one

stable conjugacy class of regular semisimple elements in G(F ), and

(ii) the images of a regular semisimple element in G(F ) form a union, possibly empty, of stable conjugacy

classes of G-regular semisimple elements in H(F ). If F is local then the union is finite.

(1.4) Transfer Factors

We assume here that F is local, leaving remarks on the global case for Sect. 6.

To normalize measures on conjugacy classes we fix invariant forms of highest degree: ωG on G, ωH on H

and ωT on some maximal torus T in G. Then if T is any maximal torus over F in either G or H we transport

ωT to an invariant form ωT of highest degree on T , using an inner automorphism of G if T lies in G and an

isomorphism provided by the choice of pairs otherwise. In either case ωT depends only on ωT.

To an invariant form ω of highest degree on G, H or T we attach a Haar measure as follows. There is

λσ ∈ F
×

such that σ(ω) = λσω, σ ∈ Γ. Hilbert’s Theorem 90 allows us to write λσ as µσ(µ−1), where µ ∈ F
×

.

Then µω is defined over F and the Haar measure |µω| is well-defined. To obtain a measure independent of the

choice of µ we replace this by |µ|−1|µω| which will be denoted simply as |ω|.

It is simplest, and sufficient, to specify transfer factors on strongly regular elements. If f ∈ C∞
c (G(F ))

then for the integral of f along the conjugacy class of any regular semisimple element γ in G(F ) we take

Φ(γ, f) =
∫

T (F )\G(F )

f(g−1γg)
|ωG|
|ωT |

,
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where T = Cent(γ,G)0. For the integral of fH ∈ C∞
c (H(F )) along the stable conjugacy class of strongly

G-regular γH in H(F )we take

Φst(γH , fH) = ΣΦ(γ′
H , fH),

where the summation is over representatives γ ′
H for the conjugacy classes in the stable conjugacy class of γH . If

γH is not strongly regular this must be modified [see (4.3)].

Suppose ∆ is a function on strongly G-regular

elements in H(F )

×

 strongly regular

elements in G(F )


such that

(i) ∆(γH , γ) depends only on the conjugacy class of γ in G(F ) and the stable conjugacy class of γH in H(F ),

and

(ii) ∆(γH , γ) = 0 unless γH is an image of γ.

Then we say that f ∈ C∞
c (G(F )) and fH ∈ C∞

c (H(F )) have∆-matching orbital integrals if

Φst(γH , fH) =
∑
γ

∆(γH , γ)Φ(γ, f)

for all strongly G-regular elements γH in H(F ). The summation is over representatives γ for the conjugacy

classes of strongly regular elements in G(F ); only a finite number of terms in the sum are nonzero.

We call ∆ a transfer factor if for each f ∈ C∞
c (G(F )) there exists fH ∈ C∞

c (H(F )) with ∆-matching

orbital integrals. It is best to demand that∆(γH , γ) be nonzero if γH is an image of γ, and sometimes preferable

to work with functions in the Schwartz space [Sh].

In Sect. 3 we will define a function∆. If G is quasi-split over F then the procedure is exactly that for SL(2).

In general, however, the term inv(γH , γ) appearing in (III1) of (1.1) is no longer well defined as the torus T will

be taken in G∗ rather than G. Since only quotients really matter we define instead a relative invariant following

[K-S], and obtain a canonical relative factor ∆(γH , γ; γH , γ) in place of the quotient ∆0(γH , γ)/∆0(γH , γ) in

(1.1.1).

The next section describes, in a general setting, two constructions needed for Sect. 3.

2. Key Lemmas

(2.1) General Remarks

Suppose that k is a field of characteristic zero with algebraic closure k, and that G is a connected reductive

algebraic group defined and quasi-split over k. Let (B,T, {Xα}) be a k-splitting of G and Γ be a group acting
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on G by automorphisms which preserve (B,T, {Xα}). Then Γ acts on the Weyl group Ω = Ω(G,T) of T in G.

For θ = ω � # ∈ Ω� Γ we define n(θ) = n(ω)� # ∈ G(k) � Γ , where n(ω) ∈ Norm (T(k), G(k)) is given by

the following well-known construction [Spr].

Let α be a simple root of T in B. Then by definition #Xα = X�α, # ∈ Γ. Let Hα be the coroot for α

regarded as an element of Lie T. Fix the root vector X−α for −α by requiring that [Xα, X−α] = Hα. Then

#X−α = X−�α, # ∈ Γ. Set

n(α) = expXα exp(−X−α) expXα,

so that n(α) is the image of
[
0 1
−1 0

]
under the homomorphism SL(2) → G attached to the Lie triple

{Xα, Hα, X−α}. Let ω ∈ Ω, ω =| 1, be written in reduced form ω(α1) . . . ω(αr). Then we may set n(ω) =

n(α1) . . . n(αr) since this latter product is independent of the choice of reduced expression for ω [Spr]. If ω = 1

set n(ω) = 1. Then Intn(ω) acts on T as ω and

n(#(ω)) = #(n(ω)), # ∈ Γ .

Thus if θ = ω � # then n(θ) = n(ω)� # acts on T as θ and

n(θ1)nn(θ2) = t(θ1, θ2)n(θ1θ2), θi ∈ Ω � Γ ,

where t(θ1, θ2) is a 2-cocycle of Ω � Γ in T(k).

Lemma 2.1.A.

t(θ1, θ2) =
∏
α>0

θ−1
1 α<0

θ−1
2 θ−1

1 α>0

(−1)α
∨
.

Here α > 0 means α is a root of T in B, and α∨ is the coroot for α as element of X∗(T). Then (−1)α∨ ∈

k× ⊗X∗(T) ⊆ T(k).

Proof. We will verify in the next lemma that the right side is, like the left, a 2-cocycle. It is therefore enough to

show that the equality is valid when (i) θ1 or θ2 lies in Γ and when (ii) θ1 and θ2 lie in Ω and further θ1 = ω(α)

where α is simple. Case (i) is clear. For case (ii), let ω = ω(α1) . . . ω(αr) be a reduced expression for θ2. Then

Rω = {β > 0, ωβ < 0} is the set of positive roots separating the positive Weyl chamber W+ from ω−1W+ and

contains r elements. There are two possibilities. Either ω−1α > 0, ω(α)ω(α1) . . . ω(αr) is a reduced expression

for ω(α)ω and Rω(α)ω = Rω ∪ {ω−1α}, or ω−1α < 0 and there is a reduced expression for ω with ω(α1) = ω(α).

In the first case both sides of the putative equality are 1; in the second both are (−1)α∨
. The lemma is thus proved.

Let X be a free finitely generated Z-module and Σ be a group which acts on X and contains an element ε

sending λ to −λ, λ ∈ X . Then with trivial action of k×,Σ acts on k× ⊗ X . Let R be a finite Σ-stable subset of
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X and p be a gauge on R, by which we mean that p : R → {±1} and p{−λ) = −p(λ), λ ∈ R. We abbreviate a

product over those λ ∈ R for which

p(λ) = 1, p(σ−1λ) = −1, p(τ−1σ−1λ) = 1

by
p∏

1,σ,τ
.

Lemma 2.1.B. tp(σ, τ) =
p∏

1,σ,τ
(−1)λ, σ, τ ∈ Σ,

is a 2-cocycle of Σ with values in k× ⊗X.

Proof. The coboundary of this 2-cochain is the product over all λ with p(λ) = 1 of (−1)Nλ, where N is the

number of ordered triples in

{(σ−1λ, τ−1σ−1λ, #−1τ−1σ−1λ),(λ, τ−1σ−1λ, #−1τ−1σ−1λ),

(λ, σ−1λ, #−1τ−1σ−1λ),(λ, σ−1λ, τ−1σ−1λ)}

on which p takes alternating signs. Thus if p(#−1τ−1σ−1λ) = −1 there can be a contribution only from the first

and last triples and then only if p(σ−1λ) = −1, p(τ−1σ−1λ) = 1 when both triples contribute, so that N = 2. If

p(#−1τ−1σ−1λ) = 1 and p(σ−1λ) = 1 then either the first and second triples contribute or none does, so that N

is 2 or 0, but if p(#−1τ−1σ−1λ) = 1 and p(σ−1λ) = −1 then the third triple contributes and exactly one of the

second and fourth, so that N is 2. The lemma is proved.

Lemma 2.1.C. If q is also a gauge on R, then tq is cohomologous to tp.

Proof. We may assume that Σ is transitive on R and that X is free on {λ : p(λ) = 1}. Then by Shapiro’s Lemma

we reduce to the case R = {±λ} where the assertion is clear.

In the application of (2.3) and (2.6) we will have ε2 = 1 and Σwill be the product of {1, ε} and a subgroup

Γ. Then if Σ acts transitively on R either R consists of exactly two Γ-orbits O and −O or Γ also acts transitively

on R, in which case R is a Γ-orbit O, where O = −O. In the former case O is called asymmetric and in the latter

symmetric.

Lemma 2.1.D. Suppose that R = ∪±O, where O is asymmetric. Then the restriction of tp is trivial.

Proof. We may assume X is free on O. Then again by Shapiro’s Lemma we reduce to the case R = {±λ} where

the assertion is clear.

(2.2) a-Data

First we consider splitting tp in k
× ⊗ X , given an extension of the action of Σ on k to k with ε acting trivially. A

collection {aλ : λ ∈ R} is a set of a-data for the action of Γ in R if:

(i) aλ ∈ k
×

and aσλ = σ(aλ), σ ∈ Γ, λ ∈ R, and
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(ii) a−λ = −aλ, λ ∈ R.

Of course, a-data need not exist. If they do then we can split tp on Γ in the following way.

For a product over those λ ∈ R such that p(σ−1λ) = 1 and p(τ−1λ) = −1we write
p∏
σ,τ

. Set

up(σ) =
p∏

1,σ

aλλ, σ ∈ Γ.

Lemma 2.2.A. tp(σ, τ) = ∂up(σ, τ), σ, τ ∈ Γ.

Proof. ∂up(σ, τ) = up(σ)σ(up(τ))up(στ)−1 =
p∏

1,σ
aλλ

p∏
σ,τ

aλλ

p∏
1,στ

a−λλ .

Fix λ ∈ R with p(λ) = 1. Then the contributions of the terms with exponents ±λ are as follows.

(i) p(σ−1λ) = 1, p(τ−1σ−1λ) = 1 : 1

(ii) p(σ−1λ) = 1, p(τ−1σ−1λ) = −1 : aλλ · a−λλ = 1

(iii) p(σ−1λ) = −1, p(τ−1σ−1λ) = 1 : aλλ · a−λ−λ = aλλ(−aλ)−λ = (−1)λ

(iv) p(σ−1λ) = −1, p(τ−1σ−1λ) = −1 : 1.

Thus ∂up(σ, τ) =
p∏

1,σ,τ
(−1)λ = tp(σ, τ).

As a corollary of this lemma, or by simply modifying the proof, we have:

Lemma 2.2.B. Suppose that {bλ : λ ∈ R} satisfies bλ ∈ k
×
,

bσλ = σ(bλ), σ ∈ Γ, and b−λ = bλ.

Then

vp(σ) =
p∏

1,σ

bλλ, σ ∈ Γ,

is a 1-cocycle of Γ in k
× ⊗X.

By the usual argument with Shapiro’s Lemma we have:

Lemma 2.2.C. (a) The class of vp is independent of p, and

(b) if R = ±O where O is an asymmetric Γ-orbit then vp is cohomologically trivial.

Proof. (a) We may assume that R = {±λ}. Then the only gauges are ±p, where p(λ) = 1. Since b−λ−λ = bλλb
−2λ
λ

we have that v−p = vpw, where w(σ) = b−2λ
λ if σλ = −λ and w(σ) = 1 otherwise. But w(σ) = xσ(x)−1 where

x = b−λλ .

(b) Again assume R = {±λ}. Then vp = 1.

(2.3) An Application
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Our first task is to define an invariant for a pair (T, {aα}), where T is a maximal torus defined over k in a

connected reductive group G defined and quasi-split over k, and {aα} is a set of a-data for T , i.e. for the action

of Γ = Gal(k/k) on the set R(G, T ) of roots of T in G. Note that in this setting a-data are readily verified to exist.

We fix a k-splitting (B,T, {Xα}) of G. There will be no harm in assuming G semisimple and simply-

connected and we do so to conserve notation. Denote by σ the action of σ ∈ Γ on T, and set Γ = {σ : σ ∈ Γ}.

Again Ω will be the Weyl group Ω(G,T).

Choose a Borel subgroup B of G containing T and h ∈ G such that (B, T )h = (B,T). Denote by σT both

the action of σ ∈ Γ on T and its transport to T by Int h−1. Set

ΓT = {σT : σ ∈ Γ} ⊂ Ω � Γ .

If ωT (σ) is the element of Ω defined by Int(h−1σ(h)) then σT = ωT (σ)� σ.

The a-data for T serve also for the action on Γ on R∨(G, T ) and, after transport, for the action of ΓT on

R = R∨(G,T); {a−1
α } is also a set of a-data. By Lemmas 2.1.A and 2.2.A

n(σT ) = n(ωT (σ)) � σ, σ ∈ Γ,

satisfies

n(σT )σ(n(τT ))n((στ)T )−1 = ∂x(σT , τT )−1

where

x(σT ) =
p∏

1,σ

aα
∨

α

and p(α) = 1 if and only if α is a root of T in B. Then

σT → x(σT )n(ωT (σ)) � σ

is a homomorphism of ΓT in Norm(T(k), G(k))� Γ . Otherwise stated,

σT → m(σT ) = x(σT )n(ωT (σ))

is a 1-cocycle of ΓT in Norm(T(k), G(k)).

Now hm(σT )σ(h−1) = h(m(σT )σ(h−1)h)h−1 lies in T (k) and is evidently a 1-cocycle of Γ in T (k). Since

h is unique up to left multiplication by an element of T (k) this cocycle yields, for given k-splitting, a-data and

B ⊃ T , a well-defined element λ(T ) = λ{aα}(T ) of H1(Γ, T (k)) = H1(T ). We note some of its properties.
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(2.3.1) The splitting (B,T, {Xα})may be replaced only by (Bg,Tg, {Xg
α}), where g ∈ G(k) is such that gσ(g)−1

lies in the center Z of G, σ ∈ Γ. Then m(σT ) is replaced by g−1m(σT )g and h by hg. Thus the cocycle defining

λ(T ) is replaced by

hg(g−1mT (σ)g)σ(hg)−1 = gσ(g)−1hmT (σ)σ(h)−1.

Then λ(T ) is multiplied by the class g in H1(T ) represented by σ → gσ(g)−1.

(2.3.2) Suppose that the a-data {aα} are replaced by {a′α}. Then a′α = bαaα, where bσα = σ(bα) for all σ in the

group Σ generated by Γ and ε, and hm(σT )σ(h−1) is replaced by

hvp(σT )h−1hm(σT )σ(h−1),

where vp is the 1-cocycle σT →
p∏

1,σ
bα

∨
α of ΓT in T(k) (cf. Lemma 2.2.B). Note that hvp(σT )h−1 is the cocycle

bq : σ
q∏

1,σ
bα

∨
α of Γ in T (k), q denoting the transport of the gauge p to R∨(G, T ) by Int h, and that the class b of bq

in H1(T ) is independent of the gauge q (Lemma 2.2.C).

(2.3.3) Next we show that λ(T ) is independent of B. Suppose that B is replaced by vBv−1, v ∈ Norm(T,G).

Set u = h−1vh ∈ Norm(T, G), and suppose that µ is the element of Ω defined by u. We now have to

transport σ on T to T by Int(h−1v−1). Suppose we obtain σ′
T = ω′

T (σ) � σ. Then since h−1v−1σ(vh) =

h−1v−1h · h−1σ(h) · σ(h−1vh) = u−1h−1σ(h)σ(u) we have ω′
T (σ) = µ−1ωT (σ)σ(µ). Let Γ′

T = {σ′
T : α ∈ Γ}.

