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1. Introduction.

In an earlier paper [14] I have adumbrated a method for establishing that the zero-function of a Shimura
variety associated to a quaternion algebra over a totally real field can be expressed as a product of L-functions
associated to automorphic forms. Now I want to add some body to that sketch. The representation-theoretic and
combinatorial aspects of the proof will be given in detail, but it will simply be assumed that the set of geometric
points has the structure suggested in [13]. This is so at least when the algebra is totally indefinite, but it is proved
by algebraic-geometric methods that are somewhat provisional in the context of Shimura varieties. However,
contrary to the suggestion in [13] the general moduli problem has yet to be treated fully. There are unresolved
difficulties, but they do not arise for the problem attached to a totally indefinite quaternion algebra, which is
discussed in detail in [17].

It does not add to the essential difficulties if we enlarge our perspective a little and consider not only the
zeta-function defined by the constant sheaf but also that defined by the sheaves associated to finite dimensional
representatives of the group defining the variety, and we might even dissipate some of the current misconceptions
about the nature of these sheaves. Their existence is a formal consequence of Shimura’s conjecture. We should
moreover not confine ourselves to the multiplicative group of the quaternion algebra, but should in addition
consider subgroups lying between the full multiplicative group and the kernel of the norm, for then we can see
the effect of L-indistinguishability [7] in the place where it was first noticed.

In this introduction the results of [7], to which [22] is meant to serve as a kind of exegesis, are used in
conjunction with facts about continuous cohomology to arrive at an assertion about the zeta-function which the
remainder of the paper is devoted to proving. Some readers will find that I have given too free rein to a lamentable
tendency to argue from the general to the particular, and have obfuscated them by interjecting unfamiliar concepts
of representation theory into what could be a purely geometric discussion. My intention is not that, but rather to
equip myself, and perhaps them as well, for a serious study of the Shimura varieties in higher dimensions. We
are in a forest whose trees will not fall with a few timid hatchet blows. We have to take up the double-bitted axe
and the cross-cut saw, and hope that our muscles are equal to them.

The method of proof has already been described in [14]. It is ultimately combinatoric. The Bruhat-Tits
buildings, which arise naturally in the study of orbital integrals and Shimura varieties, are used systematically.
However the automorphic L-functions used to express the zeta-functions of the varieties are unusual and most
of §2 is taken up with the attempt to understand them and express their coefficients in manageable, elementary
terms. The appearance of L-indistinguishability complicates the task considerably.

The meaning of the conjectures of [13] is also obscure, even to their author, and considerable effort is necessary
before it is revealed sufficiently that a concrete expression for the coefficients of the zeta-functions is obtained.
Once this is done, in §3 and the appendix, the equality to be proved is reduced to elementary assertions which
are proved by combinatorial arguments in §4.

A connected reductive group G over Q and a weight µ of the associate group LG0 are the principal data
specifying a Shimura variety. The conditions they must satisfy are described in [4]. If Af is the group of finite
adèles one needs an open compact subgroup K of G(Af ) as well. µ is the weight of LG0 defined by the co-weight
h0 of [13]. The primary datum is h0, rather than µ. To completely define S(K) one needs h0. The variety will
be denoted by S(K) and only K will appear explicitly, for G and µ are usually fixed. The group LG0 comes
provided with a Borel subgroup LB0 and a Cartan subgroup LT 0 in LB0. We may suppose that µ is a positive
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weight of LT 0. Moreover if L is a large Galois extension of Q then G(L/Q) acts on LG0, fixing the subgroups
LB0 and LT 0. If G(L/E) is the stabilizer of µ then the Shimura conjecture, which has been proved for the groups
we shall consider, states that S(K) has a model over E characterized by the arithmetic structure of its special
points [4]. We will always use this model. The set of complex points on S(K) is a double coset space

(1.1) G(Q)\G(A)/K∞K .

Here K∞ ⊆ G(R) and G(R)/K∞ is a finite union of Hermitian symmetric spaces.
Let Z0 be the intersection of the kernels of the rational characters over Q of the center Z of G and let ξ be

a representation of G on the vector space V which is trivial on Z0, both ξ and V being defined over Q. If K is
sufficiently small, as we assume, then

V (Z)×(G(Q),ξ) G(A)/K∞K → S(K)

defines a locally constant sheaf FK
ξ or Fξ on S(K). Using the étale coverings S(K ′) → S(K), K ⊆ K ′, which are

defined over E, and the formalism of [12], we may defined the sheaves Fξ as l-adic sheaves in the étale topology.
For the groups that occur in this paper the quotient (1.1) is compact and the varieties S(K) are proper, and

we introduce the cohomology groups
Hi(S(K), Fξ) .

They can be taken over Q or over Ql, according to the exigencies of the context. If g ∈ G(Af ) the formalism of
[12], which is the usual formalism, associates to g a linear transformation

T i(g): Hi(S(K), Fξ) → Hi(S(K), Fξ) .

The T i(g) act to the right and commute with G(E/E) which acts to the left. I recall that in the theory of Shimura
varieties E is given as a subfield of C.

We shall be concerned with the zeta-function of Fξ as a formal rather than as an analytic object, and so
we shall only be interested in the individual local factors, and these only at the primes p of E for which the
suggestions of [13] apply. If Φp is the Frobenius at p and τ i the representation of G(E/E) on H i(S(K), Fξ) then
the logarithm of the zeta-function is given by

log Zp(s, S(K), Fξ) =
∞∑
n=1

n−1∑
i

(−1)ttrace τ i(Φnp )|�p|ns .

If q is the number of elements in the residue field then

|�p| = q−1 .

We shall be more interested in
Zp(s, S(K), Fξ) =

∏
p|p

Zp(s, S(K), Fξ) .

We want to show that the zeta-function can be expressed in terms of theL-functions associated to automorphic
forms. Considerations that will be explained shortly suggest an elegant conjecture. It is false and, in general,
meaningless, but it is meaningless for interesting reasons, stemming from L-indistinguishability, and for the
groups treated in this paper we will be able to modify and correct it, by taking the results of [7] into account. I
will present it in a slicker form than it at first appeared, even though its genesis is thereby somewhat obscured.

Some auxiliary objects must be introduced. To simplify our considerations we suppose that the restriction
of ξ to the center Z of G is of the form

ξ(z) = ν(z)I

where ν is a rational character. This does not affect the generality, since ξ can be decomposed into a direct sum
of representations satisfying this condition.
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If T is a Cartan subalgebra of G over R, γ is a regular element of T (R), δ belongs to D(T/R) (the explanation
of this and other notation used below will be found in [16]), and f is a smooth function inG(R)which is compactly
supported modulo Z(R) and satisfies

f(zg) = ν(z)f(g) z ∈ Z(R)

we may introduce

Φδ(γ, f) =
∫

Th(R)\G(R)

f(g−1h−1γhg)dg

as in [7]. Here h in A(T ) represents δ. We may also introduce the stable orbital integrals [7]

ΦT/1(γ, f) =
∑

D(T/R)

Φδ(γ, f) .

Choose f = fξ so that
ΦT/1(γ, fξ) = 0

unless T (R) is fundamental, that is, unless Z(R)\T (R) is compact, and so that

ΦT/1(γ, fξ) =
trace ξ(γ)

measZ(R)\T (R)

if T (R) is fundamental. It has to be shown that fξ exists, but for the groups we shall ultimately consider this has
been done (cf. [15], §4).

If π∞ is a representation of G(R) set m(π∞) = m(π∞, ξ) equal to 0 unless

π∞(z) = ν−1(z)I z ∈ Z(R) .

Otherwise let m(π∞) be the trace of

π∞(fξ) =
∫

Z(R)\G(R)

fξ(g)π∞(g)dg .

We temporarily disregard the circumstance that m(π∞) is in fact not well-defined. If πf is a representation of
G(Af ) let m(πf ) = m(πf ,K) be the multiplicity with which the trivial representation of K occurs in πf .

The numbers m(π∞) and m(πf ) will occur as exponents in the expression of Z(s, S(K), Fξ) as a product of
L-functions associated to automorphic representations π = π∞ ⊗ πf , but to specify an L-function one needs a
representation of LG as well. Let r0 be the representation of LG0 with highest weight µ. The element µ, or rather
its restriction to the derived group, is a poids minuscule in the terminology of Bourbaki. Thus the weights of r0

are the ωµ with ω in the Weyl group Ω(LT 0, LG0) of LT 0 in LG0. Let LM0 be the group generated by LT 0 and
the coroots α∨ orthogonal to µ. The stabilizer of µ is Ω(LT 0, LM0) and the dimension of r0 is

[Ω(LT 0, LG0): Ω(LT 0, LM0)] .

Let x be a non-zero vector transforming according to the weight µ. There is exactly one way on extending r0 to a
representation, again denoted r0, of

LG0 × G(L/E)

on the same space so that
r0(σ)x = x σ ∈ G(L/E) .
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L is here just some large Galois extension of Q, and could be taken to be Q. Let

r = Ind(LG, LG0 × G(L/E), r0) .

The group LG is a semi-direct product
LG0 × G(L/Q) .

Let q be the dimension of S(K). If the phenomenon of L-indistinguishability did not manifest itself, one
might suspect that

(1.2) Z(s, S(K), ξ) =
∏

L(s− q/2, π, r)m(π)m(π∞)m(πf ) .