The a-data {a′α} obtained by transport for Γ′T satisfy a′α = aµα, α ∈ R(G,T). We then define m(σ′
T ) in the same

way as m(σT ) and consider

vhm(σ′
T )σ(h

−1v−1) = hum(σ′
T )σ(u

−1)σ(h−1).

But now um(σ′
T )σ(u)

−1 = b(σT )m(σT ), where σT → b(σT ) is a 1-cocycle of ΓT with values in T. It remains to

show:

Lemma 2.3.A. The cocycle b is trivial.

Proof. We have m(σT ) = x(σT )n(ωT (σ)) and m(σ′
T ) = x(σ′

T )n(ω
′
T (σ)); x(σT ) is defined in terms of {aα} and

x(σ′
T ) in terms of {a′α}. Then

m(σ′
T ) = x(σ′

T )n(µ
−1ωT (σ)σ(µ))

which equals

x(σ′
T )tp(µ

−1ωT (σ),σ(µ))tp(µ−1, ωT (σ))n(µ−1)n(ωT (σ))n(σ(µ))

or

x(σ′
T )µ

−1(x(σT )−1)tp(µ−1ωT (σ),σ(µ))tp(µ−1, ωT (σ))n(µ−1)m(σT )n(σ(µ)).
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Now n(µ) = λu, where λ ∈ T, and then

n(σ(µ)) = σ(n(µ)) = σ(λ)σ(u).

Also we have n(µ−1) = n(µ)−1tp(µ, µ−1). Thus um(σ′
T )σ(u)

−1 is equal to

µ(x(σ′
T ))x(σT )

−1tp(µ, µ−1)µ[tp(µ−1ωT (σ),σ(µ))t0(µ−1, ωT (σ))]λ−1σT (λ)m(σT ),

and b(σT ) is equivalent to

µ(x(σ′
T ))x(σT )

−1tp(µ, µ−1)µ[tp(µ−1ωT (σ), σ(µ))tp(µ−1, ωT (σ))].

We now omit the subscript T in notation. That b(σ) is trivial follows from:

Lemma 2.3.B. (a) Let δ =
p∏

1,µ
a−α

∨
α . Then µ(x(σ′))x(σ)−1 is equal to

δσ(δ−1)
∏

p(α)=p(µ−1α)=p(µ−1σ−1α)=1

p(σ−1α)=−1

(−1)α
∨ ∏
p(α)=p(σ−1α)=p(µ−1σ−1α)=1

p(µ−1α)=−1

(−1)α
∨

(b) tp(µ, µ−1)µ[tp(µ−1ω(σ),σ(µ))tp(µ−1, ω(σ))] is equal to

∏
p(α)=p(µ−1α)=p(µ−1σ−1α)=1

p(σ−1α)=−1

(−1)α∨ ∏
p(α)=p(σ−1α)=p(µ−1σ−1α)=1

p(µ−1α)=−1

(−1)α∨

Proof.
µ(x(σ′))x(σ)−1 =

∏
p(α)=1

p(µ−1σ−1µα)=−1

(a′α)
µα∨ ∏

p(α)=1

p(σ−1α)=−1

a−α
∨

α

·

=
∏

p(µ−1α)=1

p(µ−1σ−1α)=−1

aα
∨

α

∏
p(α)=1

p(σ−1α)=−1

a−α
∨

α .

The contributions to this product are as follows.

(i) p(α) = 1, p(µ−1α) = p(σ−1α) = −1 : a−α∨
α .

(ii) p(α) = p(µ−1α) = p(µ−1σ−1α) = 1, p(σ−1α) = −1 : a−α∨
α .

(iii) p(µ−1α) = 1, p(α) = p(σ−1α) = p(µ−1σ−1α) = −1 : aα∨
α .

(iv) p(σ−1α) = p(µ−1α) = 1, p(µ−1σ−1α) = −1 : aα∨
α .

On the other hand,

δσ(δ)−1 =
∏

p(α)=1

p(µ−1α)=−1

a−α
∨

α

∏
p(σ−1α)=1

p(µ−1σ−1α)=−1

aα
∨

α .
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The contributions to this product are the following.

(i) p(α) = 1, p(µ−1α) = p(σ−1α) = −1 : a−α∨
α .

(ii) p(α) = p(µ−1α) = p(µ−1σ−1α) = −1, p(σ−1α) = 1 : aα
∨

α = (−1)α∨
aα

∨
−α.

(iii) p(µ−1α) = −1, p(α) = p(σ−1α) = p(µ−1σ−1α) = 1 : a−α
∨

α = (−1)α∨
a−α

∨
−α .

(iv) p(σ−1α) = p(µ−1α) = 1, p(µ−1σ−1α) = −1 : aα∨
α .

The assertion (a) follows.

For (b) we observe first that p(σ−1α) = p(α) so that p(ω(σ)−1α) = p(σ−1α) for all roots α. Thus

tp(µ, µ−1)µ(tp(µ−1, ω(σ))) is equal to

∏
p(α)=1

p(µ−1α)=−1

(−1)α∨ ∏
p(α)=p(σ−1µα)=1

p(µα)=−1

(−1)µα∨
=

∏
p(α)=1

p(µ−1α)=−1

(−1)α∨ ∏
p(α)=1

p(µ−1α)=p(σ−1α)=−1

(−1)α∨
.

Performing the obvious cancellations, we obtain

∏
p(α)=p(σ−1α)=1

p(µ−1α)=−1

(−1)α∨
.

Also µ(tp(µ−1ω(σ),σ(µ)) is equal to

∏
p(α)=p(µ−1σ−1µα)=1

p(σ−1µα)=−1

(−1)µα∨
=

∏
p(µ−1α)=p(µ−1σ−1α)=1

p(σ−1α)=−1

(−1)α∨
.

Then tp(µ, µ−1)µ(tp(µ−1ω(σ),σ(µ))tp(µ−1ω(σ)) equals

∏
p(α)=p(σ−1α)=1

p(µ−1α)=−1

(−1)α∨ ∏
p(µ−1α)=p(µ−1σ−1α)=1

p(σ−1α)=−1

(−1)α∨
.

The nontrivial contributions to this product occur only for either

(i) p(α) = p(µ−1α) = p(µ−1σ−1α) = 1, p(σ−1α) = −1, or (ii) p(α) = p(σ−1α) = p(µ−1σ−1α)

= 1, p(µ−1α) = −1. Thus (b) follows, and the lemma is proved.

(2.3.4) Suppose now that Int g−1 maps T to T ′ over F and carries a-data {aα} for T to the a-data {a′α} for T ′.

We construct λ(T ) = λ{aα}(T ) and λ(T ′) = λ{a′α}(T ′). Note that if B ⊃ T is used to define the cocycle m(σT )

then B′ = gBg−1 yields m(σT ′ ) = m(σT ). From

hm(σT )σ(h)−1 = g(g−1hm(σT ′)σ(h)−1σ(g))g−1 · gσ(g)−1

we conclude that if g ∈ H1(T ) is the class of the cocycle σ → gσ(g)−1 then λ(T ) is g times the image of λ(T ′)

under the homomorphism H1(T ′)→ H1(T ) given by Int g.
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(2.3.5) Finally, suppose that k is a number field, v is a place of k and kv is the completion of k at v. Then

a-data for T as torus over k, or global a-data serve as well as a-data for T over kv , or local a-data. We therefore

obtain both λ(T ) ∈ H1(Γ, T ) and λv(T ) ∈ H1(Γv, T ) attached to given global a-data and k-splitting of G. For

σ ∈ Γv ⊂ Γ,m(σT ) = x(σT )n(ωT (σ)) is the same whether given in terms of k or of kv. Thus λv(T ) is the image

of λ(T ) under H1(Γ, T )→ H1(Γv, T ).

(2.4) An Explicit Splitting

We return to the setting of (2.1). Recall that if p, q are gauges on R then tp and tq are cohomologous 2-cocycles of

Σ in k× ⊗X (Lemma 2.1.C). Here we shall construct an explicit splitting of tp/tq .

Let sp/q(σ) =
∏
(p)

(−1)λ
∏

(−q)
(−1)λ, σ ∈ Γ, where

∏
(p)

is the product over λ such that

p(λ) = 1, p(σ−1λ) = −1, q(λ) = q(σ−1λ) = 1

and
∏

(−q)
the product over λ such that

p(λ) = p(σ−1λ) = 1, q(λ) = −1, q(σ−1λ) = 1.

Observe that sp/p = s−p/p = sp/−p = 1.

Lemma 2.4.A. The coboundary of sp/q is tp/tq.

Proof. For σ, τ ∈ Γ, λ ∈ R, set

S(λ) = (p(λ), p(σ−1λ), p(τ−1σ−1λ), q(λ), q(σ−1λ), q(τ−1σ−1λ)).

Then

sp/q(σ)σ(sp/q(τ))sp/q(στ)−1 =
∏
(−1)λ,

where the product is taken over the six sets given respectively by S(λ) equal to:

(1,−1,±1, 1, 1,±1); (±1, 1,−1,±1, 1, 1);(1,±1,−1, 1,±1, 1);

(1, 1,±1,−1, 1,±1);(±1, 1, 1,±1,−1, 1); (1,±1, 1,−1,±1, 1)

. The contribution of ±λ to this product is as follows.

(a) If all entries in S(λ) are positive: 1.

(b) If exactly five entries in S(λ) are positive: (−1)λ if S(λ) = (1, 1, 1, 1,−1, 1) or (1,−1, 1, 1,

1, 1), and 1 otherwise.

(c) If exactly four entries in S(λ) are positive: (−1)λ if S(λ) = (1,−1, 1,−1, 1, 1), (1,−1, 1, 1,

1,−1), (1, 1,−1, 1,−1, 1), (−1, 1, 1, 1,−1, 1), (−1, 1,−1, 1, 1, 1), or (1, 1, 1,−1, 1,−1), and 1 otherwise.



SLOn the definition of transfer factors 19

(d) If exactly three entries in S(λ) are positive: (−1)λ if ±S(λ) = (1, 1,−1,−1, 1,−1), (1,−1,

−1, 1,−1, 1), (1,−1, 1,−1,−1, 1) or (−1, 1,−1,−1, 1, 1), and 1 otherwise.

On the other hand, tp(σ, τ)/tq(σ, τ) =
∏
(−1)λ where the product is now over each of

{λ : S(λ) = (1,−1, 1,±1,±1,±1)}

and

{λ : S(λ) = (±1,±1,±1, 1,−1, 1)}.

Consider the contribution to this product from λ. In cases (a) and (b) the contribution is the same as for ∂sp/q . In

cases (c) and (d) if ±λ contribute (−1)λ to sp/q we find that exactly one of λ and −λ contributes (−1)λ to tp/tq,

and conversely. Thus tp/tq coincides with ∂sp/q , and the lemma is proved.

Corollary 2.4.B.

(i) sq/p is cohomologous to sp/q .

(ii) sp/qsq/r is cohomologous to sp/r.

Proof. In view of Lemma 2.4.A both sq/ps
−1
p/q and sp/qsq/rs

−1
p/r are cocycles. We can then reduce in the usual way

with Shapiro’s Lemma to the case R = {±λ}. Then q, r = ±p and the lemma is clear.

(2.5) χ-Data

We consider the case k = C and Γ = Gal(L/F ), where F is a local or a global field and L is a finite Galois

extension of F . The group Σ = 〈Γ, ε〉 acts on C× ⊗ X with trivial action on C×. The cocycle tp is nontrivial in

general. Let W be the Weil group of L/F . Then W acts on C× ⊗ X through W → Γ. The inflation of tp to W

does split [L1]. Here we shall construct a splitting of it using χ−data which are prescribed as follows.

Set Γ+λ = {σ ∈ Γ : σλ = λ} and Γ±λ = {σ ∈ Γ : σλ = ±λ}, λ ∈ R. Once λ has been fixed we delete it in

notation. Then F+ ⊂ L will be the fixed field of Γ+, and F± the fixed field of Γ±. Note that [F+ : F±] is 2 or 1

according as the Γ-orbit of λ is symmetric or asymmetric. Set W± =WL/F± and W+ =WL/F+ . Then by χ-data

for the action of Γ on R we mean a collection {χλ : λ ∈ R} such that the following hold.

(i) χλ is a character on C+λ, where C+λ is the multiplicative group of F+λ or the idèle-class group of

F+λ, according as F is local or global.

In either case we may regard χλ as a character on W+ =W+λ.

(ii) χ−λ = χ−1
λ and

χσλ = χλ · σ−1, σ ∈ Γ, λ ∈ R.
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(iii) If [F+ : F±] = 2 then χλ, as character on C+, extends the quadratic character on C± attached to the

extension F+/F±. It is readily verified that χ-data exist.

To prescribe the splitting we shall at first assume that Σ acts transitively on R. In general, it is a product of

the splittings for the orbits. Fix λ ∈ R and choose representatives σ1, . . . , σn for Γ±\Γ. Then ±σ−1
1 λ, . . . ,±σ−1

n λ

are the elements of R listed without redundancy. Define a gauge p on R by

p(λ′) = 1 if and only if λ′ = σ−1
i λ, some 1 � i � n.

Choose w1, . . . , wn ∈ W such that wi maps to σi under W → Γ. Then w1, . . . , wn are representatives for W±\W .

If w ∈ W then define ui(w) ∈ W± by

wiw = ui(w)wi, i = 1, . . . , n.

Choose representatives v0 ∈ W+ and v1 for W+\W± in case [F+ : F±] = 2 and an element v0 of W+ if F+ = F±.

Note that χλ(v1vv
−1
1 ) = χλ(v)−1. For u ∈ W± define v0(u) ∈ W+ by

v0 · u = v0(u) · vi′ ,

where i′ = 0 or 1, as appropriate. For u ∈ W± set

s(u) = χλ(v0(u))

and for w ∈ W set

rp(w) =
n∏
i=1

χλ(v0(ui(w)))λi =
n∏
i=1

s(ui(w))λi ,

where λi = σ−1
i λ. Then rp is a 1-chain of W with values in C× ⊗X .

If q is any gauge on R set

rq = sq/prp.

Lemma 2.5.A. The coboundary of rq is tq.

Proof. In view of Lemma 2.4.A we have only to consider the case q = p. Suppose that v, w ∈ W . Then

wivw = ui(v)wi′w = ui(v)ui′(w)wi′′

so that ui(vw) = ui(v)ui′ (w). If v → σ under W → Γ then

σλi′ = σσ−1
i′ λ = εiσ

−1
i λ = εiλi,
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where εi = +1 or −1 according as ui(v) ∈ W+ or not. Observe that εi = p(σ−1λi). Now

rp(v)v(rp(w)) =
n∏
i=1

s(ui(v))λis(ui′(w))σλi

=
n∏
i=1

s(ui(v))λis(ui′(w))εiλi

and

rp(vw) =
n∏
i=1

s(ui(v))λis(ui′(w))λi .

We claim that

s(ui′(w))εi = t · s(ui′(w))

where t = 1 unless εi = −1 and ui′(w) /∈ W+, in which case it is −1. But εi = p(σ−1λi) and if w → τ under

W → Γ then ui′(w) /∈ W+ if and only if p(τ−1λ′
i) = εip(τ−1σ−1λi) = −1. We conclude that

rp(v)v(rp(w))rp(vw)−1 =
∏

p(σ−1λi)=−1

p(τ−1σ−1λi)=1

(−1)λi =
p∏

1,σ,τ

(−1)λ = tp(v, w).

To prove the claim there is more convenient notation. Let u, v ∈ W± and suppose u → σ, v → τ under

W± → Γ±. Set ε = p(σ−1λ) and δ = p(τ−1σ−1λ). Then the claim asserts that

s(u)s(v)εs(uv)−1 =
{
−1 if ε = −1, δ = 1
1 otherwise,

where s(u) = χλ(v0(u)). If u ∈ W+, and in particular if W+ = W±, then ε = 1 and v0(u) = v0uv
−1
0 , v0(uv) =

v0uv
−1
0 v0(v) so that χλ(v0(u))χλ(v0(v)) = χλ(v0(uv)). If u /∈ W+ then v0uv = v0(u)v1v. If also v ∈ W+ then

v0(u)v1v = v0(u)v1vv
−1
1 v1 and v0(uv) = v0(u)v1vv

−1
1 . Thus

χλ(v0(uv)) = χλ(v0(u))χλ(v1vv
−1
1 ) = χλ(v0(u))χλ(v)−1.

If both u, v lie outside W+ then

v0uv = v0(u)v1v = v0(u)v1v
−1
0 v0(v)v1

= v0(u)v1v
−1
0 v0(v)v−1

1 v2
1v

−1
0 v0.

Thus

v0(uv) = v0(u)v1v
−1
0 v0(v)v−1

1 v2
1v

−1
0

and
χλ(v0(uv)) = χλ(v0(u))χλ(v1v0(v)v−1

1 )χλ(v1v
−1
0 v−1

1 v−1
0 )χλ(v2

1)

= −χλ(v0(u))χλ(v0(v))−1
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since χλ(v2
1) = −1 and χλ(v1xv

−1
1 ) = χλ(x)−1, x ∈ W+. The claim is thus verified, and Lemma 2.5.A proved.

It remains to check that the various choices made have no effect on rq , up to 1-coboundaries. First we

observe that

rq(x) = rp(x) =
n∏
i=1

χλ(NmL
F+

σix)σ
−1
i λ, x ∈ L×,

is independent of the choices for v0, v1, w1, . . . , wn and λ, and that rq(xw) = rq(x)rq(w), x ∈ L×, w ∈ W .

Consider a change in v0, v1. Then rp is replaced by a cochain rp′ . To show that the cocycle rpr
−1
p′ is trivial we

may assume X is free on {λ ∈ R : p(λ) = 1} and reduce to the caseR = {±λ} by Shapiro’s Lemma. It is sufficient

now to observe that rp and rp′ coincide on W+, for then rpr
−1
p′ defines an element of H1(Gal(F+/F±),C× ⊗X).

This group is readily seen to be trivial.

Another choice w′
i, . . . , w

′
n for w1, . . . , wn leads to a gauge p′ and it has to be shown that the cocycle

sp′/prpr
−1
p′ is trivial. Again we reduce to the case R = {±λ}. Since p′ = ±p, sp′/p is trivial and, as above, it

needs only to be shown that rp and rp′ coincide on W+. We may assume p(λ) = p′(−λ) = 1, w1 = v0 and

w′
1 = v1. Then λ1 = λ, λ′

1 = −λ and u1(w) = v0wv−1
0 , u′

1(w) = v1wv−1
1 , w ∈ W . Thus for w ∈ W+ we have

χλ′(u′
1(w))

λ′
1 = χλ(v1wv−1

1 )−λ = χλ(w)λ = χλ(u1(w))λ and rp(w) = rp′(w), as desired.

Finally, replacing λ by −λ clearly has no effect. If we replace λ by λ′ = #λ and v ∈ W is a lifting of # then

Γ+λ′ = #Γ+λ#
−1 and we may take σ′

i = #σi. Then λ′
i = λi and we set w′

i = vwi, so that u′
i(w) = vui(w)v−1.

We also take v′0 = vv0v
−1, so that v′0u

′
i(w) = vv0ui(w)v−1. Since χλ′(vxv−1) = χλ(x) the independence is clear.

Corollary 2.5.B. Suppose {ζλ : λ ∈ R} satisfies:

(i) ζλ is a character on C+λ and hence on W+λ.

(ii) ζσλ = ζλ ◦ σ−1, σ ∈ Γ, λ ∈ R and ζ−λ = ζ−1
λ , λ ∈ R.

(iii) If [F+λ : F±λ] = 2 then ζλ is trivial on C±λ.

Then

c(w) =
n∏
i=1

ζλ(v0(ui(w)))λi , w ∈ W ,

is a 1-cocycle of W with values in C× ⊗ X. Its cohomology class is independent of the choices made in its

construction.

If the action of Σ on R is not transitive we define rq and c for each Σ-orbit, thus for each pair ±O of

Γ-orbits, and then take products over all such pairs. The results are denoted again rq and c.

(2.6) A Second Application

Suppose that G is a connected reductive group defined over F . Recall that LG = Ĝ � WF . Suppose that T is

a maximal torus over F in G. Then we shall attach to χ-data for T , that is, for the action of Γ = Gal(F/F ) on

R(G, T ), a canonical Ĝ-conjugacy class of admissible embeddings of LT in LG.



SLOn the definition of transfer factors 23

There will be no harm in replacing F throughout by a finite Galois extension L ⊂ F of F over which T

splits, and we do so without change in notation. Denote by σ the action of σ ∈ Γ on Ĝ and set Γ = {σ : σ ∈ Γ}.

Fix a Γ-splitting (B̂, T̂, {X∨
α}) of Ĝ.

A homomorphism ξ : LT → LG is an admissible embedding if

(i) ξ maps T̂ to T̂ by the isomorphism attached to the pair (B̂, T̂) and the choice of a Borel subgroup B in G

containing T , and

(ii) ξ(w) ∈ Ĝ× w,w ∈ W .

The Ĝ-conjugacy class of ξ is {Int g ◦ ξ : g ∈ Ĝ}. It is independent of the choice of (B̂, T̂) and B.

We fix B. Then to specify ξ we have only to give a homomorphism w → ξ(w) = ξ0(w) × w where

ξ0(w) ∈ Norm(T̂, Ĝ) and where, in addition, if w → σ under W → Γ then Int ξ(w) acts on T̂ as the transport by

ξ of the action of σ ∈ Γ on T̂ . We write this transport σT as ωT (σ) � σ ∈ Ω × Γ , and set ΓT = {σT : σ ∈ Γ}.

The χ-data {χα} for T provide χ-data for the action of ΓT on R = R∨(Ĝ, T̂); {χ−1
α } is also a set of χ-data.

By Lemma 2.1.A

n(w) = n(ωT (σ)) × w ∈ Norm(T̂, Ĝ)× w, w ∈ W,

satisfies

n(w1)n(w2)n(w1w2)−1 = tp(σ1, σ2),

if wi → σi under W → Γ, where p(α) = 1 if and only if α∨ is a root of T̂ in B̂. By Lemma 2.5.A the inflation of

tp to W is split by r−1
p , where rp is the 1-cochain of W in T̂ attached to {χα} as in (2.5). We now use p0 for the

gauge fixed there so that rp = sp/p0rp0 , and note that r−1
p is the cochain attached to {χ−1

α }. Thus with

ξ(w) = rp(w)n(ωT (σ)) × w, w ∈ W

we obtain an admissible homomorphism ξ : LT → LG. It is determined uniquely up to T̂-conjugacy by the

Γ-splitting, Borel subgroup B and χ-data for T .

(2.6.1) Suppose that the Γ-splitting is replaced by another, (Bg,Tg, {Xg
α∨}). We may suppose that g ∈ Ĝ is

Γ -invariant [K2]. Then n(w) is replaced by g−1n(w)g, w ∈ W , and ξ : LT → LG by Int g−1 · ξ, so that the

Ĝ-conjugacy class of ξ is not affected.

(2.6.2) We show now that the Ĝ-conjugacy class of ξ is independent of the choice of B. Suppose that B is replaced

by B′ = vBv−1, where v ∈ Norm(T,G), and ξ′ is obtained in place of ξ. Let µ in Ω = Ω(Ĝ, T̂) be the element

defined by the transport of Int v|T to T̂ by ξ. Then the transport of σ from T to T̂ via ξ′ is σ′
T = ω′

T (σ) � σ,

where ω′
T (σ) = µ−1ωT (σ)σ(µ).
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Lemma 2.6.A. We have

ξ′ = Int g−1 ◦ ξ,

where g ∈ Norm(T̂, Ĝ) acts on T̂ as µ.

Proof. The two sets of data {χα} and {χ′
α = χµα} yield

ξ(w) = rp(w)n(ωT (σ)) × w, ξ′(w) = r′p(w)n(ω
′
T (σ)) × w

if w → σ under W → Γ. We delete the subscript T in our notation. Lemma 2.1.A shows that

ξ′(w) = r′p(w)n(µ
−1ω(σ)σ(µ)) × w

= r′p(w)tp(µ
−1ω(σ),σ(µ))t0(µ−1, ω(σ))n(µ−1)n(ω(σ))n(σ(µ)) × w

= n(µ)−1tp(µ, µ−1)µ[tp(µ−1ω(σ),σ(µ))tp(µ−1, ω(σ))r′p(w)]rp(w)
−1ξ(w)n(µ).

By Lemma 2.3.B,

tp(µ, µ−1)µ[tp(µ−1ω(σ),σ(µ))tp(µ−1, ω(σ))]

is equal to ∏
p(α)=p(µ−1α)=p(µ−1σ−1α)=1

p(σ−1α)=−1

(−1)α
∏

p(α)=p(σ−1α)=p(µ−1σ−1α)=1

p(µ−1α)=−1

(−1)α = sq/p(σ),

where q is the gauge p ◦ µ−1.

To complete the proof we observe that µ(r′p(w)) = sq/p0(σ)rp0 (w), so that

µ(r′p(w))rp(w)
−1 = sq/p0(σ)rp0 (w)sp/p0 (σ)

−1rp0 (w)
−1

= sq/p(σ).

(2.6.3) Suppose that the χ-data {χα} are replaced by {χ′
α}. Then χ′

α = ζαχα, where {ζα : α ∈ R} satisfies the

conditions of Corollary 2.5.B. Let c be the cocycle defined there. Then the embedding ξ is replaced by c⊗ ξ where

c⊗ ξ(t× w) = c(w)ξ(t × w), t× w ∈ LT.

(2.6.4) Suppose that Int g−1 maps T to T ′ over F and carries the χ-data {χα} for T to data {χ′
α} for T ′. Now

g defines a canonical isomorphism λg : LT ′ → LT . Let ξ be the embedding of LT in LG defined (up to ξ(T̂ )-

conjugacy) by the choice of Borel subgroup B ⊃ T . Then ξ′ = ξ ◦ λg is the embedding of LT ′ in LG defined by

the Borel subgroup B′ = g−1Bg of G. Thus the class of embeddings attached to (T ′, {χ′
α}) is obtained from that

attached to (T, {χα}) by composition with the canonical LT ′ → LT .
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(2.6.5) There is a simple local-global relationship when F is a number field. Suppose that v is a place of F and

Fv is the completion of F at v. Fix a place w of L dividing v, and set Γv = Gal(Lw/Fv),Wv = WLw/Fv
. Then a

homomorphism Wv → W for which

1→ L×
w → Wv → Γv → 1
↓ ↓ ↓

1→ CLw → W → Γ→ 1

is commutative attaches to ξ : T̂ � W → Ĝ � W a local embedding ξv : T̂ � Wv → Ĝ � Wv . Since ξ(CLw ) ⊂

T̂ × CLw , where T̂ = ξ(T̂ ), ξv is determined uniquely up to T̂-conjugacy by ξ.

On the other hand, the place w of L determines completions of the subfields, F+ and F±. These completions

coincide with Fv,+ and Fv,±, the subfields of Lw defined by Γv,+ = {σ ∈ Γv : σλ = λ} and Γv,± = {σ ∈ Γv :

σλ = ±λ}. Then the natural embeddings Fv,+ ↪→ C+, Fv,± ↪→ C± allow us to construct χ-data {χ(v)
α } for the

action of Γv, local data, from χ-data {χα} for the action of Γ, global data.

To prescribe an admissible ξ : T̂ � W → Ĝ � W we have to give a Γ-splitting of Ĝ and a Borel subgroup

B of G containing T as well as {χα}. The same splitting and Borel subgroup together with {χ(v)
α } yield a local

embedding ξ′v : T̂ �Wv → Ĝ�Wv . Because the choices made in our constructions do not matter we can arrange

that ξ′v(wv) = ξ(w) if wv → w under Wv → W . Thus, up to T̂-conjugacy, ξ′v is the local embedding attached to

ξ, and passage from global to local embeddings is consistent with passage from global to local χ-data.

3. Definitions

(3.1) Notation

Throughout Sect. 3 F will be local and γH , γH will be strongly G-regular elements in H(F )which are images of

the elements γG, γG in G(F ).

Let TH , TH , be the centralizers of γH , γH in H . We fix admissible embeddings TH → T and TH → T

of TH and TH in G∗, the quasi-split form of G, and denote by γ and γ the images of γH and γH under these

embeddings. Notation for tori and elements in G itself will always include the subscript G.

We denote by R the root system of T in G∗, by R∨ the coroots, by Ω the Weyl group, by R∨
H the subsystem

of coroots from H , by RH the subset of roots from H and by ΩH the Weyl group generated by RH or R∨
H . The

analogous objects for T will be denoted R,R
∨

and so on.

We further fix a-data and χ-data for the action of Γ = Gal(F/F ) on the roots of T and of T . These

may also be regarded as a-data and χ-data for the action on the coroots, and are unaffected by passage to the

simply-connected covering G∗
sc of the derived group G∗. If TH → T is replaced by an A(T )-conjugate [recall

(1.3)] then we may use this conjugation to transport given a-data and χ-data to data for the new image of TH .
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To check the effect of our choice of embedding TH → T , a-data {aα} and χ-data {χα} we will have only

to determine the effect of:

(A) replacing (TH → T, {aα}, {χα}) by an A(T )-conjugate triple, and

(B) changing {aα}, {χα} with TH → T fixed.

Recall that TH → T is given by the choice of Borel subgroups BH in H and B in G∗, of pairs (BH , TH)

in Ĥ and (B, T ) in Ĝ, and of x ∈ Ĝ such that Intx ◦ ξ maps TH to T and BH into B. Several choices yield the

same embedding. We may, without loss of generality, fix Γ-splittings (BH , TH , {XH}) of Ĥ and (B, T , {X}) of

Ĝ and require that (BH , TH) and (B, T ) be the chosen pairs in Ĥ and Ĝ for both TH → T and TH → T . Up to

equivalence of endoscopic data we may assume that ξ maps TH to T and BH into B. Since the endoscopic datum

s is central in ξ(Ĥ), it lies in T and its preimage in T̂H is independent of the choice of BH ; so its image sT in T̂

depends only on the embedding TH → T .

There is a canonical embedding of the center Z(Ĝ) of Ĝ in T̂ . Let T̂ad = T̂ /Z(Ĝ). Then π0 = π0(T̂ Γ
ad)will

denote the component group of the Γ-invariants in T̂ad. The image of sT in T̂ad is Γ-invariant and so defines an

element sT of π0. Finally we recall from [K2] that Tate-Nakayama duality provides a pairing

〈, 〉 : H1(Γ, Tsc)× π0 → C×.

(3.2) Term∆I

Definition.

∆I(γH , γG) = 〈λ(Tsc), sT 〉,

where λ(Tsc) is computed relative to an F -splitting spl of Gsc [see (2.3)].

Lemma 3.2.A.

∆I(γH , γG)/∆I(γH , γG)

is independent of the choice of spl.

Proof. Suppose spl is replaced by splg, where g ∈ G∗
sc(F ) is such that gσ(g−1) lies in the center Zsc of G∗

sc, σ ∈ Γ.

Then λ(Tsc) is multiplied by the class gT of σ → gσ(g−1) in H1(T ∗
sc), by (2.3.1). Thus we have to show that

〈gT , sT 〉 = 〈gT , sT 〉.