The zeta-function on the left is the product of the local zeta-functions, including a factor from the infinite places.
The product on the right is over all automorphic representations of G(A) and m(π) is the multiplicity with which
π occurs in the space of automorphic forms. The grounds for the suspicion are initially flimsy, but I shall try to
explain them. If the conjectures of Weil and Ramanujan are compatible the shift in the variable form from s to
s− q/2 must be present.

Let N be the number of absolutely irreducible components of ξ, counted with multiplicity, and let λ1, . . . , λk

be the highest weights of the distinct components ξ̃1, . . . , ξ̃k of the contragredient representation ξ̃ with respect
to some order on the roots of a fundamental Cartan subgroup T (R) in G(R). Let g be one-half the sum of the
positive roots with respect to this order, and for every ω in the complex Weil group Ω(T (C), G(C)) set

Λiω = ω(λi + g) .

For each Λiω there is a discrete series representation π(Λiω). We set

Π(ξ) = {π(Λiω)|1≤ i≤ k, ω ∈ Ω(T (C), G(C))} .

It is a union of the L-indistinguishable classes [11]

Π(ξi) = {π(Λiω)|ω ∈ Ω(T (C), G(C))} .

fξ has been so chosen that ∑
π∞∈Π(ξ)

m(π∞) ,

which is well-defined, is equal to (−1)1dN if

d = dimension r0 .

In the notation of [2]
⊕π∞∈Π(ξ)Hi(g, k∞, π∞ ⊗ ξ)

is 0 unless i = q when its dimension is dN , for by the results of those notes

⊕π∞∈Π(ξj)H
i(g, k∞, π∞ ⊗ ξj ′)

is 0 unless j = j′ and i = q when its dimension is d. To see this one has to observe, among other things, that
Ω(T (C), G(C)) is isomorphic to Ω(LT 0, LG0), that Ω(LT 0, LM0) is isomorphic to Ω(T (R),K∞), and that the
restriction of

⊕π∞∈Π(ξj)π∞

to the connected component of G(R) is therefore the direct sum of d irreducible representations, namely the
discrete series representations with the same infinitesimal character as ξ̃j .
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If, as occasionally happens ([12], [14]), Π(ξ) consisted of a single element π∞, then each time that

π = π∞ ⊗ πf

occurred in the space of automorphic forms it would contribute a subspace to the cohomology groupHq(S(K), Fξ)
over C of dimension dm(πf ). A corresponding L-function should appear as a factor of the zeta-function. The
degree of the factors appearing in its expression as an Euler product should be

[E: Q]dm(πf ) = m(πf ) dimension r

for almost all p. The L-function should appear in the numerator or denominator according as q is even or odd.
We are led to guess that it is

L(s− q/2, π, r)(−1)
qm(πf ) = L(s− 1/2, π, r)m(π∞)m(πf ) .

Occam’s razor and the ordinary Eichler-Shimura theory then suggest (1.2). Unfortunately
∏
(ξ) generally consists

of several elements.
We might still be able to hold onto (1.2) if wheneverπ∞ andπ′∞ were twoL-indistinguishable representations

of G(R) the representations
π = π∞ ⊗ πf and π′ = π′

∞ ⊗ πf

occurred in the space of automorphic forms with the same multiplicity. We would just have to choose a rep-
resentative from each L-indistinguishable class and agree that the product in (1.2) was to be taken over those
π = π∞ ⊗ πf for which π∞ belonged to our set of representatives. But we would have to search for another
definition of the exponent m(π∞), because, as it stands, different choices of fξ lead to different values for trace
π∞(fξ). It does not matter, for π and π′ do not always occur with the same multiplicity [7]. One may occur while
the other does not. This clearly means that the degrees of the Euler products L(s− q/2, π, r) are then too large.
We must seek Euler products of smaller degree.

L-indistinguishability appears when the sets D(T )of [16] have more than one element. If, as we may
assume, the center of LG0 is connected then we may use the definitions of [16] to introduce groups H over Q and
homomorphisms ψ: LH → LG. Suppose the principle of functoriality applies and the L-indistinguishable class
of π is the image under ψ∗ of that of π′. Then

L(s, π, r) = L(s, π′, r ◦ ψ) .

In general r is irreducible but r ◦ ψ is often reducible

r ◦ ψ = ⊕ri .

We must expect that the functionsL(s−q/2, π′, ri)will appear in the ultimate, correct form of (1.2). The definition
of H leads naturally to such a decomposition of r ◦ψ. The constituents ri might not be irreducible, but they seem
nonetheless to yield the L-functions necessary for an analysis of Z(s, S(K), Fξ).

Without repeating the definition of the groups H , we recall that each of them is attached to a triple (T, κ, g1).
If Tsc is the Cartan subgroup of the simply connected form of G defined by T the term κ is a homomorphism
of its lattice of coweights X∗(Tsc) into C×. Moreover g1 allows an identification of X∗(Tsc) with the lattice
X∗(LT 0

sc) of rational characters of the Cartan subgroup of the L-group LG0
sc and κ can therefore be transported

ot a homomorphism κ′ of ∗(LT 0
sc) into C×. We may extend κ′ to a G(K/Q)-invariant homomorphism

ε: X∗(LT 0) → C× .

Since
LT 0 = Hom(X∗(LT 0),C×) ,
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ε is an element of LT 0 and lies in the center of ψ(LH). The representation r ◦ψ is the direct sum of its restrictions
ri to the eigenspaces of r(ε), but these may not be irreducible. Since any two choices of the extension ε differ by
a central element in LG, these subspaces are well-defined.

We now try to modify (1.2) by including the L(s − q/2, π′, ri) in such a way that at least the local factors
at infinity of the hypothetically equal Euler products, Z(s, S(K), Fξ) on the left and some combination of the
L(s, π′, ri) on the right, are likely to be the same. It seems to be sufficient to consider H defined by a T for which
T (R) is fundamental.

The representation r0 may be regarded as a subrepresentation of the restriction of r to LG0 � G(Q/E). It is
clear that the eigenspaces of r(ε) also decompose r0 into

⊕r0i

and that
ri = Ind(LG, LG0 � G(Q/E), r0i ) .

To define L(s, π∞, ri) we need only know the restriction of ri to the local associate group at infinity, LG∞ =
LG0 × G(C/R).

Implicit in the definition of E is an imbedding Q ↪→ C, and hence E is a subfield of C and G(C/R) is a
subgroup of G(Q/Q). The double cosets

G(C/R)\G(Q/Q)/G(Q/E)

parametrize the infinite places v of E, the coset represented by r defining the valuation

x → |τ(x)| .

The decomposition group Gv at v = v(τ) is

G(Q/E) ∩ τ−1G(C/R)τ
and the restriction of ri to LG∞ is

⊕v Ind(LG∞, LG0 × gv, r
0
i |τGvτ

−1) = ⊕ri(v) .
Consequently

L(s, π′
∞, ri) =

∏
v
L(s, π′

∞, ri(v)) ,

and we attempt to arrange that the contributions from the L(s− q/2, π′
∞, ri(v)) for a given v yield the local factor

of Z(s, S(K), Fξ) at the same place.
However, our primary interest in this paper is not with equality of the Euler factors at infinity, but with

equality at almost all finite places, and we are only using the infinite places as a guide to the correct statement.
The one place given by the imbedding E ⊆ Q ↪→ C provided by the definition of E will serve.

The weights of r0 on LT 0 are the elements of

{ωµ|ω ∈ Ω(LT 0, LG0)}

and the differences of any two µ1, µ2 of these weights is an integral linear combination of roots of LT 0. Thus

µ1(ε)/µ2(ε) = κ′(µ1 − µ2) = ±1 ,

because T (R) is fundamental and κ′ therefore of order one or two. Thus there are one or two r0i and, at the cost
of adding a second of dimension zero, we suppose there are two, r01 and r02 . We are also going to decompose the
set Π(ξ) into two subsets Π1(ξ) and Π2(ξ), with r0i and Πi(ξ) matched. We first see how to distinguish between
r01 and r02 .
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The L-indistinguishable class Π(ξj) is equal to Πϕj , where

ϕj : WC/R → LG .

The notation is that of [11]. Suppose ϕj = ψ ◦ ϕ′
j where

ϕ′
j : WC/R → LH

and that π′
∞ lies in Πϕ′

j
. Then

L(s, r ◦ ϕj) = L(s, π∞, r) = L(s, π′
∞, r ◦ ψ) = L(s, r ◦ ψ ◦ ϕ′

j) .

If T (R) is fundamental we may suppose [11] that ϕ′
j takes C× ⊆ WC/R to LT 0 and then

ϕ′
j(z) = zΛ

′
zσΛ

′
, z ∈ C× .