There will be no harm in replacing F by a finite Galois extension over which T is split. We do so without

change in notation. Then following [L2, Lemma 6.2] we identify H1(Tsc) with H1(X∗(Tsc)), H1(Zsc) with

H−2(X∗(Tad)/X∗(Tsc)) and H1(Zsc)→ H1(Tsc)with

H−2(X∗(Tad)/X∗(Tsc))→ H−1(X∗(Tsc)).
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Suppose the class of σ → gσ(g−1) in H1(Zsc) corresponds to that of σ → λσ, where λσ ∈ X∗(Tad)/X∗(Tsc). Let

λσ be a coset representative for λσ. Then gT corresponds to the class of Σσ(σ−1
T − 1)λσ in H−1(X∗(Tsc)) and

〈gT , sT 〉 = (Σσ(σ−1
T − 1)λσ)(sT ) if we regard the sum as a character on T̂ . Similarly, there is a formula

〈gT̄ , sT̄ 〉 = (Σσ(σ−1

T
− 1)λσ)(sT ).

To compare the two, we may choose an element x of G∗ such that x−1Tx = T and such that t → x−1tx is the

transfer to T, T of an isomorphism TH → TH inner in H . Then xσ(x−1) represents an element of ΩH . Under

Int x−1, T is identified as T with twisted Galois action σT = #(σ) � σT , where #(σ) ∈ ΩH , and sT is identified

with sT . We may assume λσ = λσ , so that

〈gT , sT 〉 =
(∑

σ

(σ−1
T #(σ)−1 − 1)λσ

)
(sT )

=

(∑
σ

(σ−1
T − 1)λσ

)
(sT )

= 〈gT , sT 〉,

since #(σ) ∈ ΩH fixes σT (sT ).

Lemma 3.2.B. If (TH → T, {aα}) is replaced by its g-conjugate, g ∈ A(Tsc), then ∆I(γH , γG) is multiplied

by

〈gT , sT 〉−1,

where gT is the class of σ → gσ(g−1) in H1(Tsc).

Proof. This follows immediately from (2.3.4).

Lemma 3.2.C. Suppose that the a-data {aα} are replaced by {a′α}. Set bα = a′α/aα. Then ∆I(γH , γG) is

multiplied by: ∏
α

χα(bα),

where {χα} are χ-data and the product is over representatives α for the symmetric orbits of Γ in the roots

of T that are outside H.

Recall that bα ∈ F×
±α and that if α belongs to a symmetric orbit then χα restricts to the quadratic character

on F×
±α attached to F+α/F±α (2.5). Also χα(bα) = χσα(bσα), σ ∈ Γ, so that the choice of orbit representative

does not matter.

Proof of the lemma. By (2.3.2) ∆I(γH , γ) is multiplied by 〈b, sT 〉 where b is represented by the cocycle σ →
q∏

1,σ
bα

∨
α , q being some gauge on R. The choice of q does not matter (Lemma 2.2.C). If O is a Γ-orbit then the
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contribution from ±O to this product is also a cocycle. Suppose it represents the class b±O . Then b =
∏
±O

b±O.

If O is asymmetric then b±O is trivial (Lemma 2.2.C). Thus it remains to show the following:

Lemma 3.2.D. If O is symmetric then

(i) 〈bO, sT 〉 = 1 if O is contained in RH and

(ii) 〈bO, sT 〉 = χα(bα) if O is outside RH , where α represents O.

Proof. We extend the Shapiro lemma arguments of Sect. 2. Let XO be the free abelian group on O∨
+ = {α∨ :

α ∈ O, q(α) = 1} with the inherited action of Γ. Fix some α∨ ∈ O∨
+ and let Xα be the subgroup generated

by α∨. Then the stabilizer Γ±α of {±α} in Γ acts on Xα and XO = IndΓ
Γ±α

Xα. Let TO be the torus over F

with X∗(TO) = XO and Tα be the torus over F±α with X∗(Tα) = Xα. Then Tα is one-dimensional, anisotropic

over F±α and split over Fα, and TO = Res
F±α

F Tα. From the natural homomorphism XO → X∗(Tsc) we obtain

TO → Tsc over F and an L-homomorphism T̂ad → T̂O. Let sO be the image of sT , or more precisely of the image

of sT in Ĝad. Then

α∨(sO) = α∨(sT ), α ∈ O.

We pull bO back to H1(TO), as we may, without change in notation. If sO is the image of sT under

π0(T̂ Γ
ad)→ π0(T̂ Γ

O) then the functoriality of Tate-Nakayama duality yields

〈bT , sT 〉 = 〈bO, sO〉.

If O ⊂ RH then α∨(sT ) = 1, α ∈ O, and so sO = 1. This proves the first assertion of the lemma.

If O is outside H we compute 〈bO, sO〉 by reduction to Tα. The image bα of bO under H1(Γ, TO) ∼=

H1(Γ±α, Tα) is represented by

σ →
{

bα
∨
, σα = −α

1, σα = α
.

Let sα be the image of sO under π0(T̂ Γ
O) ∼= π0(T̂

Γ±α
α ). Then by restriction of scalars for Tate-Nakayama duality

we have:

〈bO, sO〉 = 〈bα, sα〉.

Since π0(T̂
Γ±α
α ) consists of two elements and sO is clearly nontrivial sα must be nontrivial. Then, as observed in

(1.1),

〈bα, sα〉 = χα(bα),

and the lemma is proved.

(3.3) Term∆II
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Definition. ∆II(γH , γG) =
∏

χα

(
α(γ)−1
aα

)
, where the product is over representatives α for the orbits of Γ in the

roots of T that are outside H .

Since

χσα

(
σα(γ) − 1

aσα

)
= χα ◦ σ−1

(
σ(α(γ)) − 1

σ(aα)

)
= χα

(
α(γ)− 1

aα

)
the choice of representative α does not matter.

Lemma 3.3.A. If O is asymmetric then the contribution from ±O is χα(α(γ)), where α lies in either O or

−O.

Proof.

χα

(
α(γ)− 1

aα

)
χ−α

(
α(γ)−1 − 1

a−α

)
= χα

(
α(γ)− 1

aα

)
χα

(
−aα

α(γ)−1 − 1

)
= χα(α(γ)).

Lemma 3.3.B. If (TH → T, {aα}, {χα}) is replaced by an A(T )-conjugate then ∆II(γH , γG) is unchanged.

Proof. This is immediate.

Lemma 3.3.C. If the a-data {aα} are replaced by {a′α}, where a′α = aαbα, then ∆II(γH , γG) is multiplied by

∏
α

χα(bα)−1,

where the product is over representatives for the symmetric orbits outside H.

Proof. By definition∆II(γH , γG) is multiplied by
∏

χα(bα)−1, where the product is over representatives for all

orbits outside H . Since

χα(bα)χ−α(b−α) = χα(bα)χ−1
α (bα) = 1

we may ignore the asymmetric orbits.

It remains to consider the effect on ∆II(γH , γG) of replacing the χ-data {χα} by {χ′
α}. Suppose ζα =

χ′
αχ

−1
α . Then if α lies in a symmetric orbit ζα must be an extension to F×

α of the trivial character on F×
±α.

Suppose that O is symmetric and q is some gauge on O. We denote by XO the free abelian group on

O+ = {α ∈ O : q(α) = 1} with the inherited action of Γ, and let Xα be the submodule generated by some

α ∈ O+, so that XO = IndΓ
Γ±α

Xα. Define the torus TO over F by X∗(TO) = XO and Tα over F±α by

X∗(Tα) = Xα. Then Tα is one-dimensional, anisotropic over F±α and split over Fα, and TO = ResF±α

F Tα.

From the natural homomorphism XO → X∗(T )we obtain a homomorphism T → TO over F and then

T (F )→ TO(F ) ∼−→ Tα(F±α).

Let γα be the image of γ in T α(F±α). Then

α(γ) = α(γα).
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Since the norm map Tα(Fα)→ Tα(F±α) is surjective we may write

γα = δαδα,

where δα ∈ Tα(Fα) and the bar denotes conjugation in Tα(Fα)with respect to T α(F±α).

Although we could do without it here we describe the analogous construction for an asymmetric orbit O.

Thus X±O is the free abelian group on O and Xα is the subgroup generated by some α in O. Then Γ acts and

Xα has stabilizer Γ+α = Γ±α. We define T±O over F by X∗(T±O) = X±O; Tα is the one-dimensional Fα-split

torus with X∗(Tα) = Xα, and T±O = ResFFα
Tα. From X±O → X∗(T )we obtain

T (F )→ T±O(F ) ∼−→ Tα(Fα).

If γα is the image of γ then α(γα) = α(γ).

Lemma 3.3.D. If the χ-data {χα} are replaced by {χ′
α}, where χ′

α = χαζα, then ∆II(γH , γG) is multiplied

by
asymm∏

ζα(γα)
symm∏

ζα(δα),

where the product
asymm∏

is over representatives α for pairs ±O of asymmetric orbits outside H, and
symm∏

is

over representatives for the symmetric orbits outside H.

Proof. The contribution
asymm∏

is clear from Lemma 3.3.A. If α lies in a symmetric orbit we have

α(γ) = α(γα) = α(δαδα) = α(δα)
/
α(δα).

Hence

ζα

(
α(γ)− 1

aα

)
= ζα

(
α(δα)− α(δα)

aαα(δα)

)

= ζα

(
α(δα)− α(δα)

aα

)
· ζα(α(δα))

−1

= ζα(α(δα))

since (α(δα)− α(δα))/aα lies in F×
±α and ζα(α(δα))

−1
= ζα(α(δα)).

(3.4) Term ∆III1 or ∆1

The next two terms will be denoted∆III1 and∆III2 , or more briefly∆1 and∆2, since they are combined

in a single term in the twisted case [K-S].

We begin with the case that G is quasi-split over F , taking G as G∗ and the twist ψ to be the identity. Since

γH is an image of γG there exists h ∈ Gsc such that gγGh−1 = γ. Set v(σ) = hσ(h)−1. Because γ is strongly

regular the class inv(γH , γG) of v(σ) in H1(Tsc) is well-defined.
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Definition (G quasi-split). ∆1(γH , γG) = 〈inv(γH , γG)sT 〉−1.

In general, we work with the two pairs of elements γH , γG and γH , γG. There exist h, h ∈ G∗
sc such that

hψ(γG)h−1 = γ and hψ(γG)h
−1
= γ.

Set

v(σ) = hu(σ)σ(h)−1 and v(σ) = hu(σ)σ(h)−1,

where u(σ) ∈ G∗
sc and ψσ(ψ)−1 = Intu(σ), σ ∈ Γ. Then v(σ) and v(σ) are cochains of Γ in Tsc and T sc, each

well defined up to coboundaries because γ and γ are strongly regular.

Further, ∂v = ∂v = ∂u, each coboundary taking values in the center Zsc of G∗
sc. Let U = U(T, T ) be the

torus

Tsc × T sc/{(z−1, z) : z ∈ Zsc}.

Then σ → (v(σ)−1, v(σ)) defines an element of H1(U)which is independent of the choices for u(σ), h and h. We

write this class as

inv
(

γH , γG
γH , γG

)
.

From Tsc × T sc → U we get H1(Tsc) × H1(T sc) → H1(U). If G is quasi-split then inv
(
γH ,γG

γH ,γG

)
is the

image of (inv(γH , γG)−1, inv(γH , γG)).

Recall that T̂ad is T̂ /Z(Ĝ), the torus dual to the preimage Tsc of T in Gsc. We denote by T̂sc the torus dual

to Tad = T/Z(G). Then the center Ẑsc of the simply-connected covering of the derived group of Ĝ, which is a

finite group isomorphic to Zsc, is canonically embedded in T̂sc and T̂sc. Set

Û = T̂sc × ̂̄Tsc/{z, z) : z ∈ Zsc}.

Then X∗(Û) ⊂ X∗(T̂sc × ̂̄Tsc). At the same time, X∗(U) ⊂ X∗(Tsc × T sc). The Q-pairing between X∗(T̂sc × ̂̄Tsc)

and X∗(Tsc × T sc) yields a dual Z-pairing between X∗(Û) and X∗(U), and so Û is the torus dual to U .

To the endoscopic datum s we attach sU ∈ π0(ÛΓ) as follows. Suppose s̃ lies in the preimage under

Tsc → Tad of the projection of s onto Tad = T /Z(Ĝ). From T → T̂ and T → ̂̄T we obtain Tsc → T̂sc and Tsc → ̂̄Tsc.

The images s̃T and s̃T of s̃ depend only on the embeddings TH → T and TH → T . The image sU of (s̃T , s̃T ) in

Û is independent of the choice of s̃. It is also Γ-invariant and so defines an element sU of π0(ÛΓ).

Definition∆1(γH , γG; γH , γG) =
〈
inv
(
γH ,γG

γH ,γG

)
, sU

〉
.

Note that if G is quasi-split over F then

∆1(γH , γG; γH , γG) = 〈inv(γH , γG), sT 〉−1〈inv(γH , γG), sT 〉.
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Lemma 3.4.A. If TH → T and TH → T are replaced by their g- and g-conjugates, where g ∈ A(Tsc) and

g ∈ A(T sc), then ∆1(γH , γG; γH , γG) is multiplied by

〈gT , sT 〉〈gT , sT 〉
−1,

where gT is the class of σ → gσ(g−1) in H1(Tsc), and gT the class of σ → gσ(g−1) in H1(T sc).

Proof. v(σ) is replaced by g−1v(σ)σ(g) and g(g−1v(σ)σ(g))g−1 = v(σ) · (gσ(g)−1)−1. Similarly for v(σ) and

the lemma follows.

(3.5) Term ∆III2 or ∆2

For the construction here we fix Borel subgroups BH ⊃ TH , B ⊃ T which yield the isomorphism T̂H → TH →

T → T̂ dual to TH → T . To the χ-data {χα} are attached admissible embeddings ξT : LT → LG extending

T̂ → T and ξTH : LTH → LH extending T̂H → TH . Then

ξ · ξTH = aξT ,

where a is a 1-cocycle of WF in T for the transport of the action of WF on T̂ . We transport a to T without change

in notation. Its class a in H1(WF , T̂ ) is independent of the choice of BH and B by (2.6.2), and of the Γ-splittings

(BH , TH , {XH}) and (B, T , {X}) by (2.6.1). Further if (TH → T, {χα}) is replaced by its g-conjugate, g ∈ A(T ),

then a is replaced by its image in H1(WF , T̂ g) under the map induced by Int g−1 [see (2.6.4)].

Definition. ∆2(γH , γG) = 〈a, γ〉.

Clearly, replacing (TH → T, {aα}, {χα}) by an A(T )-conjugate has no effect on∆2(γH , γG).

Lemma 3.5.A. Suppose that the χ-data {χα} are replaced by {χ′
α}, where χ′

α = χαζα. Then ∆2(γH , γG) is

multiplied by
asymm∏

ζα(γα)−1

symm∏
ζα(δα)−1,

where the product
asymm∏

is over representatives α for the pairs ±O of asymmetric orbits outside H and
symm∏

is over representatives α for the symmetric orbits outside H.

The elements γα and δα were defined in (3.3), and will be recalled in the proof.

Proof. According to (2.6.3) a is replaced by ac−1 where c is represented by the cocycle

c(w) =
∏
α

n∏
i=1

ζα(v0(ui(w)))σ
−1
i α.

Here the product
∏
α

is over representatives α for pairs ±O of Γ-orbits of roots of T that lie outside H . The

elements v0(ui(w)), σ−1
i α were defined in (2.5). Note also Corollary 2.5.B.
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Suppose that O is a symmetric orbit outside H . As in (3.3) we have

T (F )→ TO(F ) ∼= Tα(Fα).

Then γO denotes the image of γ in TO(F ) and γα its image in Tα(Fα); γα = δαδα. We have also

H1(WF±α , T̂
α) ∼= H1(WF , T̂O)→ H1(WF , T̂ ).

We pull c back to cO in H1(WF , T̂O) and let cα be the corresponding element of H1(WF±α , T̂
α). Then

〈c, γ〉 = 〈cO, γO〉

by the functoriality of 〈, 〉 which follows from its definition [B, Sect. 9]. Moreover

〈cO, γO〉 = 〈cα, γα〉

because the pairing 〈, 〉 respects restriction of scalars (see [B]). To compute 〈cα, γα〉 we introduce Sα, the group

obtained from Gm by restriction of scalars from Fα to F±α, and the obvious homomorphism Sα → Tα, surjective

on F±α-valued points. By functoriality, we may replace cα by its image in H1(W±α, Ŝα) and conclude that

〈cα, γα〉 = ζα(α(δα)).

For asymmetric O we have

T (F )→ T±O(F ) ∼= Tα(Fα)

as in (3.3), and dual

H1(WFα , T̂
α) ∼= H1(WF , T̂±O)→ H1(WF , T̂ ).

again it is sufficient to compute 〈cα, γα〉. Now T α is split over Fα and from cα(w) = ζα(w)α, w ∈ WFα , we

obtain

〈cα, γα〉 = ζα(α(γα)).

This completes the proof of the lemma.

(3.6) Term∆IV

If γ ∈ T (F ) then
∏
α
(α(γ) − 1), where the product is over all roots of T in G∗, lies in F . We set

DG∗(γ) = |
∏
α

(α(γ)− 1)|1/2.

Definition. ∆IV (γH , γG) = DG∗(γ)DH(γH)−1.
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Then∆IV (γH , γG) depends only on the stable conjugacy classe of γH .

(3.7) The Factor∆

We now fix the pair γH , γG and specify ∆(γH , γG) arbitrarily. Then we define

∆(γH , γG) = ∆(γH , γG)∆(γH , γG; γH , γG),

where

∆(γH , γG; γH , γG)

is equal to

∆I(γH , γG)
∆(γH , γG)

· ∆II(γH , γG)
∆II(γH , γG)

· ∆III2(γH , γG)
∆III2(γH , γG)

· ∆IV (γH , γG)
∆IV (γH , γG)

·∆III1(γH , γG; γH , γG).

In the case that G is quasi-split over F we set

∆0(γH , γG) = ∆I(γH , γG)∆II(γH , γG)∆1(γH , γG)∆2(γH , γG)∆IV (γH , γG)

so that

∆(γH , γG; γH , γG) = ∆0(γH , γG)/∆0(γH , γG).

Recall that∆I(γH , γG), but not∆I(γH , γG)/∆I(γH , γG), depends on the choice of an F -splitting for G∗.

Theorem 3.7.A.∆(γH , γG) is independent of the choice of admissible embeddings, a-data and χ-data.

Proof. If TH → T, TH → T and their a-data, χ-data are replaced by A(T )-, A(T )-conjugates then only ∆I and

∆1 are changed. By Lemmas 3.2.B and 3.4.A, ∆ is unchanged. If the a-data and χ-data alone are changed then

∆I ,∆II , and∆2 are affected. Again the effects cancel, by Lemmas 3.2.C, 3.3.C, 3.3.D, and 3.5.A.

The same lemmas show that the factor∆0(γH , γG) is independent of these choices.

Finally, if no strongly regular element in G(F ) has an image in H(F )we set∆ ≡ 0.

4. Some Properties of∆

(4.1) Invariance

Lemma 4.1.A.∆(γ1
H , γ1

G, γ2
H , γ2

G)∆(γ
2
H , γ2

G; γ
3
H , γ3

G) = ∆(γ
1
H , γ1

G; γ
3
H , γ3

G).

Proof. It is enough to show this with∆ replaced by∆1 = ∆III1 , that is to show that

〈inv(1,2), sU1,2〉〈inv(2,3), sU2,3〉 = 〈inv(1,3), sU1,3〉,

where

inv(i,j) = inv

(
γiH , γiG
γjH , γjG

)
, Ui,j = U(T i, T j),
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1 � i < j � 3, and T i is the image of Cent(γiH , H) under some admissible embedding in G∗. Let

V = T 1
sc × T 2

sc × T 3
sc/{(z−1, zw−1, w) : z, w ∈ Zsc}

in the notation of (3.4). There are F -homomorphisms Ui,j → V . Under the induced maps on cohomology the

image of inv(1,3) is the product of the images of inv(1,2) and inv(2,3). Still following the notation of (3.4) we see

that the dual of V is

V̂ = T̂ 1
sc × T̂ 2

sc × T̂ 3
sc/{(z, z, z) : z ∈ Ẑsc}.

Let sV be the image of (s̃T 1 , s̃T 2 , s̃T 3) in π0(V̂ Γ). Then

〈inv(1,2), sU1,2〉〈inv(2,3), sU2,3〉 = 〈image(inv(1,2))image(inv(2,3)), sV 〉

which equals

〈image(inv(1,3)), sV 〉 = 〈inv(1,3), sU1,3 〉

and the lemma is proved.

Corollary 4.1.B.

(i)∆(γH , γG; γH , γG) = 1 and

(ii)∆(γ′
H , γ′

G) = ∆(γH , γG)∆(γ′
H , γ′

G; γH , γG) if γH , γ′
H are images of γG, γ′

G respectively.

Lemma 4.1.C.∆(γH , γG) depends only on the stable conjugacy class of γH in H(F ) and the conjugacy class

of γG in G(F ).

Proof. Let γ′
G = g−1γGg, g ∈ G(F ). Then

∆(γH , γ′
G) = ∆(γH , γG)∆(γH , γ′

G; γH , γG).

On examining the terms∆I , . . . ,∆IV we see that

∆(γH , γ′
G; γH , γG) = ∆1(γH , γ′

G; γH , γG)

and so it remains to check that ∆1(γH , γ′
G; γH , γG) = 1. There is g1 ∈ Gsc(F ) such that g−1γGg = g−1

1 γGg1.

Then g1σ(g1)−1 is a cocycle with values in Ker(Gsc → G). If h ∈ G∗
sc is such that hψ(γG)h−1 = γ then

hψ(g1)ψ(γ′
G)(hψ(g1))−1 = γ and so the cocycle defining inv

(
γH ,γ

′
G

γH ,γG

)
is of the form (ψ(g1σ(g1)−1)−1v(σ)−1, v(σ)).

Then∆1(γH , γ′
G; γH , γG) coincides with 〈ψ(g1σ(g1)−1)−1, sT 〉·∆1(γH , γG; γH , γG). The first term in this product

is trivial since ψ(g1σ(g1)−1) ∈ Ker(G∗
sc → G∗); the second is trivial by (4.1.B).

Suppose γ′
H = h−1γHh is stably conjugate to γH . Then an admissible embedding of Cent(γ ′

H , H) in G∗ is

obtained by composition of an admissible embedding of Cent(γH , H) with Int h. Term-by-term examination of

∆ yields∆(γ′
H , γG; γH , γG) = 1.
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(4.2) The Local Hypothesis

We now examine the relation between factors for G and those for G∗.

The endoscopic data (H,H, s, ξ) serve both G and G∗. Suppose that strongly G-regular γH ∈ H(F ) is an

image of γG ∈ G(F ). Then γH is also strongly G∗-regular. By Steinberg’s Theorem [K1], γH is the image of a

stable conjuacy class of elements in G∗(F ). Suppose that γG∗ belongs to this class. Then both ∆(γH , γG) and

∆(γH , γG∗) are defined and nonzero. Set

∆G/G∗(γH , γG, γG∗) = ∆(γH , γG)/∆(γH , γG∗).

It is clear from the definitions that this assumes a quite simple form, for we may use the same auxiliary data

of admissible embeddings, a-data and χ-data to define all terms in the numerator and denominator. Since

∆(γH , γG) and∆(γH , γG∗) are canonical only up to constants we will investigate

∆G/G∗(γH , γG, γG∗)/∆G/G∗(γ′
H , γ′

G, γ′
G∗)

where γ′
H is an image of γ′

G and of γ′
G∗ .

First we shall define a numberλH(γG, γG∗ , γ′
G, γG∗). There are unique admissible embeddings Cent(γH, H)→

Cent(γG∗ , G∗) and Cent(γ′
H , H)→ Cent(γ′

G∗ , G∗)mapping γH to γG∗ and γ′
H to γ′

G∗ . We set

λH(γG, γG∗ ; γ′
G, γ′

G∗) =
〈
inv
(
γH , γG
γ′
H , γ′

G

)
, sU

〉

in the notation of (3.4). Note that inv
(
γH ,γG

γ′
H ,γ

′
G

)
is represented by the cocycle

(σ(h)u(σ)−1h−1, h′u(σ)σ(h′)−1),

where h, h′ ∈ G∗
sc and

hψ(γG)h−1 = γG∗ , h′ψ(γ′
G)h

′−1 = γ′
G∗ .

Moreover u(σ) ∈ G∗
sc is given by ψσ(ψ)−1 = Intu(σ). Then λH is independent of the choice of γG, . . . , γ′

G∗

within their conjugacy classes (see the proof of Lemma 4.1.C).

Lemma 4.2.A.∆G/G∗(γH , γG, γG∗)/∆G/G∗(γ′
H , γ′

G, γ′
G∗) = λH(γG, γG∗ ; γ′

G, γ′
G∗).

Proof. We choose admissible embeddings as in the definition of λH . Since ∆I ,∆II ,∆2,∆IV take the same

values at (γH , γG) as at (γH , γG∗) only ∆1 yields a nontrivial contribution to the left side. In view of Corollary

4.1.B this contribution is

∆1(γH , γG; γ′
H , γ′

G)/∆1(γH , γG∗ ; γ′
H , γ′

G∗) = ∆1(γH , γG; γ′
H , γ′

G)
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by our choice of embeddings. This equals

λH(γG, γG∗ ; γ′
G, γ′

H),

and the lemma is proved.

The following is then immediate:

Corollary 4.2.B.
∆(γH , γG)
∆(γH , γG∗)

= λH(γG, γG∗ ; γ′
G, γ′

G∗)
∆(γ′

H , γ′
G)

∆(γ′
H , γ′

G∗)
.

This asserts that the factors∆ satisfy the Local Hypothesis of [L2, Chap. VI]. To reconcile our notation with

that of [L2] we note that if TH = Cent(γH , H), T = Cent(γG∗ , G∗) and TG = Cent(γG, G) then

TH → TH → T → T
↑
TG

is a diagram D, where TH → T is the admissible embedding taking γH to γG∗ and Inth ◦ψ : TG → T . Similarly

we have D′:
T ′
H → TH → T → T ′

↑
T ′
G.

The Local Hypothesis states that c(D,D′), the left side of Lemma 4.2.A, is given by an expression κ(θ(E,E′))

which we now show to coincide with λH = λH(γG, γG∗ , γ′
G, γ′

G∗).

There is no harm in assuming G simply-connected. Let U = U(T, T ′). Then we have

X∗(U) ↪→ X∗(Tad)×X∗(T ′
ad).

The elements λ ∈ X∗(Tad), λ′ ∈ X∗(T ′
ad) are defined on p. 84 of [L2]. On modifying λ′ as on p. 85 we may

assume (6.12) of p. 85. Then θ(E,E′) = λ − λ′. On the other hand, (λ, λ′) ∈ X∗(U) and defines an element of

H−1(X∗(U))which corresponds under Tate-Nakayama duality to the class of the cocycle

(σ(h)u(σ)−1h−1, h′u(σ)σ(h′)−1)

defining inv
(
γH ,γG

γ′
H ,γ

′
G

)
in H1(U). Since κ is obtained from the endoscopic datum s [L2, p. 100] we conclude that

κ(θ(E,E′)) coincides with λH .

(4.3) Extension to All G-Regular Elements

The definition of ∆1(γH , γG; γH , γG) requires that G-regular γH be strongly regular. The notion of image,

however, is well defined for an arbitrary G-regular semisimple element in H(F ) [recall (1.3)] and we expect an

identity

Φst(γH , fH) =
∑
γG

∆(γH , γG)Φ(γG, fG)
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for all G-regular semisimple elements γH in H(F ), where∆(γH , γG) = 0 unless γH is an image of γG.

We shall extend ∆ by continuity. Suppose γ0
H ∈ TH(F ) is G-regular and is an image of γ0

G ∈ TG(F ).

Fix an admissible embedding TH → T of TH in G∗ and an isomorphism Intx ◦ ψ : T → TG over F so that

γ0
H → γ0

G under TH → TG. Suppose g1, . . . , gn are representatives for D(TG) = TG(F )\A(TG)/G(F ), where

A(TG) = {g ∈ G(F ) : gσ(g)−1 ∈ TG(F )}. Then if γG ∈ TG(F ) is strongly regular the elements g−1
i γGgi are

representatives for the conjugacy classes in the stable conjugacy class of γG. We may find a sequence {γH} of

strongly G-regular elements in TH(F ) such that {γH} → γ0
H . Let γG be the image of γH under TH → TG. Then

the limit γiG = g−1
i γ0

Ggi of {g−1
i γGgi} has γ0

H as image. We define

∆(γ0
H , γiG) = lim

γH→γ0
H

∆(γH , g−1
i γGgi),

as an examination of the terms in ∆ shows the right side to be well-defined. Then if f, fH have ∆-matching

orbital integrals we have

Φst(γ0
H , fH) =

n∑
i=1

∆(γ0
H , γiG)Φ(γ

i
G, f),

where Φ(γiG, f) is as specified in (1.3) and

Φst(γ0
H , fH) =

m∑
j=1

Φ(γjH , fH),

with γjH = h−1
j γ0

Hhj and {hj} representatives for D(TH). Thus on either side a conjugacy class may contribute

several terms.

(4.4) Passage to Central Extensions

The center of G is canonically embedded as a central subgroup of H . If γH is an image of γG then zγH is an

image of zγG, z ∈ Z(F ). Still assuming H is LH we have:

Lemma 4.4.A. There is a character λG on Z(F ) such that

∆(zγH , zγG) = λG(z)∆(γH , γG), z ∈ Z(F ),

for all γH , γG.

The proof will be included in another paper. There is one case which it is useful to treat here.

Proof for z in the identity component Z0 of Z :

According to the definitions,

∆(zγH , zγG)∆(γH , γG)−1 = ∆2(zγH , zγG)∆2(γH , γG)−1 = 〈a, z〉,
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so that we have to show that the character z → 〈a, z〉 on Z0(F ) is independent of the choice of γH and of TH → T ,

χ-data and a-data. The last three choices have no effect because they have no effect on∆.

Given also γH and TH → T we form S = T × T/Z0, SH = TH × TH/Z0, G̃ = G × G/Z0 and

H̃ = H ×H/Z0, where Z0 is embedded in each case by z → (z, z−1). Because Z0 is connected we have natural

embeddings

LS ↪→ LT × LT , LSH ↪→ LTH × LTH , LG̃ ↪→ LG× LG, LH̃ ↪→ LH × LH

and may form commutative diagrams

LH̃ → LH×LH
ξ̃

∩� ∩�(ξ, ξ)
LG̃ → LG×LG

LS → LT ×LT
ξS

∩� ∩�(ξT , ξT )
LG̃ −→ LG

and so on. As a result we conclude that the element (a, a) of H1(WF , T̂ × T̂ ) is the image of an element ã of

H1(WF , Ŝ). Then

〈a, z〉〈a, z〉−1 = 〈(a, a), (z, z−1)〉 = 〈ã, 1〉 = 1

and the lemma is proved.