Here Λ′ is one of the Λjω , at least if we use the identification of X∗(T ) with X∗(LT 0) provided by g1, and σ is
the non-trivial element of G(C/R). Λ′ is non-singular and there is exactly one weight µ′ of r0 which lies in the
closure of the Weil chamber opposite to that containing Λ′. Since any other weight µ′′ is of the form ωµ′,

〈Λ′, µ′′〉 = 〈Λ′, µ′′ − µ′〉+ 〈Λ′, µ′〉 > 〈Λ′, µ′〉

if µ′′ �= µ′. Given π′∞ we take r01 to be the representation with µ′ as a weight, and r02 to be the other. Observe
that the labeling depends on the L-indistinguishability class of π′

∞, and hence on the class in Φ(H) represented
by ϕ′

j , but not directly on Λ′.
We now decompose

∏
(ξ) into two subsets

∏1(ξ),
∏2(ξ), matching

∏i(ξ) with ri. Since T (R) is taken to
be fundamental µ is defined by a coweight

µ∨ = h′
0

of T . Here h′
0 is conjugate under G(R) to h0, and if we use g1 as in [16] to introduce an isomorphism

X∗(T )
∼−→X∗(LT 0)

then µ lies in the orbit of µ∨ under the Weyl group. For each j let Λj be an element of {Λjω|ω ∈ Ω(T (C), G(C))}
which is such that it and µ∨ lie in opposing closed Weyl chambers. Since any two choices of Λj lie in the same
orbit under Ω(T (R), G(R)), the representation π(Λj) = πj(µ∨) is well-defined and independent of the choice of
Λj . Every element w of the normalizer of T (C) in G(C) lies in A(T/R) [21] and

w → {aτ = τ(w)w−1 |τ ∈ G(C/R)}

yields an injection
Ω(T (C), G(C))/Ω(T (R), G(R)) ↪→ E(T/R) .

The image is D(T/R), but that does not matter. If ω is represented by w we put π(ω−1Λj) in
∏1(ξ) or in

∏2(ξ)
according as κ({aτ}) is 1 or −1. The assignment does depend on the choice of Λj , but that may be inevitable. I
observe that it is not difficult to see [21] that under the isomorphism

H−1(G(C/R), X∗(T ))
∼−→H1(G(C/R), T (C))

the cocycle {aτ} corresponds to ωµ∨ − µ∨.
One point on which we have insisted when assigning the elements of

∏
(ξ) to the two sets

∏1(ξ) and
∏2(ξ)

is that π(Λj) lie in
∏1(ξ) for each j. In order to justify this we recall the way in which the complex structure on

S(K) is introduced as well as the form suggested by Serre [20] for the local factors Zv(s, S(K), Fξ) in the case of
trivial ξ.
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If K ′
∞ is the centralizer of h′

0 then
G(R)/K ′

∞ � G(R)/K∞

and the complex structure defining that on S(K) is obtained from an imbedding

G(R)/K ′
∞ ↪→ G(C)/P (C)

if P is the parabolic subgroup whose Lie algebra is spanned by those X for which

µ∨(z)X ≡ X or µ∨(z)X = z−1X

for z ∈ GL(1).
We choose the order on the roots of T with respect to which Λj lies in the positive Weyl chamber. Suppose

U is a subspace of L2(G(Q)\G(A)/K) transforming under G(R) according to π(Λj). It is explained in [12] (cf.
also [2]) how to pass from an element of

HomK′∞(Λqg/k′∞, U ⊗ ξ) = ⊕jHomK′∞(Λqg/k′∞, U ⊗ ξj)Nj

to a q-form on S(K) with values in Fξ . Here Nj is the multiplicity with which ξj occurs in ξ. It is easier to work
with

HomK′∞(Λqg/k′∞ ⊗ ξ̃j , U) .

Clearly
g/k′∞ = p+ ⊕ p−

where p+ is spanned by the image of the root vectors associated to noncompact positive roots. The elements of
p− yield holomorphic tangent vectors; those of p+ yield anti-holomorphic tangent vectors. We have

HomK′∞(Λqp+ ⊗ ξ̃j , U) ⊆ HomK′∞(Λqg/k′∞ ⊗ ξ̃j , U) ,

and it is the elements of the first space which yield forms of Hodge type (q, 0).
Let ρP be one-half the sum of the non-compact positive roots and ρK one-half the sum of the compact positive

roots. The space Λqp+ is one-dimensional and transforms under K′
∞ according to the weight 2ρP . The highest

weight of ξ̃j is Λj − ρP − ρK and that of Λqp+⊗ ξ̃j is therefore Λj + ρP − ρK . However, it is a fundamental fact
[5] that the restriction of π(Λj) to K ′∞ has an irreducible component with highest weight Λj + ρP − ρK . Thus

Hom(Λqp+ ⊗ ξ̃j , U) �= 0

and U or π(Λj) contributes cohomology of type (0, q). No other element of
∏
(ξj) does so.

On the other hand, we have written the restriction of ϕ′
j to C× ⊆ WC/R as

z → zΛ
′
zσΛ

′

and we have taken µ′ and Λ′ to lie in opposing Weyl chambers. If ξ is trivial and g′ is one-half the sum of the
roots α for which 〈Λ′, α〉 < 0, then Λ′ = −g′ and

µ′(ϕ′
j(z)) = z−〈g′,µ′〉z−〈σg′,µ′〉 = z2〈g′,µ′〉(zz)−〈g′,µ′〉 .

If q is the dimension of S(K) then
〈g′, µ′〉 = q/2 .

[ Added in proof (November, 1979). It appears that the local zeta-functions at p calculated in this paper are
those associated to ξ̃ and not to ξ. The correct definitions would entail replacing r by its contragredient r̃ and
r(v) by

r̃(v) = r̃1(v) + r̃2(v) ,
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if v is the place of E defined by E ⊆ Q ⊆ C. If α is the composite of

WC/R → WR/R = R×

with the absolute value, then

L(s− q/2, π′
∞, r̃(v) ◦ ϕ) = L(s, α−q/2 ⊗ (r̃(v) ◦ ϕj)) .

The one-dimensional subspace corresponding to the weight −µ′ transforms under the restriction of α−q/2 ⊗
(r̂(v) ◦ ϕj)) to C×, ξ being trivial, according to the character

z−2〈g′,µ′〉 = z−1 ]

We have been led to our labeling by the principle that the π(Λj), as the representations giving rise to forms
of type (0, q), should be matched with the weight −µ′, which yields, when ξ is trivial, the character z → z −q.
One is led to this principle by a suggestion of Serre [20].

If S is a variety over the number field E the factor at infinity of its zeta-function can of course be expressed
in terms of Γ-functions and is a product over the infinite places of E of local zeta-functions. For each place v we
take a corresponding imbedding E ↪→ C and introduce the set S(C) of complex points on

S ⊗E C .

The local zeta-function at the place v may be expressed as∏
i L(s, ρi)

(−1)i

where ρi is a representation of the Weil group WC/Ev
on the cohomology group

Hi(S(C)) = ⊕p+q=iH
p,q(S(C)) .

Here, in order to conform to custom, q loses temporarily its significance as the dimension of S(K). The restriction
of ρi to C× is defined by demanding that ρi(z) act on Hp,q(S(C)) as z−p z−q . If Ev is complex there is nothing
more to be said. If it is real we have to define ρi(w) if w is an element of WC/Ev

which maps to the complex
conjugation in G(C/Ev) and has square −1. When Ev is real, complex conjugation defines an involution ι of
S(C) and an associated map ι∗ on cohomology. We let ρi(w) act on Hp,q(S(C)) as (−1)pι∗.

Now we must bring these puzzling divagations to bear upon some simple examples. Suppose F is a totally
real field and G̃ is the multiplicative group of a quaternion algebra D over F . The split algebra is excluded. Let
A be a connected subgroup of G1 = ResF/QGL(1) which is defined over Q and let G be the inverse image of A

in G̃1 = ResF/QG̃ with respect to the norm.
The group LG is a quotient of(∏

G(Q/F )\G(Q/Q)
GL(2,C)

)
× G(K/Q) = LG0 × G(K/Q)

by a subgroup of the center of LG0, namely by the set of (zσ) for which∏
G(K/F )\G(K/Q)

λσ(zσ) = 1, (λσ) ∈ Y∗,

with Y∗ defined as in §6 of [7]. LT 0 is the image of the diagonal matrices and X∗(LT 0) is

{(aσ, bσ)|aσ, bσ ∈ Z , (λσ) ∈ Y∗ if λσ = aσ + bσ} .
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We have supposed that F ⊆ Q ⊆ C. Then µ will be (µσ) and (µσ) will be 0 unless the imbedding x → σ(x) of
F in C splits D, when it is (1, 0). Observe that (λσ) with λσ equal to 1 if the quaternion algebra splits at σ and 0
otherwise must belong to Y∗. This is to be treated as a condition on A, because µ is determined by D alone.

For such a G and µ we want to present a correct and verifiable expression for Z(s, S(K), Fξ) as a product
of L-functions associated to automorphic forms. Two representations π = ⊗πw and π′ = ⊗π′

w will be said
to be L-indistinguishable if πw and π′

w are L-indistinguishable for all w and equivalent for almost all w. Our
expression for Z(s, S(K), Fξ) will be given as a product over L-indistinguishable classes. We must describe the
contribution from each class.