We now remove the assumption that H is an L-group. The data (H,H, s, ξ) given, orbital integrals of

functions on G(F ) will be matched not with those of functions on H(F ) but with those of functions on H1(F ),

where H1 is a central extension of H . We shall take H1 attached to a central extension of G as the arguments

are more transparent. Thus we fix a z-extension 1 → Z1 → G1 → G → 1 of G [K1]. This means, in particular,

that Z1 is a connected central subgroup of G1, G1(F ) → G(F ) is surjective and the derived group of G1 is

simply-connected. The dual sequence 1 → Ĝ → Ĝ1 → Ẑ1 → 1 allows us to regard Ĝ as a subgroup of Ĝ1. We

may assume that #G1(σ) and #G(σ) agree on Ĝ, σ ∈ Γ, so that LG embeds canonically in LG1.

There is a central extension 1 → Z1 → H1 → H → 1 and embedding ξ1 : LH1 ↪→ LG1 such that

(H1,
LH1, s, ξ1) are endoscopic data for G1 (see [L1]). The parameter for a character λ on Z1(F ) is given by

WF → LG1 → LZ1,

where the first arrow denotes the restriction of ξ1 to WF and the second is the natural extension of Ĝ1 → Ẑ1.

The matching is to be between orbital integrals of functions f on G(F ), and thus of functions on G1(F )

invariant under Z1(F ), and orbital integrals of functions fH1 on H1(F ) satisfying

fH1(zh) = λ(z)fH1(h), z ∈ Z1(F ), h ∈ H1(F ).
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We need consider only elements γH1 whose image in H(F ) is strongly G-regular. Then γH1 is an image of

γG ∈ G(F ) if it is an image of some γG1 in the preimage of γG in G1(F ). The element γG1 is uniquely determined.

We say that f and fH1 have∆-matching orbital integrals if, as usual,

Φst(γH1 , f
H1) =

∑
γG

∆(γH1 , γG)Φ(γG, f)

for all such γH1 . Because of the transformation rule for fH1 we must have

∆(zγH1 , γG) = λ(z)∆(γH1 , γG), z ∈ Z1(F ).

The factor∆(γH1 , γG1) has been defined. We set

∆(γH1 , γG) = ∆(γH1 , γG1)

if γH1 is an image of γG1 and γG is the image of γG1 under G1(F ) → G(F ), or ∆(γH1 , γG) = 0 if γH1 is not an

image of γG.

Recall that

∆(zγH1 , zyG1) = λ1(z)∆(γH1 , γG1), z ∈ Z1(F ),

where λ1 is the character on the center of G1(F ) attached to a [see the beginning of the proof of (4.4.A)]. To

conclude that

∆(zγH1 , γG) = λ(z)∆(γH1 , γG)

we have only to show that λ1 coincides with λ on Z1(F ). But a is represented by the cocycle a defined by

ξ1 · ξTH1
(w) = a(w)ξT1 (w), w ∈ WF ,

where TH1 = Cent(γH1 , H1) and TH1 → T1 is an admissible embedding. To compute λ1 on Z1(F )we project a

onto Ẑ1, obtaining a1 : WF → Ẑ1. Since, by construction, ξTH1
(w) ∈ Ĥ × w and ξT1(w) ∈ Ĝ × w,w ∈ WF , we

have that WF
ξ1−→ LG1 −→ LZ1 coincides with w → a1(w) × w and then λ1 = λ on Z1(F ) by definition.

The group H1 is determined up to isomorphism by G1 and (H,H, s, ξ), but ξ1 may be replaced by b ⊗ ξ1

where b is a 1-cocycle of WF in the center of Ĥ1. This cocycle determines a character λ0 on H1(F ) and λ, λ1 are

replaced by λ0λ, λ0λ1.

Finally, we observe that it is only the equivalence class of (H,H, s, ξ) that matters for the definition of ∆.

The choice of twist ψ : G → G∗ does affect∆, but ψ may be replaced by Intx ◦ ψ, x ∈ G∗, without effect.

5. Regular Unipotent Analysis
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(5.1) Regular Unipotent Elements (Review)

Recall that the regular unipotent elements of G(F ) are characterized by the property that each lies in exactly one

Borel subgroup of G. They form a single conjugacy class [St].

Suppose B is a Borel subgroup of G containing the maximal torus T . Denote by N the unipotent radical of

B. For a simple root α of T in B let Nα be the 1-parameter subgroup of N attached to α and Nα be the subgroup

of N generated by the 1-parameter subgroups for the remaining roots of T in B, so that N is the direct product

Nα ·Nα. Set N ′ = ∩
α
Nα. Given root vectors {Xα} we define xα(u) for u in N by

u ≡ expxα(u)Xα(modNα).

Then u is regular if and only if xα(u) is nonzero for all simple α. See [St, pp. 110-112] for this and the next

paragraph.

Fix u0 regular in N . Then every regular element in N may be written in the form

u = t−1u′u0t,

where u′ ∈ N ′ is uniquely determined and t ∈ T is determined modulo the center Z of G. Conversely, every

element of this form is regular in N . Note that xα(t−1u′u0t) = α(t)−1xα(u0).

Let u be any regular unipotent element of G, Bu be the Borel subgroup containing u, and Tu be a maximal

torus in Bu. For each simple root α of Tu in Bu define a root vector Xu
α by requiring expXu

α to be the projection

of u onto Nα. Write spl(u) for the splitting (Bu, Tu, {Xu
α}) of G. Every splitting of G is obtained in this manner.

The following are equivalent:

(i) G is quasi-split over F .

(ii) G has an F -splitting.

(iii) There are regular unipotent elements in G(F ).

For (ii) ⇒ (ii) we observe that if u ∈ G(F ) then spl(u) is an F -splitting as long as Tu is chosen over F . Note also

that then spl(u) is determined up to N(F )-conjugacy by u. For (i) ⇒ (iii), the existence of a Borel subgroup over

F implies that the conjugacy class of regular unipotent elements is defined over F . This class then contains an

F -rational point [K1].

From now on G will be quasi-split over F . The regular unipotent elements in G(F ) form a single stable

conjugacy class by definition [K1]. Suppose T and B = TN are defined over F . Then each G(F )-conjugacy

class of regular unipotent elements in G(F ) meets N(F ). If u0 ∈ N(F ) is regular then the regular element

u = t−1u′u0t in N is F -rational if and only if u′ ∈ N ′(F ) and tσ(t−1) ∈ Z(F ), σ ∈ Γ.



SLOn the definition of transfer factors 42

Lemma 5.1.A. The correspondence u → spl(u) induces a bijection between the G(F )-conjugacy classes of

regular unipotent elements in G(F ) and the G(F )-conjugacy classes of F -splittings of G.

Proof. As above, if u ∈ B(F ) then spl(u) is determined up to N(F )-conjugacy, where N is the unipotent radical

of B. On the other hand, if spl = (B, T, {Xα}) is an F -splitting then we can find u ∈ N such that spl(u) = spl.

For σ ∈ Γ we must have spl(σu) = spl as well, which implies that u−1σ(u) lies in N ′. Because H1(Γ, N ′(F )) is

trivial we can find u′ ∈ N ′ such that uu′ ∈ N(F ). Then spl = spl(uu′). It is clear now that u → splu induces a

surjective map from G(F )-conjugacy classes to G(F )-conjugacy classes. For injectively it is enough to show that

if B = TN is over F and spl(u1) = spl(u2), where u1 and u2 lie in N(F ), then u1 and u2 are N(F )-conjugate.

But splu1 = splu2 implies that u1 = t−1u′
1u0t and u2 = t−1u′

2u0t with t ∈ T and u′
1, u

′
2 ∈ N ′, for some fixed

regular u0 ∈ N(F ). Because u1, u2 ∈ N(F )we have tσ(t−1) ∈ Z, σ ∈ Γ, and u′
1, u

′
2 ∈ N ′(F ). Thus it is enough

to show that u′
1u0 and u′

2u0 are conjugate under N(F ). This is so because N ′(F )u0 is the N(F )-conjugacy class

of u0 [St, p. 112] and H1(Γ, N(F )) = 1. The proof is then complete.

We now define a transfer factor∆(u) for u regular unipotent in G(F ). Fix an F -splitting spl = (B,T, {Xα})

of G. There exists h ∈ Gsc such that

spl(u)h = spl,

where h acts in the obvious manner. Then hσ(h)−1 lies in the center Zsc of Gsc, σ ∈ Γ. The class inv(u) of

σ → hσ(h)−1 in H1(Γ, Zsc) is well-defined.

To pair inv(u) with the endoscopic datum s we choose any maximal torus T over F in G which contains

regular elements with images in H(F ). Inv(u) has an image invT (u) under H1(Zsc)→ H1(Tsc). As earlier, (3.1),

s determines an element sT of π0(T̂ Γ
ad). We set

〈inv(u), s〉 = 〈invT (u), sT 〉.

The argument used in the proof of Lemma 3.2.A shows that 〈inv(u), s〉 is independent of the choice for T . In

addition if we define ∆(γH , γG) and ∆0(γH , γG) as in (3.7), but use – for reasons that will appear later – the

opposite splitting spl∞ = (B∞,T, {X−α}), where B∞ ∩ B = T and the root vectors X−α are fixed as in (2.1),

then

∆(u) =
∆(γH , γG)
∆0(γH , γG)

〈inv(u), s〉

is independent of the choice of spl. Finally,∆(u) depends only on the G(F )-conjugacy class of u in G(F ).

(5.2) Stars and the Variety X

This will be a review of some material from [L3]. We continue with G quasi-split over F and (B,T, {Xα}) an

F -splitting of G.
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Let T be a maximal torus over F in G. We fix some Borel subgroup BT containing T and in the usual

manner transport the roots, Weyl group, Weyl chambers and Galois action for T to T without change in notation.

We denote by Ω the Weyl group, by W the set of Weyl chambers and by W+ the chamber attached to BT or B. If

ω ∈ Ωwe write W (ω) for the chamber ω−1W+ and Bω
T for the Borel subgroup w−1BTw, where w ∈ G represents

ω.

Let S be the variety of stars attached to T [L3]. The choice of BT affects S, but a different choice yields an

F -isomorphic variety. Recall that the elements of S are functions from W to B, the variety of Borel subgroups of

G. A typical element will be denoted (B(W )). The F -structure is defined by

σ(B(W )) = (σ(B(σ−1
T (W )))), σ ∈ Γ,

and G acts on the right:

(B(W ))g = (g−1B(W )g).

If W,W ′ are adjacent chambers, so that W = W (ω) and W ′ = W (ω(α)ω) for some ω ∈ Ω and simple root α of

T in B then by definition (B(W ), B(W ′)) lies in the closure of the orbit of (BT , B
ω(α)
T ) in B2.

The standard star s0 is given by B(W (ω)) = Bω
T , ω ∈ Ω. A star is regular if it lies in the G-orbit of s0. The

F -rational regular stars form the orbit of s0 under A(T ) = {g ∈ G(F ) : gσ(g−1) ∈ T }.

Let B∞ be opposite to B relative to T. Then S(B∞) consists of all (B(W )) for which each B(W ) is

opposite to B∞, and S(B∞,B) consists of those stars for which we also have B(W+) = B. If B∞ = TN∞ then

the morphism

(n, (B(W )))→ (B(W ))n

from N∞ × S(B∞,B) to S(B∞) allows us to identify these two varieties.

If W is a chamber and β a W -simple root the coordinate function z(W,β), or z(ω, α), is defined on

S(B∞,B). Here ω ∈ Ω and B-simple α are given by W =W (ω) and ωβ = α. The chamber W ′ =W (ω(α)ω) is

adjacent to W and there is a unique h ∈ N∞ such that

hB(W )h−1 = B,

and then

hB(W ′)h−1 = exp(−zX−α)B exp zX−α,

where z = z(W,β) = z(ω, α) lies in F . We have, for F -rational (B(W )),

(5.2.1) σ(z(ω, α)) = z(σωσ−1
T ,σα), σ ∈ Γ.
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If g ∈ G and s = (B(W )) is a star we write g ∈ s if g ∈ ∩
W

B(W ). Let X0 consist of all pairs (g, s), where g

is regular semisimple, s is regular and g ∈ s, and let X be the closure of X0 in G×S. Both X0 and X are defined

over F , and X is contained in {(g, s) : g ∈ s}. Thus ξ : (g, (B(W ))) → (g,B(W+)) is a well-defined morphism

from X to the Springer-Grothendieck variety M = {(g,B) : g ∈ B}. Let πM :M → G be the projection onto the

first factor and φM :M → T be defined by φM (g,B) = γ if h−1gh ≡ γ mod NT where Bh = BT and NT is the

unipotent radical of BT . Both πM and φM are smooth and πM is proper. Set π = πM ◦ ξ and φ = φM ◦ ξ. Then

both π and φ are defined over F , and φ is smooth and proper.

Set M0 = π−1
M (Gregss). Then ξ : X0 → M0 is an isomorphism. If γ ∈ T is regular then φ−1(γ) is

the G-orbit of (γ, s0) and so may be identified with the conjugacy class of γ in G. If also γ is F -rational then

φ−1(γ)(F ) is identified with the stable conjugacy class of γ in G(F ).

(5.3) Regular Unipotent Elements and X

Suppose u ∈ G is regular unipotent and contained in the Borel subgroup Bu. Then we define the star su by

B(W ) = Bu,W ∈ W, and set xu = (u, su).

Lemma 5.3.A.

(i) xu lies in X .

(ii) If u ∈ G(F ) then xu ∈ X(F ).

(iii) ξ : X → M is invertible at xu.

Proof. A point in S(B∞)may be written sh, where s ∈ S(B∞,B) and h ∈ N∞. Suppose g ∈ sh. Then we write

g = h−1tnh, where t ∈ T, n ∈ N. We calculate the z-coordinates of s in terms of t, n as follows.

Let s = (B(W )). If α is B-simple then z = z(W+, α) is the solution to

B(ω(α)W+) = exp(−zX−α)B exp zX−α.

On the other hand, write tn as

tn = t exp(xα(n)Xα)n′

where n′ ∈ Nα. The condition that

t exp(xα(n)Xα)n′ ∈ B(ω(α)W+)

is the requirement in SL(2) that[
1 0
z 1

] [
a 0
0 a−1

] [
1 x
0 1

] [
1 0
−z 1

]
=
[
a1 x1

y1 b1

]
be upper triangular, where x = xα(n), z = z(W+, α) and α(t) = a2.
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If s is regular then z  = 0 and

xz = xα(n)z(W+, α) = 1− a−2 = 1− α(t)−1.

This equation continues to hold on X . Observe also that a1 is then a−1 and x1 is a2x. More generally, suppose

W =W (ω) and ωβ = α. Then:

Lemma 5.3.B. If n is regular then

z(W,β) =
1− β(t)−1

x(W,β)
,

where x(W,β) is a rational function of tn which is defined and equal to xα(n) at t = 1.

Proof. Consider now z = z(ω(α1)W+, ω(α1)α0), where α0, α1 are B-simple. Let z1 be the coordinate z(W+, α1)

of s, so that

exp z1X−α1B(ω(α1)W+) exp(−z1X−α1) = B

and

exp z1X−α1B(ω(α1)ω(α0)W+) exp(−z1X−α1) = exp(−zX−α0)B exp zX−α0 .

Thus z is the coordinate z(W+, α0) for the star

B1(W ) = exp z1X−α1B(ω(α1)W ) exp(−z1X−α1), W ∈ W,

which is regular if s is. Replace tn by

t1n1 = exp z1X−α1tn exp(−z1X−α1).

Then if xα0(n1)  = 0we get

z(ω(α1)W+, ω(α1)α0)
1 − α0(t1)−1

xα0 (n1)
.

The earlier SL(2) calculation shows that t1 = ω(α1)(t) and also that if α0 = α1 then xα0(n1) = α0(t)xα0 (n).