Suppose that m(π′), the multiplicity with which π ′ occurs in the space of automorphic forms, is constant
within the L-indistinguishability class Π of π. If Πw is the L-indistinguishability class of πw then

� = ⊗w (⊕Πwπ
′
w) = ⊗w�w = �∞ ⊗�f

is a representation which contains each π′ in Π exactly once. We set

m (Π∞) =
∑

π∞∈Π∞

trace π∞(fξ)

provided
π∞(z) = ν−1(z)I, z ∈ Z(R),

for one, and hence all elements of Π∞. Otherwise m(Π∞) is to be 0. m(Π∞) is well-defined, and is easily seen to
be 0, or −1 when ξ is absolutely irreducible. Let m(Πf ) be the multiplicity with which the trivial representation
of K occurs in �f ; and let m(Π) be m(π). The contribution of the class Π to the zeta-function is

L(s− q/2, π, r)m(Π)m(Π∞)m(Πf ) .

If m(π′) is not constant within Π there is a Cartan subgroup T of G with

(1.3) [E(T/A),E(T/F )] = 2

and a character θ of T (Q)\T (A) such that Π = Π(θ) [7]. Let γ → γ be the automorphism of T (A) deduced from
conjugation on the corresponding quadratic field, and define θ̄ by

θ̄(γ) = θ(γ) .

We suppose not only that T satisfies (1.3) but also that T (R) is fundamental and that θ �= θ̄ for otherwise
m(Π∞) = 0 and the L-indistinguishability class Π does not contribute to the zeta-function.

We introduce S0 ⊆ S as in §8 of [7], or as in [22]. Then S0\S is of order two. Let ε represent the non-trivial
element. As we know, ε is associated to

κ′: X∗(Tsc) → C× .

Let 〈ε, π∞〉 be the pairing of [7]. It is easily seen that there is a constant η = ±1 such that

(−1)i−1 = η 〈ε, π∞〉 , π∞ ∈
i∏
(ξ) .

The reason can be briefly given. In SL(2) over R we take

T =
{(

a b
−b a

)∣∣∣∣ a2 + b2 = 1
}

.
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The non-trivial element of the normalizer of T is represented by(
i 0
0 −i

)
in SL(2,C) and by (

1 0
0 −1

)
in GL(2,R). The cocycle associated to the first matrix is

a1 =
(
1 0
0 1

)
, aσ =

(−1 0
0 −1

)
,

and the determinant of the second is −1. Thus 〈ε, π∞〉 is constant on each Πi∞.
Πf is of course the set of πf for which π∞ ⊗ πf lies in Π for some π∞. If πf = ⊗πw set

〈ε, πf 〉 =
∏
w

〈ε, πw〉 .

Let
Πif = {πf ∈ Πf | 〈ε, π∞〉 〈ε, πf 〉 = 1 for π∞ ∈ Πi∞}

and let mi(Πf ) be the multiplicity with which the trivial representation of K occurs in

�i
f = ⊕Πf∈Πi

f
πf .

Let m′(θ) be 0 unless Π(θ∞) is contained in a Π(ξj), when it is to be (−1)qN j . Recall that N j is the
multiplicity with which ξj occurs in ξ. On the set of π ∈ Π for which m(π) > 0, m(π) is constant. Denote this
constant value by m(Π). When m(Π) is not constant on all of Π the contribution of Π = Π(θ) to the zeta-function
Z(s, S(K), Fξ) is

(1.4)
∏

π
L(s− q/2, θ, ri)m

′(θ∞)mi(Πf )m(Π) .

We should recall that although the collection {ri} is the same for all θ∞ the labeling may vary. Moreover

m′(θ∞) = m(Π∞) .

If im(π) is not constant on Π then the stable multiplicity n(π), which we also write as n(Π), introduced in
[7] is m(Π)/2 and (1.4) may be written as

L(s− q/2, π, r)n(Π)m(Π∞)m(Πf)

{
L(s− q/2, θ, r1)
L(s− q/2, θ, r2)

}(m(Π∞)/2)(m1(Πf )−m2(Πf ))m(Π)

if

m(Πf ) = m1(Πf ) + m2(Πf )

If, perchance, there is only one ri we must as above introduce a second of dimension 0 in order to employ this
notation. When m(π) is constant on Π we define

m1(Πf )− m2(Π2) = 0 .
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If m(π) is constant on Π then m(Π) = n(Π). Thus we are asserting that the zeta-function Z(s, S(K), Fξ) can
be presented as the product of a stable part

(1.5)
∏

Π
L(s− q/2, π, r)n(Π)n(Π∞)m(Πf )

and a labile part. The labile part is itself a product over the stable conjugacy classes of Cartan subgroups T with
[E(T/A): ImE(T/F )] = 2. We want to represent the labile contribution from T as a product over characters
of T (Q)\T (A), but we must rememvber that two different θ̄ can yield the same L-indistinguishable class Π(θ).
Since m(Π∞) will be 0 if θ is not of type (a) in the sense of [7] and since m1(Πf )−m2(Πf ) will be 0 if θv = θ̄v for
some finite v, we may apply Lemmas 6.7 and 7.1 of [7]. They allow us to write, in the notation of that paper,

m(Π) =
e(π)
2

µ(T ) .

Since e(π) is hte number of different θ yielding the same Π(θ), the contribution from T is

(1.6) Πθ

(
L(s− q/2, θ, r1)
L(s− 1/2, θ, r2)

)(m(Π∞)/4)(m1(Πf (θ))−m2(Πf (θ)))µ(T )

To prove the assertion one proves, in particular, that if we substitute Lp(s − q/2, π, r) for L(s − q/2, π, r)
in (1.5) and Lp(s − q/2, θ, ri) for L(s − q/2, θ, ri) in (1.6) and take the product with the same exponents then
the result is Zp(s, S(K), Fξ). We shall take K sufficiently small, and prove that this is so for almost all p. The
restriction on K is ultimately of no consequence.

Before beginning I take this opportunity to mention that while studying the problems arising from Shimura
varieties I have frequently been instructed by Deligne’s conversation and correspondence., His comments on the
structure of the set of geometric points over F p on a Shimura variety associated to a quaternion algebra over a
real quadratic field were invaluable.

2. The trace formula.

The procedure to be followed is that of [12] and [14]. We apply the trace formula to calculate the coefficients
of the logarithms of the products in (1.5) and (1.6), and then compare with the coefficients of the logarithm of the
zeta-function, which are obtained from the explicit description of the sets S(κ̄p).

We first turn our attention to the problem of expressing the logarithms of (1.5) and (1.6) in a form suitable
for the final comparison. The expressions both are defined for all ξ, whether defined over Q or not. Since they
are multiplicative in ξ, we may as well suppose that ξ is absolutely reducible, for that will simplify some of
our considerations. The logarithm of (1.6) demands the most modification, and we begin with it. We are really
interested in the logarithm of the product of the local L-functions at p, and it is

(2.1) µ(T )
∑
θ

m(
∏

∞(θ))
4

(
m1(Πf (θ))− m2(Πf (θ))

)× log Lp(s− q/2, θ, r1 − r2) .

The first step in the transformation of this expression leads to a clumsy, intermediate result, which we will be able
to put in a useful form only after applying the trace formula to the group T .

In its role as carrier of θ, T is appearing as one of the groups H of [16]. This means in particular that the
element g1 of that note, which allows us to identify X∗(T ) with X∗(LT 0), is fixed. Moreover it is fixed in a
manner consonant with the remarks at the end of that paper. Then, as in the discussion at the end of §6 of [7], the
given g1 leads to

ψ: LT → LG .

The map ψ was denoted ξ in [16].
The following lemma has been implicit in the earlier discussion, and may seem to be a matter of definition,

but so far as I can see it needs a proof.
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Lemma 2.1. Suppose ϕ′: WC/R → LT , ϕ is ψ ◦ ϕ′, and θ∞ ∈ Πϕ′ . Then Πϕ′ = {θ∞} and

Πϕ = Π(θ∞) .

That Πϕ′ consists of the single element θ∞ does indeed follow from the definitions of [11], which show in
addition that is enough to verify the equality Πϕ = Π(θ∞) when T is not split and G = GL(2). In this case, one
must compare the definitions of [5] and [11].

In general the explicit description of LG in [7] gives LT 0 as a quotient of the group matrices(
α1 0
0 β1

)
× . . .×

(
αn 0
0 βn

)
, αi, βi ∈ C× .

The co-weights are given by n pairs of integers, (ai, bi), and the co-weight is positive if and only if ai ≥ bi for all i.
Taking T to be non-split and G to be GL(2), we let

ϕ′: z →
(
za zb 0
0 zb za

)
, z ∈ C× .

It is easily verified that the class of ϕ′ is determined by its restriction to C×. Let γ1 and γ2 be the co-weights (1, 0)
and (0, 1) of LT 0. They are also weights of T . The definition of [11] gives

θ∞: t → γ1(t)aγ1(t)b, t ∈ T (R),

as the unique element of Πϕ′ . Note that γ1(t) = γ2(t) when t ∈ T (R).
Πϕ also consists of a single element. If a = b then ϕ factors through WC/R → WR/R → R× and, in terms of

R×,

ϕ: x →
( |x|a 0

0 (sgnx)|x|a
)

.

The unique element of Πϕ is the representation of the principal series corresponding to the two characters of R×

appearing here. According to the remark preceding Corollary 5.14 of [6], this is also π(θ∞).
If a �= b then Πϕ consists of a representation π in the discrete series. It does not change if a and b are

interchanged. It will be simpler to be explicit if we assume a > b. According to the definitions of §3 of [11], the
character of π on T (R), viewed now as a subset of G(R), is

− {γ1(t)a−1/2γ1(t)b+1/2 − γ2(t)a−1/2γ2(t)b+1/2γ2(t)γ
−1
1 (t)}

1− γ2(t)γ−1
2 (t)

.

This may be written as

− γ2(t)
|γ2(t)|

∑
ω∈Ω(T (C),G(C)) sgnωθ

0
∞(ω(t))

1− γ2(t)γ−1
1 (t)

(2.2)

It follows from Corollary 5.14 of [6] that if µ1 and µ2 are the two characters of R× defined by

µ1(x) = |x|a, µ2(x) = |x|b(sgnx)a−b+1 ,

then the character of π(θ∞) on T (R) is the negative of the character of the finite-dimensional representation
π(µ1, π2). Lemma 5.7 of [6] allows one to compute easily the character of π(µ1, µ2) on T (R), and it is seen to
equal the negative of (2.2).

For the purposes of the following corollary and lemma we choose an order on roots of T with respect to
which µ∨ lies in the closed negative Weyl chamber. Otherwise we use the customary parameters to represent
roots and weights. For example, let ζ be the weight, dominant with respect to this order, represented by

ζ = (1, 0)× . . .× (1, 0) .
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Let λ be the highest weight of ξ and set

θ0∞(t) = λ(t)(ζ(t)/|ζ(t)|) .

Corollary 2.2. Π(θ∞) is Π(ξ) if and only if θ∞ is conjugate under Ω(T (C), G(C)) to θ0∞.

Once again it is enough to verify the assertion for G = GL(2). Then
∏
(ξ) consists of a single element π and

on T (R) the character of π is
t → −trace ξ̃(t) .

If λ = (a, b), a > b, this is

− γ1(t)aγ2(t)b − γ1(t)bγ2(t)aγ2(t)γ−1
1 (t)

1− γ2(t)γ−1
1 (t)

.

Since γ1(t) = γ2(t), this is equal to

− γ2(t)
|γ2(t)|

∑
ω sgnωθ

0
∞(ω(t))

1− γ2(t)γ−1
1 (t)

.

Comparing this with (2.2), we obtain the corollary.
It will be useful to have the following lemma on record.

Lemma 2.3. Let Λ ∈ {Λω} be λ + g, wehre g is one-half the sum of the positive roots. If ϕ′: WC/R → LT

and its restriction to C× is

z → zΛ zσΛ

then ∏
ϕ′ = {θ0∞} .

We may write an element of T (R) as t = eH with σ(H) = H . The unique element of Πϕ′ takes t to

eΛ(H) = eλ(H)eg(H) .

Since

λ(t) = eλ(H)

we need only verify that

eg(H) = ζ(t)/|ζ(t)| .
It is enough to do this when G = GL(2). If

γ1(H) = z , γ2(H) = z

then

γ1(t) = ez , γ2(t) = ez

and

eg(H) = ez/2−z/2 = ez/|ez| = ζ(t)/|ζ(t)| .

We know that T is associated to a quadratic extension L of F . if L is not totally imaginary then m(Π(θ∞))
is 0 for all characters of T (Q)\T (A); hence the product (1.6) is equal to 1, and of no interest. Suppose that L is
totally imaginary, and let κ be the associated character of IF . It is also a character of Z(A) and Z(R). We set
m(θ∞) equal to 0 unless the restriction of θ∞ to Z(R) is

z → ν−1(z)κ(z) ,
and then we take
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m(θ∞) =
∫
Z(R)/T (R)

θ∞(t)fTξ (t)dt

with

fTξ (t) = (−1)q
∑

Ω(T (C),G(C)) sgnωθ
0∞(ω(t−1))

measZ(R)\T (R)
.

Lemma 2.4. The number m(θ∞) is 0 if and only if m(Π(θ∞)) is 0, and m(Π(θ∞)) is not 0 if and only if
Π(θ∞) is Π(ξ). If θ∞(t) ≡ θ0∞(ω(t)) then

m(θ∞) = sgnωm(Π(θ∞)) .

The first assertion is a consequence of the Weyl integration formula, and the explicit formula for the restriction
of ∑

π∈Q(θ∞)

χπ

to T (R). The same formulae also show that m(Π(ξ)) = (−1)q. It is clear that m(θ∞) has been so defined that

m(θ∞) = (−1)qsgnω
when

θ∞(t) ≡ θ0∞(ω(t)) .

If m(Π(θ∞)) is 0 the corresponding factor of (1.6) is 1, and there is nothing to be said. Suppose therefore that
Π(θ∞) = Π(ξ). Then Πi∞ =

∏i(ξ) may be introduced. We have agreed that Π1
∞ will contain the representation

π(Λ1). Let φ be the characteristic function of K ⊆ G(Af ) divided by the measure of ZK\K with

ZK = Z(Af ) ∩K .

We are supposing that
[E(T/A)ImE(T/Q)] = 2 ,

and we regard κ as the non-trivial character of this quotient. Following §2 of [7], we set ΦT/κ(t, φ) equal to{∏
v

(
λ(Lv/Fv, ψv)κv

( t1 − t2
t01 − t02

) |(t1 − t2)2|v1/2
|t1t2|1/2v

)}
×
{ ∑

C(T/Af )

κ(δ)Φδ(t, φ)
}

.

Here the product is over all finite places of F . If δ is represented by h in A(T/Af ) =
∏
w A(T/Aw), the product

now being taken over all finite places of Q, then

Φδ(t, φ) =
∫
Th(Af )G\(Af )

φ(g−1thg)dg .

It is a consequence of the definitions and principles of [7] that if π∞ ∈ Π1
∞ then

〈ε, π∞〉 {m1(Πf (θ))− m2(Πf (θ))}
is equal to ∫

ZK\T (Af )

θf (t)ΦT/κ(t, φ)dt =
〈
θf ,ΦT/κ( · , φ)

〉
.

It should not be forgotten that the pairing 〈ε, π∞〉 depends on θ∞. The representations r1 and r2 do also. In
order to have a pair of representations that do not depend on θ∞, we let r+ be that ri for which Xi contains µ∨,
and r− the other. If θ∞ = θ0∞, then Lemma 2.3 implies that

r1 − r2 = r+ − r− .
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In general if θ∞(t) = θ0∞(ω−1(t)) then {θ∞} = Πϕ′ if ϕ′ restricted to C× is

z → zωΛ zσωΛ .

Since
〈ωΛ, ωµ∨〉 = 〈Λ, µ∨〉 ,

the labeling must be such that r01 contains the weight ωµ∨. Thus

r1 − r2 = κ′(ωµ∨ − µ∨)(r+ − r−) .

In order to stress its dependence on θ∞, rather than on ω, we denote the coefficient κ′(ωµ−µ) appearing here by
η(θ∞).

Lemma 2.5. If we take θ∞(t) = θ0∞(ω(t)) then

α = 〈ε, π∞〉 η(θ∞)sgnω ,

with π∞ ∈ ∏1
∞, is independent of ω.

Before verifying the lemma, we observe that the pairing 〈ε, π∞〉 depends not only on θ∞ but also on the
choice of an additive character and a regular element in T (R). Eventually we will be forced to recognize this, but
not yet.

To prove the lemma we show thatα does not change ifω is replaced byω′ω, whereω′ is the reflection defined
by a simple root. For each real place of F there is one such reflection.

a) If the division algebra definingG is not split at the place then, according to the definitions of [7], replacing
ω by ω′ω changes the sign of 〈ε, π∞〉. It does not affect η(θ∞).

b) If the division algebra splits at the place then 〈ε, π∞〉 remains the same but η(θ∞) changes sign.

Putting all these lemmas together, we conclude that the sum (2.1) is equal to

(2.3)
1
4
αµ(T )

∑
θ

m(θ∞)
〈
θf ,ΦT/κ( · , φ)

〉
log Lp(s− q/2, θ, r+ − r−) .

The sum here is taken over those θ for which

θ(z) = ν−1(z)κ(z), z ∈ Z(R),

θ(z) = κ(z), z ∈ ZK .

If we are to put (2.3) in a form to which the trace formula can be applied, we must view the Hecke algebra
in the manner of [9]. We are now going to assume that K = KpKp, where Kp ⊆ G(Ap

f ) and Kp is a special
maximal compact of G(Ap). According to §2 of [7]

ΦT/κ(φ) = 0

unless L is unramified at every place of F dividing p. This we may as well assume. We also assume that F is
itself unramified over p. Then 〈

θf ,ΦT/κ( · , φ)
〉
= 0

unless θp, the restriction of θ to T (Qp), is unramified. To such a θp is associated a conjugacy class {t(θp)} in LT ,
and

log Lp(s− q/2, θ, r+ − r−) =
∞∑
j=1

(|�j |s−q/2/j){trace r+(tj(θp))− trace r−(tj(θp))
}
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if � is a uniformizing parameter for Qp. In addition there is an element f jp of the Hecke algebra of T (Qp) such
that

|�j |−q/2 {trace r+(tj(θp))− trace r−(tj(θp))
}
=
∫
ZpT\(Q

p
)

θp(t)f
j
p(t)dt

for all unramified θp. Here
Zp = Z(Qp) ∩Kp .