Otherwise xα0(n1) is a more complicated function of t and a but it is equal to xα0 (n) at t = 1, for then z1 = 0.

Thus the lemma is verified in the case of z(ω(α1)W+, ω(α1)α0). We repeat this procedure to obtain the lemma in

general.

From this lemma we deduce immediately Lemma 5.3.A. For (h−1tnh, s) ∈ X the star s is a rational function

of t, n and h that is defined in a neighborhood of t = 1, n = u, where it takes the value su.

Corollary 5.3.C. φ : X → T is smooth at xu.

(5.4) Orbital Integrals as Fiber Integrals
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From now on we assume F local and view
∑
γG

∆(γH , γG)Φ(γG, f), f ∈ C∞
c (G(F )), as a fiber integral on X(F ).

Fix for once and for all an admissible embedding TH → T of TH in G, which is quasi-split over F , along with

the Borel subgroup BT containing T . If γ is the image of γH under TH → T then

γ →
∑

∆(γH , γG)φ(γG, f)

is a function on the regular elements of T (F ). Its value at γ is an integral over the fiber φ−1(γ)(F ) in X(F ) as

follows.

The forms ωG, ωT on G, T and measures |ωG|, |ωT | have been specified in (1.4). To ωG there is attached

a G-invariant form ωM of highest degree on M nowhere vanishing on M 0 and hence, after transport by ξ, a

G-invariant form ωX of highest degree on X nowhere vanishing on X0 [L3, Lemma 2.8]. We embed the variety

Ureg of regular unipotent elements in G as an open subvariety of φ−1(1) under u → xu. More generally if z ∈ Z

we embed zUreg as an open subvariety of φ−1(z). Then φ is smooth at the points in zUreg and we see easily that

ωX is nonvanishing around zUreg. If γ ∈ T (F ) is regular then the quotient of ωX by φ∗(ωT ) defines a G-invariant

form ωγ of highest degree along φ−1(γ). For z ∈ Z we similarly obtain a G-invariant form ωz of highest degree

along zUreg. For γ and z F -rational the measures |ωγ | on φ−1(γ)(F ) and |ωz| on Zreg(F ) are specified in the

manner of (1.4). Recalling the definition of ωT in (1.4) we note that |ωz| is independent of T . On the other hand,

by [L3, Lemma 2.12],

|ωγ | =
∏
α

|1− α(γ)−1| · |ωG|/|ωT |,

where the product is over roots α of T in BT . We replace |ωγ | by

|ω∗
γ | =

∏
α

|α(γ)|1/2|ωγ |

to obtain

|ω∗
γ | = DG(γ)|ωG|/|ωT |.

Then for γH strongly G-regular we may write

DH(γH)
∑
γG

∆(γH , γG)Φ(γG, f)

as ∫
φ−1(γ)(F )

∆(x)f(π(x))|ω∗
γ |,

where

∆(x) = ∆(γH , π(x))DH (γH)DG(γ)−1.
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With suitable conventions there is a similar formula in the case γ is not strongly regular, but we shall not need

this fact.

Since G is quasi-split over F we have defined∆(γH , γG) as

∆(γH , γG)
∆0(γH , γG)

∆0(γH , γG),

where γH , γG are fixed and

∆0 = ∆I∆II∆1∆2∆IV .

But ∆IV (γH , γG) = DG(γ)DH(γH)−1 and ∆I(γH , γG),∆II(γH , γG),∆2(γH , γG) depend only on γ. Thus

∆1(x) = ∆1(γH , π(x)) alone varies along the fiber φ−1(γ)(F ).

Write x as (γG, s) and assume s ∈ S(B∞). To specify∆1(x), we choose g ∈ G such that

(γG, s) = (γ, s0)g,

where s0 is the standard star. Then inv(γH , γG) is the class of the cocycle σ → gσ(g)−1 in H1(T ) and

∆1(x) = 〈inv(γH , γG)−1, sT 〉

[see (3.4)]. More precisely, we should pass to Gsc to define inv(γH , γG). We do so without change in notation.

Proposition 5.2 of [L3] describes the inverse cocycle σ(g)g−1 in terms of coordinates. We recall this next.

The cocycle λ(T ) from (2.3) will be computed relative to a-data {aα} and the splitting opposite to

(B,T, {Xα}). Also p will denote the gauge on the roots of T in G attached to BT , and
p∏

1,σ
will indicate a

product over roots α such that p(α) = 1 and p(σ−1
T α) = −1. Suppose ω(α1) . . . ω(αr) is a reduced expression for

ωT (σ), where σT = ωT (σ)� σ. Set ω0 = 1 and ωk = ω(α1) . . . ω(αk), 1 � k � r. If p(α) = 1 and p(σ−1
T α) = −1

then α = ωk−1(αk), some 1 � k � r, and we may set

z(σ, α) = z(−ωk−1W+,−α).

Note that −ωk−1W+ = ωk−1ω−W+ and

−α = ωk−1ω−αk,

where ω− ∈ Ω maps W+ to −W+ and αk = −ω−αk.

Lemma 5.4.A. inv(γH , γG)−1 is represented by the cocycle

σ → λ(T )−1

p∏
1,σ

(
−aα

z(σ, α)

)α∨

.
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Proof. This formula has just to be reconciled with that of [L3, Proposition 5.2]. We have used h, where (BT , T )h =

(B,T), to identify roots of T with roots of T. Suppose that (BT , T )h1 = (B∞,T) and ω∞(σ) = ω−ωT (σ)ω−.

Then

ω∞(σ) = ω(α1) . . . ω(αr)

is a reduced expression. We define n(ω∞(σ)) and n(ω∞(σ)−1) as in (2.1), but relative to the splitting opposite to

(B,T, {Xα}). Thus

n(ω∞(σ)−1) = n(−αr) . . . n(−α1).

By Lemma 2.1.A

n(ω∞(σ)−1) = n(ω∞(σ))−1
∏

∞(−1)
α∨

,

where
∏

∞ indicates a product over roots α such that both α and −ω∞(σ)−1α are positive for B∞. Note that

h1(
∏

∞(−1)α
∨
)h−1

1 =
p∏

1,σ
(−1)α∨

. Applying (5.2.1) we rewrite the formula of [L3] as

σ(h1)n(ω∞(σ))−1
∏

∞(−1)
α∨

h−1
1

times

h1

(
r∏

k=1

z(σ, ωk−1(αk))ω(α1)...ω(αk−1)α∨
k

)
h−1

1 .

(To make the comparison with [L3] easier we note that h1 ↔ hw−1
− , that n(w∞(σ)−1)↔ waj . . .wα1 , and that all

uαi are 1. We recall from (5.2.1) that

σ(z(w,α)) = z(σωσ−1
T ,σα).)

Since λ(T ) : σ → h1(
∏

∞ aα
∨

α )n(ω∞(σ))σ(h−1
1 ), we obtain

λ(T )−1

p∏
1,σ

aα
∨

α ·
p∏

1,σ

(−1)α∨
p∏

1,σ

z(σ, α)−α
∨
,

as desired, because Inth1 takes the root α of T to the root −α of T .

Lemma 5.4.B. If γG = n−1
1 tnn1 where n ∈ N is regular and n1 ∈ N∞ then z(σ, α) = 1−α(γ)

x(σ,α) , where

x(σ, α)→ xαk
(n) as γ → 1.

Proof. φ(γG, s) = γ implies that h−1γh = t and we have only to apply Lemma 5.3.B to z(−ωk−1W+,

−α).

The constructions and results of (5.3) and (5.4) are described for SL(2) in [L-S].

(5.5) A Limit Formula

We assume that H1 is a central extension of H as constructed in (4.4). The character λG1 of Lemma 4.4.A defines

characters λ on Z1(F ), the kernel of H1(F ) → H(F ), and λG on ZG
1 (F ), the preimage of the center Z(F ) of
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G(F ) under H1(F )→ H(F ). Recall that Z(F ) is canonically embedded in H(F ). The projection of ZG
1 (F ) onto

Z(F )will be written as z1 → z, and γ1 will be an element of H1(F )with strongly G-regular image γH in H(F ).

Theorem 5.5.A. lim
γ1→z1

DH1(γ1)
∑
γG

∆(γ1, γG)Φ(γG, f)

is equal to

λG(z1)
∑
u

∆(u)Φ(zu, f), f ∈ C∞
c (G(F )),

where
∑
u

indicates summation over representatives u for the G(F )-conjugacy classes of regular unipotent

elements in G(F ), and

Φ(zu, f) =
∫

f |ωz|,

the integral being taken over the conjugacy class of zu, an open subset of zUreg(F ).

Corollary 5.5.B. If f ∈ C∞
c (G(F )) and f1 ∈ C∞

c (H1(F ), λ) have ∆-matching orbital integrals then

∑
u1

Φ(z1u1, f
1) = λG(z1)

∑
u

∆(u)Φ(zu, f).

Proof of the Theorem. Because ∆(z1γ1, zγG) = λG(z1)∆(γ1, γG) we reduce immediately to the case z1 = 1.

Replacing G by G1 we may assume that H1 = H . By known properties of the asymptotic behavior of orbital

integrals it suffices to consider a function f supported in a small neighborhood of a regular unipotent element in

G(F ).

Suppose that γ is strongly regular, and let x = (γG, s) lie in φ−1(γ)(F ), with x in the coordinate patch

S(B∞). We write x as (tn, s1)n1 , where n1 ∈ B∞, s1 ∈ S(B∞,B) and t = h−1γh, and assume n ∈ N is regular.

Then all that has to be shown is that as γ → 1we have∆(x)→ ∆(n). From (5.4) we have

∆(x) =
∆(γH , γG)
∆0(γH , γG)

·∆1(γH , γG) ·∆II(γH , γG) ·∆1(γH , γG) ·∆2(γH , γG).

Both∆0(γH , γG)and∆I(γH , γG)are to be computed relative to the sameF -splitting, thatopposite to (B,T, {Xα}).

Nothing else depends on a splitting.

The quotient∆(γH , γG)/∆0(γH , γG) is a constant which also appears in∆(n). By definition

∆I(γH , γG) = 〈λ(T ), sT 〉.

Also

∆II(γH , γG) =
∏
α

χα

(
α(γ)− 1

aα

)
,

where the product is over representatives α for the Γ-orbits of roots of T outside H . If O is an asymmetric orbit

then the contribution for ±O is a character (which we could take to be trivial) evaluated at γ (Lemma 3.3.A).
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Thus we need take into account only the symmetric orbits. It remains to consider∆1(γH , γG), for∆2(γH , γG) is

a character evaluated at γ and so has limit 1. But

∆1(γH , γG) = 〈inv(γH , γG)−1, sT 〉

and inv(γH , γG)−1 is represented by the cocycle

λ(T )−1

p∏
1,σ

(
−aλ

z(σ, α)

)α∨

of Lemma 5.4.A. On cancellation with∆I we may replace inv(γH , γG)−1 by the class of the cocycle

p∏
1,σ

(
−aα

z(σ, α)

)α∨

=
p∏

1,σ

(
aαx(σ, α)
α(γ)− 1

)α∨

(see Lemma 5.4.B). But around 1, α(γ)1/2 is well defined and continuous. Thus we rewrite the cocycle as

p∏
1,σ

(
aα

α(γ)1/2 − α(γ)−1/2

)α∨ p∏
1,σ

(
x(σ, α)
α(γ)1/2

)α∨

.

Since aα/(α(γ)1/2 −α(γ)−1/2) lies in F×
±α the first product is a cocycle (Lemma 2.2.B). The pairing of this cocycle

with sT yields ∏
α

χα

(
aα

α(γ)1/2 − α(γ)−1/2

)
,

where the product is taken over representatives α for the symmetric Γ-orbits of roots outside H (Lemma 3.2.D).

The product of this term with the contribution of the symmetric orbits to∆II is then:

∏
α

χα

(
α(γ)− 1

α(γ)1/2 − α(γ)−1/2

)
=
∏
α

χα(α(γ)1/2),

and so approaches 1 as γ → 1. We conclude that

lim
γ→1

∆(x) =
∆(γH , γG)
∆0(γH , γG)

lim
γ→1

〈C(γ), sT 〉,

where C(γ) is represented by the cocycle

p∏
1,σ

(x(σ, α)α(γ)−1/2)α
∨
.

But lim
γ→1

x(σ, α)α(γ)−1/2 = xαk
(n) (Lemma 5.4.B). Thus it remains to show that

p∏
1,σ

xαk
(n)α

∨
represents the class

invT (n) defined in (5.1).
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We shall pass to Gsc as necessary, without change in notation. Choose t ∈ T such that

α(t) = xα(n)

for all simple roots α. Then inv(n) is the class of σ → tσ(t)−1 in H1(Z). Its image invT (n) in H1(T ) is, after

transport to T, the class of this same cocycle but now for the σT -action on T.

Set t1 = ω−(t−1), and note that

α(t1) = xα(n)

for all simple α. We have also that

σ(t1)t−1
1 = ω−(σt−1)ω−(t) = ω−(tσ(t−1)) = tσ(t−1)

since this last element is central. Thus it is enough to show that:

p∏
1,σ

xαk
(n)α

∨
is cohomologous to σ(t1)t−1

1 .

But
p∏

1,σ
xαk

(n)α
∨
=

n∏
k=1

xαk
(n)ωk−1(α

∨
k ). For this, recall that ωT (σ) = ω(α1) . . . ω(αr) is a reduced expression

and ω0 = 1, ωk = ω(α1) . . . ω(αk), 1 � k � r. Hence

p∏
1,σ

xαk
(n)α

∨
=

n∏
k=1

αk(t1)ωk−1(α∨
k ) = t1ω(α1) . . . ω(αr)(t−1

1 ) = t1ωr(σ)(t−1
1 ).

Since σt1 ≡ t1(modZ), this equals

σ(t1)ωT (σ)(σt−1
1 ) = σ(t1)σT (t−1

1 ) = σ(t1)t−1
1 · t1σT (t−1

1 ),

and we are done.

6. Global consequences

(6.1) Outline

Here the results take a simple form. To explain them we continue the example of SL(2) from (1.1). Now F is a

number field with adele ring A. The global matching concerns

(6.1.1)
∑
γG

∆A(γH , γG)ΦA(γG, f),

where γH  = ±1 lies in H(F ) and is an adelic image of γG ∈ G(A),ΦA(γG, f) is the integral of a function f on

G(A) along the G(A)-conjugacy class of γG, and the sum is over representatives γG for G(A)-conjugacy classes.

The factor∆A is prescribed as follows.
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To say that γH is an adelic image of γG we mean, in this example, that γG is everywhere locally stably

conjugate to the image γ of γH under some admissible embedding H → T of H in G defined over F . If γG,v is the

component of γG at the place v then the element inv(γH , γG,v) of H1(Γv, T (Ev)) is defined as in (III1) of (1.1). For

almost all v it is trivial and the image inv(γG) of
∑
v
inv(γH , γG,v) in the 2-element group H1(Γ, T (E)\T (AE)) is

independent of the choice of γ. Moreover, inv(γG) is trivial if and only if the G(A)-conjugacy class of γG meets

G(F ). Tate-Nakayama duality allows us to pair inv(γG)with the image sT in T̂ Γ of the endoscopic datum s, that

is, with the nontrivial element of T̂ Γ. Then we define

∆A(γH , γG) = 〈inv(γG), sT 〉.

Thus∆A(γH , γG) = 1 if the G(A)-conjugacy class of γG meets G(F ) and∆A(γH , γG) = −1 otherwise.