If t = (tp, tp) ∈ T (Af ) = T (Ap
f )T (Qp), we write

φ(t) = φp(tp)φp(tp) ,

where, for example, φp is the characteristic function of Kp divided by the measure of Zp\Kp. We may also write

ΦT/κ(t, φ) = ΦT/κ(tp, φp)ΦT/κ(tp, φp) .

For brevity we denote the second factor by ϕp(tp). It is +1 times the characteristic function of the maximal
compact Up of T (Qp) divided by the measure of Zp\Up.

Applying the trace formula on Z(R)ZKT (Q)\T (A) to the function

t = (t∞, tp, tp) → fTξ (t∞)φT/κ(tp, φp)ϕ∗
pf

j
p(tp) ,

we see that the coefficient of |�j |s/j in the expansion of (2.3) is

(2.4)
αµ(T )

2
meas(Z(R)ZKT (Q)\T (A))

∑
fTξ (t)Φ

T/κ(t, φp)ϕ∗
pf

j
p(t) .

The sum is over T (Q) ∩ Z(R)ZK\T (Q).
The first thing to observe is that the term corresponding to a t in Z(Q) is 0 because fTξ vanishes on Z(R). If

t is not central we write ΦT/κ(T, φp) as the product of

ΦT/κ0 (t, φp) =
∑

E(Ap
f )

κ(δ)Φδ(t, φ)

and ∏
λ(Lv/Fv, φv)κv

(
t1 − t2
t01 − t02

) |(t1 − t2)2|1/2v

|t1t2|1/2v

.

The product is over all finite places of F which do not divide p. Using various product formulae, we may replace
it by the inverse of the same product taken over the infinite primes and the primes dividing p.

The expression

(2.5) α

{∏
λ(Lv/Fv, ψv)κv

(
t1 − t2
t01 − t02

) |(t1 − t2)2|1/2v

|t1t2|1/2v

}−1
fTξ (t) ,

in which the product is taken over the infinite places, depends on t and on µ∨, but it does not depend on the
choice of t0 or of the ψv.
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Lemma 2.6. If t lies in T (R) and is regular then the expression (2.5) is equal to

trace ξ(t)
meas Z(R)\T (R)

.

It is clear that we could define the expression (2.5) for any group lying between∏
v
Sv(R) ,

and

{(gv) ∈
∏

v
Gv(R)|

∏
v
Nm gv > 0} .

Here the product is over the infinite places of F . Gv(R) is GL(2,R) if the quaternion algebra defining G splits at
v and the multiplicative group of a quaternion algebra of it does not. Sv(R) consists of the elements of norm 1 in
Gv(R). It is certainly enough to prove the lemma for the largest of these groups. Since the group{

(gv) ∈
∏

v
Gv(R)|det gv > 0 for all v

}
contains T (R) and supports the character of ψ∞, we may work with it instead. This yields a situation that factors,
and we may finally suppose that there is only one place.

We take the additive character ψv to be x → e2πix and define t0 by

t01 = γ1(t0) = i .

We choose γ1, γ2 so that γ1 − γ2 and µ∨ lie in opposite Weyl chambers, and set

t1 = γ1(t) = reiθ .

According to [10],
λ(Ev/Fv, ψv) = i .

Thus

λ(Ev/Fv, ψv)κ
(
t1 − t2
t01 − t02

) |(t1 − t2)2|1/2v

|t1t2|1/2 = eiθ − e−tθ .

If D does not split and ω is the non-trivial element of the Weyl group,

θ0∞(t)− θ0∞(ω(t))
eiθ − e−iθ

=
λ(t)eiθ − λ(ω(t))e−iθ

eiθ − e−iθ
= trace π∞(t) .

Consequently the value of 〈ε, π∞〉, defined with respect to θ0∞, is −1. Since η(θ∞) is clearly also 1, the value of α
is 1. Since π∞ is ξ̃ in this case, the assertion of the lemma now follows from the definition of fTξ .

Suppose D splits at v. There is a unique element π∞ in Π1(ξ) and it contains a lowest weight of T (R) with
respect to the order making γ1 − γ2 positive. The character of π∞ is easily calculated and is found to be

−θ0∞(t)/(eiθ − e−iθ) .

If π̃∞ is the corresponding element of the holomorphic discrete series, then

χπ∞(t)− χeπ∞(t) = −θ0∞(t) + θ0∞(ω(t))
eiθ − e−iθ

.

As a consequence
〈ε, π∞〉 = 1 .
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Since η(θ0∞) = 1, the number α is −1. Once again, the assertion of the lemma follows from the definition of f Tξ .
The expression

(2.6)
{∏

v|p λ(Lv/Fv, ψv)κv

(
t1 − t2
t01 − t02

) |(t1 − t2)2|1/2v

|t1t2|1/2v

}−1
ϕ∗

pf
j
p(t)

depends on the regular element t in T (Qp) and on the order on the roots of T provided by the identification
of X∗(T ) and X∗(LT 0). It is easily seen that r0, the restriction to LT 0 × G(Q/E) of the representation of
LG0 × G(Q)/E) that appeared in the construction of r, is the direct sum of two representations r+0 and r−0 such
that

r+ = Ind(LT, LT 0 × G(Q/E), r+0 )

r− = Ind(LT, LT 0 × G(Q/E), r−0 ) .

The restriction of r+ or r− to the local associate group LTp = LT 0 × G(Qp/Qp) is therefore the direct sum of
induced representations parametrized by the double coset space

G(Q/E)\G(Q/Q)/G(Qp/Qp) .

We had fixed E ⊆ Q ⊆ C and we have now fixed Q → Qp as well. This double coset space also indexes the
primes p of E dividing p, the coset containing σ yielding the valuation defined by the imbedding x → σ−1(x) of
E in Qp. We write

r+ = ⊕r+p r− = ⊕r−p

and define f jp in the Hecke algebra by

|�j |−q/2{trace r+p (tj(θp))− trace r−p (tj(θp))} =
∫
Zp/T (Qp)

θp(t)f
j
p(t)dt .

Then

f jp =
∑

p
f jp .

The representation of f jp as a sum yields a representation of (2.6) as a sum, the terms being obtained by
replacing f jp with f jp . Although we should consider each of them, there is no loss of generality in fixing our
attention on the prime p defined by the imbedding E → Q → Qp.

The group G(F ) is a subgroup of G̃1(F ), if G̃1 = ResF/QGL(2), and LG0 is a quotient of LG̃0
1. Let T̃1 be

the centralizer of T in G̃1, and then LT 0 is a quotient of LT̃ 0
1 . If Ũp and Up are the maximal compact subgroups

of T̃1(Qp) and of T (Qp) we may define an imbedding f → f ′ of the Hecke algebra Hp(T ) of T (Qp) into Hp(T̃1).
The value of f ′ at t is 0 unless t = su with u ∈ Ũp and s ∈ T (Qp) and then

f ′(t) =
measUp

meas Ũp

f(s) .

If we take LT and LT̃1 to be LT 0×G(Qun
p /Qp) and LT̃ 0

1 ×GQun
p /(Qp), then Hp(T ) and Hp(T̃1) may be regarded

as algebras of funcitons on LT 0 ×Φp and LT̃ 0
1 × Φp, with Φp being the Frobenius. The map f → f ′ may also be

obtained by pulling back functions by means of

LT̃ 0
1 × Φp → LT 0 × Φp .

The representations r+p and r−p may be lifted to LT , and it will be advantageous for us to regard f jp as an element
of Hp(T̃1).
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We have supposed that the totally real field used to define G is imbedded in Q and hence in C and Qp. The
set

Q = G(Q/F )\G(Q/Q)

parametrizes the imbeddings of F in R ⊆ C and in Qp. We represent it as a set of crosses and circles, the crosses
denoting the infinite places at which the quaternion algebra defining G splits.

©× . . .×© . . .×
We decompose the set into orbits under Φp, and suppose that the action of Φp on each orbit is by a cyclic shift to
the right × . . .©︸ ︷︷ ︸

Qv1

©× . . .×︸ ︷︷ ︸
Qv2

. . .

Let nv be the number of elements in the vth orbit. Then∑
nv = n = [F : Q] .

We let mv be the number of points in the vth orbit which are marked by a cross. The orbits also parametrize the
places of F dividing ρ, and so we may label an orbit by the place it defines. That is why we have chosen the
symbol v.

Over Qp

T̃1 �
∏
v|p

Tv

with

Tv(Qp) = L×
v

if

Lv = L⊗F Fv .

Thus Hp(T̃1) � ⊗vHp(Tv).
Since t = t(θp) ∈ LT 0 × Φp and r+p and r−p are induced,

trace r+p (tj)− trace r−p (tj) = 0

if j is not divisible by k = [Ep : Qp]. Consequently f jp is then to be 0. Let t = a× Φp with a ∈ LT 0. Then

tk = aΦp(a) . . .Φk−1p (a)× Φkp
and

Φpt
kΦ−1

p = a−1tka

is conjugate under LG0 to gk. Hence if k|j

trace r+p (tj)− trace r−p (tj) = [Ep : Qp]{trace r+0 (tj)− trace r−0 (t
j)} .

The representations r+0 and r−0 are, for the present purposes, to be treated as representations of LT 0×G(Qun
p /Ep)

or of LT̃ 0
1 × G(Qun

p /Ep). For each i in Q, let γi1, γi2 be the weights of LT̃ 0
1 or of LT given by

γi1 = (0, 0)× . . .× (0, 0)× (1, 0)× (0, 0)× . . .× (0, 0),

γi2 = (0, 0)× . . .× (0, 0)× (0, 1)× (0, 0)× . . .× (0, 0) .
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There is one non-zero factor and it is at the ith place. For the moment we will not be too concerned about which
order makes the roots γi1−γi2 positive. We take it to be that coming from the identification ofX∗(T ) andX∗(LT 0).

Let Q ⊆ Q be the set of marked spots. It is easily seen that

(2.7) r+0 − r−0 = +⊗i∈Q (γi1 − γi2)

on LT̃ 0
1 . To examine this difference on LT̃ 0

1 × G(Qun
p /Qp) we must not only describe r0 on LG0 × G(Q/E) but

also explicitly describe the lifting of ψ: LT → LG to ψ̄1: LT̃1 → LG̃1.
We lift r0 and regard it as a representation of LG̃0

1 × G(Q/E). The group LG̃0
1 is a product∏

i∈QGL(2,C) .

Let ri be the representation obtained by projecting on the ith factor and then taking the standard representation
of GL(2,C) on the space Xi of column vectors of length two. The restriction of r0 to LG̃0

1 is

⊗i∈Q ri ,

acting on

⊗i∈Q X i .

Recall that Q is a homogeneous space on which G(Q/Q) acts to the right. By its definition G(Q/E) consists of
those elements of G(Q/Q) that leave E invariant. If σ ∈ G(Q/E) then

r0(σ): ⊗i∈Q xi → ⊗i∈Q xi
σ

.

On LT̃ 0
1 the homomorphism ψ̄1 is easily described. It takes

t →
∏

i∈Q

(
γi1(t) 0

0 γi2(t)

)
.

To define it explicitly on LT̃1 we need to choose a set of representatives zi for the cosets in Q. If we examine the
constructions in [16], we see that this entails choosing g1 correctly, but we are in fact allowed to choose g1 anew
continually. We let

τiσ = dτi(σ)τj , dτi(σ) ∈ G(Q/F ) .
Set

a(ρ) =


(
1 0
0 1

)
, ρ ∈ G(Q/L),(

0 1
1 0

)
, ρ ∈ G(Q/F ), ρ /∈ G(Q/L) .

Then

ψ̄1(σ) =
∏

i
a(di(σ)) × σ .

Lemma 2.7. The function f jp is 0 if for some v0 the algebra Lv0 = L ⊗F Fv0 is a field and Qv0 has marked
points.

We may suppose that [Ep : Qp] divides j. Let lv be the greatest common divisor of nv and j. Up to

equivalence the representation r0 and the representations r+0 and r−0 , as representations of LT̃1, do not depend
on the choice of coset representatives. In an orbit under ρ = Φjp we take the representatives to be

τ, τρ, τρ2, . . . , τρev−1, ev = nv/lv .

Then
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dτρi(ρ) =
{
1, 0� i < ev − 1,
τρev τ−1, i = ev − 1 .

Certainly
τρev τ−1 = τΦnvj/lv

p τ−1

is the Frobenius over Fv to the power j/lv. If Lv is a field, then it is quadratic over Fv and, with the assumption
under which we are working at present, unramified. Thus τρev τ−1 lies in G(Q/L) if and only if 2|j/lv.

Let {xi1, xi2} be the standard basis of Xi. The collection

⊗i∈Q xij(i), j(i) = 1, 2

is a basis for the space in which r0 acts. The representation r+0 acts on the span of those elements for which

(−1)
P

i∈Q
j(i) = ±(−1)|Q| ,

and r−0 on the span of the other elements. The sign is determined by (2.7). It is clear that r0(Φ
j
p) permutes the

basis elements amongst themselves, and that the element indexed by {j(i)} is fixed if and only if j(i) is constant
on orbits of Φjp and

a(τρev τ−1) =
(
1 0
0 1 .

)
Since each basis element is an eigenvector for LT̃ 0

1 , we have

trace r+0 (t
j) = trace r−0 (t

j) = 0,
and

trace r+0 (t
j)− trace r−0 (t

j) = 0,

if 2lv0 does not divide j and t = a× Φp, a ∈ LT̃ 0
1 . Thus in this case at least, f jp = 0.

We now suppose that 2lv0 divides j, and make a different choice of coset representatives. We take the
representatives of the cosets in Qv to be of the form

τ, τΦp, . . . , τΦnv−1
p .

If ρ = Φp then

dτρi(ρ) =
{ 1, 0� i < nv − 1,

τρnv τ−1, i = nv − 1 .

It helps to picture Qv as
lv

××© . . .×××© . . .×© . . .

There are lv orbits under Φjp and each orbit consists entirely of marked or entirely of unmarked points. If kv is
the number of marked orbits then

mv/kv = nv/lv .

We may write
r+0 (t

j)− r−0 (t
j) = ±⊗z (r+z (t

j)− r−z (t
j)) .

The tensor product is taken over the marked orbits and the meaning of r+z (tj) and r−z (tj) is, I hope, clear. We
show that

trace r+z (t
j) = trace r−z (t

j)

if z ∈ Qv0 .
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All our calculations will be within Qv0 . So we may as well take the indices of the points in this set to be
1, . . . , nv0 , agreeing that indices in the formulae to follow are to be read modulo nv0 . If tj = b× Φjp, then

γie(b) = γie(a)γ
i+1
e (a) . . . γnv0

e (a)γnv0+1

e′ (a) . . . γ2nv0
e′ (a)γ2nv0+1

e (a) . . .

Here e′ �= e, and the subscripts, except perhaps at the beginning and end, appear in blocks of length nv0 . There
are exactly two vectors of the form

⊗i∈zxij(i)

fixed by Φjp, but since we have chosen a new set of coset representations the subscripts j(i) are no longer constant.
At all events,

trace r+z (t
j)− trace r−z (t

j) =
(∏

i∈z γ
i
j(i)(b)−

∏
i∈z γ

i
j′(i)(b)

)
.

Since

Φp(b) = a−1bΦjp(a),
the character

a →
∏

i∈z γ
i
j(i)(b)

is invariant under Φp. It is therefore a power of

a → γ11(a) . . . γ
nv0
1 (a)γ12(a) . . . γ

nv0
2 (a) ,

and the power must clearly be
jnv0

2nv0 lv0
=

j

2lv0
.

We conclude that ∏
i∈z γ

i
j(i)(b) =

∏
i∈z γ

i
j′(t)(b) .

The lemma follows.
Our purpose has been to find an explicit expression for (2.6), with f jp replacing f jp , when every prime of F

dividing p is unramified inL. We are still not finished, but we have shown that it is 0 unless v splits in Lwhenever
Qv contains a marked point. If we pass from Hp(T ) to Hp(T̃1) we replace ϕp by ϕ′

p and ϕ′
p is a product

ϕ′
p(t) =

∏
v
ϕv(tv)

if t = (tv), tv ∈ Tv(Qp). The expression

(2.8) λ(Lv/Fv, ψv)κv

(
tv1 − tv2
t01 − t02

)
ϕv(tv)

does not depend on the choice of t0 or of ψv. For lack of space, the image of the global element t0 in Tv(Qp) is
also denoted t0.

Lemma 2.8. Let Uv be the maximal compact subgroup of Tv(Qp) and let δv be the characteristic function of
Uv divided by its measure. If v splits in L then (2.8) is equal to δv(tv). If v does not split and Uv and Kp

are contained in a common maximal subgroup of G̃1(Qp), then (2.8) is equal to δv(tv) if the order of tv1 − tv2
in Lv is even and to −δv(tv) if the order of tv1 − tv2 in Lv is odd.

The assertion pertaining to split v is clear. If v is not split we take ψv to be such that the largest ideal on
which it is trivial is the ring of integers of Fv and we take t0 to be such that t01 − t02 is a unit in Lv. Then

λ(Lv/F, ψv) = 1
and
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κv

(
tv1 − tv2
t01 − t02

)
is 1 when the order of tv1 − tv2 is even and −1 when it is odd. However, it is observed after the proof of Lemma
2.2 of [7] that with these choices of ψv and t0, and the assumption that Uv and Kp are contained in a common
maximal compact subgroup K̃p of G̃1(Qp), the function

ϕv(t) = ΦTv/κv (t, φv)

is the characteristic function of Uv divided by its measure. Here we write

K̃p =
∏

v
Kv

and take φv to be the characteristic function of Kv divided by its measure.
We return to the functions f jp , which we regard as elements of

Hp(T̃1) � ⊗vHp(Tv) .

We suppose now that Qv contains no marked points if v does not split in L. If we regard r+0 and r−0 as
representations of the associate group of T̃1 over Qp then we may factor r+0 and r−0 as a tensor product

⊗v|p(r+v − r−v ) .

In order to specify r+v and r−v conveniently we choose the γ i1 and γi2 in such a manner that all of the γi1 − γi2 are
positive with respect to an order that puts µ∨ in the closed negative Weyl chamber. This is a choice that refers
only to T and not to the identification of X∗(T̃1) and X∗(LT̃1).