We use unnormalized Tamagawa measures to specify orbital integrals. The function f is to be of the form∏
v fv where fv ∈ C∞

c (G(Fv)) for all v, and for almost all v the function fv is to be the characteristic function of

Kv = G(Ov) divided by the measure of Kv. Then ΦA(γG, f) =
∏
v Φ(γG,v, fv). The local factor ∆(γH , γG,v)

was defined in (1.1). Inspection of the terms shows that

(6.1.2) ∆(γH , γG,v) = 1 for almost all v

and

(6.1.3)
∏

v
∆(γH , γG,v) = ∆A(γH , γG)

provided the fixed elements γH , γG are F -rational and at each place v the otherwise arbitrary ∆(γH , γG) is

chosen so that (6.1.2) and (6.1.3) are satisfied.

Then ∑
γG

∆A(γH , γG)ΦA(γG, f) =
∑
γG

∏
v
∆(γH , γG,v)Φ(γG,v, fv)

=
∏

v

∑
γG,v

∆(γH , γG,v)Φ(γG,v, fv)

by [L2, Lemma 8.3]. This equals
∏
v f

H
v (γH)where fHv is the smooth extension of

γH →
∑
γG,v

∆(γH , γG,v)Φ(γG,v, fv)

to H(Fv) (see Lemma 1.1.A). For almost all v, fHv is the characteristic function of the maximal compact subgroup

of H(Fv) divided by its measure.

We set fH =
∏
v f

H
v to conclude that

fH(γH) =
∑
γG

∆A(γH , γG)ΦA(γG, f).
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This is the global matching of orbital integrals for our example (see [L-L, p. 756]).

In general we shall define an adelic factor ∆A, and verify (6.1.2) and the product formula (6.1.3) for the

local factors of Sect. 3. Then suppose that f =
∏
v fv, f

H =
∏
v f

H
v are as usual, and that strongly G-regular

γH ∈ H(F ) is an adelic image of γG ∈ G(A). Because of (6.1.2) and [L2, Lemma 8.3] we have for almost all v that

Φst(γH , fHv ) =
∑
γG,v

∆(γH , γG,v)Φ(γG,v, fv),

each side having non-zero contribution from only one conjugacy class. Thus if fv and fHv have ∆-matching

orbital integrals for all v we conclude that

(6.1.4) Φst
A(γH , fH) =

∑
γG

∆A(γH , γG)ΦA(γG, f),

where the left side is, by definition, the sum of the integrals of fH along the H(A)-conjugacy classes of elements

everywhere locally stably conjugate to γH . With a little care this extends to elements γH which are G-regular but

not strongly G-regular (recall (4.3) for the local analogue).

Finally we shall observe that the Global Hypothesis of [L2] is satisfied. Thus, assuming the Hasse Principle

for Gsc, the factors of Sect. 3 will be correct for stabilization of the Arthur-Selberg Trace Formula (see [L2, Chap.

VIII]).

(6.2) Notation

If v is a place of F then we fix an extension v of v to F and for L ⊆ F denote by Lv the completion of L so

determined. There will be no harm in working with some suitably large finite Galois extension L ⊂ F of F . Thus

Γ = Gal(L/F ) and Γv = Gal(Lv/Fv). Set W =WL/F and Wv =WLv/Fv
. Then we fix Wv → W such that

1→ L×
v → Wv → Γv → 1
↓ ↓ ↓

1→ CL → W → Γ→ 1

is commutative.

Global endoscopic data (H,H, s, ξ) yield data (H,Hv, ξv) for G as group over Fv such that each of

1→ Ĥ → Hv → Wv → 1
↓ ↓ ↓

1→ Ĥ → H → W → 1

and
Hv

ξv−→ LGv

↓ ↓
H ξ−→ LG

is commutative, where LGv is the semidirect product Ĝ � Wv with Wv acting through Wv → W
�−→ Aut Ĝ.
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Again H need not be an L-group and we introduce central extensions of H satisfying global analogues of

the conditions of (4.4) (see [L1, K1]). In the following discussion we assume that H itself satisfies these conditions

and identify H with LH . Passage to the general case is then routine, following (4.4) for the local case.

Let K =
∏
v Kv,K

∗ =
∏
v K

∗
v be compact open subgroups of G(Af ), G∗(Af ). We fix a finite set V0 of

places such that for v /∈ V0 the groups G,G∗ are unramified at v and Kv,K
∗
v are hyperspecial maximal compact

subgroups of G(Fv), G∗(Fv). Outside V0, ψ is defined over Fv , up to composition with an inner automorphism

which does not affect transfer factors. Choose gv ∈ G(F v) such that ψv = Int gv ◦ψ is defined over Fv and takes

Kv to K∗
v . Then ψv may be used to identify G(Fv)with G∗(Fv).

(6.3) Adelic Images and Transfer Factors

Suppose γH ∈ H(F ) is G-regular and lies in the maximal torus TH of H .

At each place v we shall allow only admissible embeddings of TH in G∗ which are defined over F . These

exist, by Steinberg’s Theorem (see [K1]). Then we say that γH is an adelic image of γG ∈ G(A) if, for every v, γH

is an image of the component γG,v of γG in G(Fv). Thus if TH maps to T and γH to γ ∈ T (F ) under some

admissible embedding over F then we require that for each v there exists xv ∈ G∗(Lv) such that Intxv ◦ψ maps

the maximal torus in T containing γG,v to T over Fv and carries γG,v to γ.

Suppose γH , γH are strongly G-regular elements of H(F ) and are adelic images of γG, γG ∈ G(A). For an

L splitting T the element

µv = inv
(

γH , γG,v
γH , γG,v

)
of H1(Γv, U(Lv))was defined in (3.4).

Lemma 6.3.A. µv = 1 for almost all v.

Proof. Take an L splitting T . For almost all v /∈ V0 : (i) L is unramified at v; (ii) γ, γG,v lie in Kv; and (iii) for each

root α of T in G∗, α(γ) is a unit in the ring of integers of Lv. That γH is an image of γG,v means, for v /∈ V0, that

γG,v and γ are stably conjugate. If (i), (ii), and (iii) are satisfied γG,v and γ are conjugate under Kv ([L2, Lemma

8.3]). If Kv is the stabilizer of the hyperspecial point x of the Bruhat-Tits building of G(Fv)we denote by Ksc the

stabilizer of x in Gsc(Fv) and by Ksc,L the stabilizer in Gsc(Lv). By [K3, (3.3.4)], γG,v and γ are conjugate under

Ksc,L. Since H1(Γv, Tsc ∩ Ksc,L) = 1 for almost all v and γG,v, γ are strongly regular we conclude that γG,v, γ

are conjugate under Ksc for almost all v. Then the class inv(γH , γG,v) in H1(Γv, Tsc(Lv)) is trivial.

We argue similarly for γH , and γG to obtain for almost all v /∈ V0 that

µv = inv
(

γH , γG,v
γH , γG,v

)
=
inv(γH , γG,v)
inv(γH , γG,v)

= 1,

and the lemma is proved.
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Let µ be the image of Σvµv in H1(Γ, U(L)\U(AL)) under

∑
v

H1(Γv, U(Lv))→ H1(Γ, U(L)\U(AL))

given by 1→ U(L)→ U(AL)→ U(L)\U(AL)→ 1 and the isomorphism ΣvH1(Γv, U(Lv))→ H1(Γ, U(AL)).

The endoscopic datum s determines sU,v ∈ π0(ÛΓv ) as in (3.4). By its definition s also determines sT ∈ π0(T̂ Γ
ad)

and similarly sT [see (1.2), (3.1)]. As in (3.4) we may define sU ∈ π0(ÛΓ) which depends only on the choice of

embeddings TH → T, TH → T . Global Tate-Nakayama duality allows us to pair µ with sU and the local-global

relationship for the pairing yields:

(6.3.1) 〈µ, sU 〉 =
∏
v

〈µv, sU,v〉.

There is another way to define µ. Strongly G-regular γH is an adelic image of γG ∈ G(A) if and only if

there exists h ∈ G∗
sc(AL) such that

hψ(γG)h−1 = γ

[see the proof of (6.3.A)]. We proceed as in the local case (3.4). Recall that ψσ(ψ)−1 = Intu(σ), u(σ)

∈ G∗
sc(L), and then v(σ) = hu(σ)σ(h)−1 lies in Tsc, with ∂v = ∂u taking values in Tsc(L). Thus v(σ) de-

fines an element µT of H1(Γ, Tsc(L)\Tsc(AL)). By global Tate-Nakayama duality we may pair µT with sT .

Further, 〈µT , sT 〉 is the independent of the choice of admissible embedding TH → T over F , and clearly

(6.3.2) 〈µ, sU 〉 = 〈µT , sT 〉/〈µT , sT 〉.

It will be more convenient to write 〈µT , sT 〉 as d(γH , γG).

Lemma 6.3.B.

(i) d(γ′
H , γG) = d(γH , γG) if γ′

H is stably conjugate to γH in H(F ).

(ii) d(γH , γ′
G) = d(γH , γG) if γ′

G is G(A)-conjugate to γG.

(iii) d(γH , γG) = d(γH , γG) if γH , γH are adelic images of γG, γG ∈ G(F ).

Proof. (i) is immediate. For (ii) we use (6.3.2) and then (6.3.1) to reduce to the proof of Lemma 4.1.C for the

local case. For (iii), µ is trivial if γG, γG ∈ G(F ) for then we find h, h ∈ G∗
sc(L) such that hψ(γG)h−1 =

γ, hψ(γG)h
−1
= γ. (6.3.2) now yields the result.

Fix strongly G-regular γH ∈ H(F ) and γG ∈ G(F ) such that γH is an adelic image of γG. We assume that

such a pair γH , γG exists; otherwise all the following factors are to be zero.

Definition. For all strongly G-regular γH ∈ H(F ),

∆A(γH , γG) = d(γH , γG)/d(γH , γG)
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if γH is an adelic image of γG ∈ G(A) and∆A(γH , γG) = 0 otherwise.

By Lemma 6.4.B, ∆A(γH , γG) is independent of: (i) the pair γH , γG; (ii) γH within its stable conjugacy

class; (iii) γG within its G(A)-conjugacy class. Further,

∆A(γH , γG) = 1

if γH is an adelic image of γG and the G(A)-conjugacy class of γG meets G(F ).

(6.4) Product Formulas

To specify the local factors of (3.7) we use a pair γH , γG of F -rational elements, as for the adelic factor. At

almost all places v we set ∆(v)(γH , γG) = 1. At the remaining places ∆(v)(γH , γG) is arbitrary except for the

requirement that ∏
v

∆(v)(γH , γG) = 1.

Then as in (3.7), but with the superscript (v) inserted, we set

∆(v)(γH , γG,v) = ∆(v)(γH , γG,v)∆
(v)(γH , γG,v; γH , γG)

for all strongly G-regular γH in H(F ). The relative factor ∆(v)(γH , γG,v; γH , γG) is the product of

∆(v)
I (γH , γG,v)

∆(v)
I (γH , γG)

· ∆
(v)
II (γH , γG,v)

∆(v)
II (γH , γG)

· ∆
(v)
2 (γH , γG,v)

∆(v)
2 (γH , γG)

and
∆(v)
IV (γH , γG,v)

∆(v)
IV (γH , γG)

·∆1(γH , γG,v; γH , γG).

The various terms are defined using any admissible embeddings over Fv , and a-data, χ-data for G as group over

Fv . We shall use embeddings over F and global a- and χ-data [see (2.2), (2.5)] in order to obtain product formulas

for the individual terms as well as for ∆.

Theorem 6.4.A. (i)For almost all v each of∆(v)
I (γH , γG,v), ∆(v)

II (γH , γG,v), ∆(v)
2 (γH , γG,v)and∆IV (γH , γG,v)

equals 1.

(ii)
∏
v∆

(v)
I (γH , γG,v) = 1, and similarly for ∆(v)

II ,∆(v)
2 , and ∆(v)

IV .

In the last section we showed that

∆(v)
I (γH , γG,v; γH , γG) = 1

for almost all v (Lemma 6.3.A) and that

∏
v

∆(v)
I (γH , γG,v; γH , γG) = ∆A(γH , γG)
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[(6.3.1) and (6.3.2)].

Corollary 6.4.B.

(i) ∆(v)(γH , γG,v) = 1 for almost all v and

(ii)
∏
v∆

(v)(γH , γG,v) = ∆A(γH , γG).

This product formula contains the Global Hypothesis of [L2, p. 149] because ∆A(γH , γG) is the term

κ(ε(D)) of [L2]. To see this we translate our terminology into that of diagrams, as at the end of (4.2). The formula

for ε(D) on p. 137 of [L2] determines an element of H−1(Γ, X∗(U))which under global Tate-Nakayama duality

coincides with our µ of (6.3). Then κ(ε(D)) is 〈µ, sU 〉 which is the same as ∆A(γH , γG).

Proof of Theorem. (∆I) By definition,

∆(v)
I (γH , γG,v) = 〈λv(Tsc), sT,v〉

[see (3.2)]. Recall from (2.3.5) that the global invariant λ(Tsc) ∈ H1(Γ, T (L)) is defined and that λv(Tsc) is the

image of λ(Tsc) under H1(Γ, T (L)) → H1(Γv, T (Lv)). Thus for almost all v we have λv(Tsc) = 1 and then

∆(v)
I (γH , γG,v) = 1. Further, the image of Σvλv(Tsc)in H1(Γ, Tsc(L)\Tsc(AL)) is trivial and so

∏
v
∆(v)

(I)(γH , γG,v) =
∏

v
〈λv , sT,v〉 = 〈Image Σvλv, sT 〉 = 1.

(∆II) In (2.6.5) we attached local χ-data {χ(v)
α } to global data {χα}. The character χ

(v)
α is defined on Fv,α,

the fixed field in Lv of the stabilizer of α in Γv, and

∆(v)
II (γH , γG,v) =

∏
α
χ(v)
α

(
α(γ)− 1

aα

)
,

where the product is over representatives α for the orbits of Γv in the roots of T which lie outside H . Note that

δ = α(γ)−1
aα

lies in Fα, the fixed field in L of the stabilizer of α in Γ. On the other hand we may write χα as∏
v χα,v where χα,v is a character on (Fα ⊗ Fv)×. Then we claim that

∆(v)
II (γH , γG,v) =

∏′
α
χα,v(δ),

where the product is now over representatives α for the orbits of Γ in the set of roots outside H . Then

∆(v)
II (γH , γG,v) = 1

for almost all v and

∏
v
∆(v)
II (γH , γG,v) =

∏
v

∏′
α
χα,v(δ) =

∏′
α

∏
v
χα,v(δ) =

∏′
α
χα(δ) = 1.
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To prove the claim we fix a root α outside H and choose representatives σ1, . . . , σn for Γv\Γ/Γα, where

Γα is the stabilizer of α in Γ. Then σ1α, . . . , σnα are representatives for the Γv-orbits in the Γ-orbit of α. Thus the

contribution to∆(v)
II (γH , γG,v) from these orbits is

∏
i χ

(v)
σiα(σiδ). But Fα ⊗ Fv =

∏
i Fα,σ−1

i v =
∏
i σ

−1
i (Fv,σiα).

From χα = χσiα · σi we conclude that if χα,v =
∏
i χi then χi = χ

(v)
σiα · σi, and the claim is proved.

(∆2) By definition,

∆(v)
2 (γH , γG,v) = 〈av, γ〉,

where av is the element a of H1(Wv, T̂ ) constructed in (3.5). Because we have global χ-data and TH → T is

defined over F we may similarly construct a ∈ H1(W, T̂ ). By (2.6.5) we have that av is the image of a under

H1(W, T̂ ) → H1(Wv, T̂ ). Thus ∆2(γH , γG,v) = 1 for almost all v and
∏
v ∆

(v)
2 (γH , γG,v) =

∏
v〈av, γ〉 =

〈a, γ〉 = 1 since γ ∈ T (F ).

The assertions of the theorem are immediate for∆IV . This completes the proof.
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