If Qv contains no marked points then r+v is the trivial one-dimensional representation and r−v is zero-
dimensional. If v splits in L then r+v ⊕ r−v acts on the span of

⊗i∈Qv
xij(i) .

The action of Φp = σ sends
⊗i∈Qv

xij(i) → ⊗i∈Qv
xij(iσ)

and a ∈ LT̃ 0
1 acts as

⊗xij(i) →
(∏

i∈Qv

γij(i)(a)
)(

⊗xij(i)

)
.

If we write

µ∨ =
∑

µv
∨,

then

µv =
∑

i∈Qv

γi2 .

The vector ⊗xij(i) lies in the space of r+v or r−v according as (−1)
P
j(i) is 1 or −1.

The following lemma is in any case clear.
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Lemma 2.9. The function f jp is a product
∏

f jp,v with f jp,v in Hp(Tv).

In order to save on subscripts we suppose for the purposes of describing the fjp,v that p remains prime in F
and that F splits in L. This allows us to drop the v when we choose.

Suppose µ is a weight of r+0 + r−0 . Then there is a partition of Q into two disjoint subsets Q ′ and Q ′′ with
m′ and m′′ elements respectively, and

µ =
∑

i∈Q ′ γ
i
2 +

∑
i∈Q ′′ γ

i
1 .

Moreover m′ + m′′ = m (= mv). Let
δe =

∑
i∈Q γie

and set
ν = m′δ2 + m′′δ1 .

If kp is a large unramified Galois extension of Qp then

Nmkp/Qp
µ = [kp : Qp]ν/n .

We set
β(ν) = κ(µ− µ∨) = (−1)k

′′
.

Lemma 2.10. Suppose there is only one prime v of F dividing p and that it splits in L. Let n = nv, l = lv,
k = kv. If j|[Ep : Qp] and t = a× Φp then

trace r+0 (t
j)− trace r−0 (t

j)

is equal to ∑
m/k|m′

k′

k′!k′′!
β(ν)ν(a)j/n .

Here

k′ =
m′

m
k k′′ =

m′′

m
k .

Notice that
j

n
ν =

j

l

(n

l
ν
)
=

j

l

(
k

m
ν

)
is a weight if m/k|m′, and so the terms of the sum appearing in the lemma are well-defined.

The argument used to prove Lemma 2.7 shows that

trace r+0 (t
j)− trace r−0 (t

j) =
∏
z

(trace r+z (t
j)− trace r−z (t

j)) .

The basis vectors ⊗i∈zxij(i) for z+z ⊕ r−z are permuted amongst themselves by Φjp. The only fixed vectors are

⊗i∈z xij , j = 1, 2 .

Thus

trace r+z (t
j)− trace r−z (t

j) = δ2(a)j/l + (−1)n/lδ1(a)j/l

Since there are k orbits, we must raise the right side t the kth power. Expanding by the binomial theorem and
recalling that

m/k = n/l ,

we obtain the lemma.
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If � is a local uniformizing parameter for Qp then the element of the Hecke algebra corresponding to the
function

a× Φp → ν(a)j/n

is the characteristic function of
�jν/nŨp

divided by its measure. We denote this function by θjν/n.
Before summarizing our results on the sum (2.1) we observe that since Z(R)\T (R) is compact the image of

T (Q) in
T (R)ZK\T (A) � ZK\T (Af )

is discrete. Clearly

meas(ZKT (Q)\T (Af )) =
meas(Z(R)ZKT (Q)\T (A))

meas Z(R)\T (R)
.

Summary of the discussion of the sum (2.1).

(a) It can be expressed as a sum over the primes p of E dividing p.

(b) If p is such a prime let �p be a uniformizing parameter for Ep. The term of the sum corresponding to p,
which is now our only object of interest, may be expanded in powers of

|�p|s = |�|se

if e = [Ep : Qp].

(c) The coefficient of j−1|�p|js is 0 if, for some v|p, v does not split in L and there is a marked place in Qv.
It contains the factor

µ(T )
2[E(T/A) : ImE(T/F )]

meas(ZKT (Q)\T (Af )) .

(d) To obtain the coefficient this factor has to be multiplied by a sum over the non-central elements of

T (Q) ∩ Z(R)ZK\T (Q) = T (Q) ∩ ZK\T (Q)

and over the possible ν arising from collections {(m′
v,m

′′
v)|m′

v + m′′
v = mv}. In the quotient on the right, T (Q)

is regarded as a subgroup of T (Af ). The terms of the sum are themselves the product of three factors. The first
is trace ξ(t), and depends only on ξ and t. The second is Φ0T/K(t, φp), and depends only on the image of t in
T (Ap

f ).

(e) The third factor may be represented by meas Ũp/measUp times a product over the places v of F dividing
p of further factors, each depending only on the image of t in Tv(Qp), times β(ν) = κ(µ − µ∨). Here µ is any
weight of r0 such that, for some large Galois extension kp of Qp,

Nmkp/Qp
µ

is a multiple of ν.

(f) The factor corresponding to a given v is 0 unless v splits in F or there are no marked places in Qv.

(g) If there are no marked places in Qv and v does not split in F then the corresponding factor is

±1
measUv

· |t1t2|1/2v

|(t1 − t2)2|1/2v

.
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The sign ±1 may be expressed as a product of two factors. The first is (−1)ord(t1−t2). To obtain the second
we write

G̃1(Qp) =
∏
v|p

Gv(Qp) ,

with

Gv = ResFv/QG̃ ,

and let K̃p =
∏

Kv be a maximal compact subgroup of G̃1(Qp) containing Kp. If g ∈ Gv(Qp) and g−1Uvg ⊆ Kv

then the second factor is (−1)ordNmg .

(h) We write ν =
∑

νv . If v splits in F , the corresponding factor is 0 unless kvνv/mv is a weight. If it is, the
corresponding factor is to be

kv!
k′v!k′′v !

pjemv/2θν′
v
(t)

|t1t2|1/2v

|(t1 − t2)2|1/2v

.

Here

k′v = m′
vkv/mv k′′v = m′′

vkv/mv ν′v = jeνv/nv .

Notice that lv must now be taken to be the greatest common divisor of nv and je. Moreover if m′
v+m′′

v , θν′
v
(t) �= 0,

and qv is the smallest of m′
v and m′′

v then

pjemv/2
|t1t2|1/2v

|(t1 − t2)2|1/2v

= pjeqv .

The logarithm of (1.5) has to be subjected to a similar treatment. Fortunately, we can handle it with more
dispatch, aprtly because we can rely to some extent on our discussion of (1.6), and partly because (1.5) has been
so set up that the trace formula, in its stabilized form [7], is immediately applicable and quickly leads to the
expressions needed for the comparison.

The logarithm of the local factor at p of (1.5) is

(2.9)
∑

Q n(Π)m(Π∞)m(Πf ) log Lp(s− q/2, π, r) ,

where π ∈ Π. The number n(Π) is the common value of n(π), π ∈ Π. Moreover we may as well agree that the
sum is to be taken only over those Π such that

π∞(z) = ν−1(z)I, z ∈ Z(R),

πf (z) = I, z ∈ ZK ,

if π = π∞ ⊗ πf ∈ ∏
, for otherwise either m(Π∞) or m(Πf ) is 0. This said, we may replace m(Π∞) by its value∑

Q
∞∈Π∞

trace π∞(fξ) .

We also may write
m(Πf ) =

∑
πf∈Πf

m(πf ) .

Then m(πf ) is non-zero only if πp contains the trivial representation of Kp. Thus we may replace

log Lp(s− q/2, π, r)
by
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∑
p|p

∞∑
j=1

|�|js
j

trace πp(h
j
p) ,

where hjpk is an appropriate element of the Hecke algebra of G(Qp). It is defined by

trace πp(h
j
p) = |�|−jq/2trace rp(g(πp)) ,

whenever πp is an irreducible representation of G(Qp) containing the trivial representation of Kp. Here rp =
r+p ⊕ r−p and g(πp) is an element of the conjugacy class in LG0 ×Φp associated to πp. We conclude that (2.9) may
be written as the sum over p|p and the sum of j from 1 to ∞ of |�|js/j times

(2.10)
∑

π
n(π)trace π∞(fξ)trace πp(φp)trace πp(h

j
p) .

Recall that φp is the characteristic function of Kp ⊆ G(Ap
f ) divided by its measure.

We may apply the stabilized trace formula for G(Q)Z(R)ZK\G(A) to the function

g → fξ(g∞)φp(gp)hjp(gp)

to obtain the form for (2.10) that we need.
In order to write down the contribution from the scalars we need to draw on our knowledge of harmonic

analysis on real groups, namely on the limit formula of Harish-Chandra, to see that

fξ(z) = (−1)qtrace ξ(z)
/
meas Z(R)\G′(R), z ∈ Z(R) .

Here G′ is a form of G over R, the one for which Z(R)\G′(R) is compact, and the measure on Z\G′ is obtained
from that on Z\G by transporting invariant forms of highest degree as in §15 of [6]. To tell the truth, I am unable
to supply a reference to the appropriate computation. The method to be used is described in [8], and the reader
can verify for himself that the constant is correct. Appealing to §7 of [7], we see that the contribution of the scalar
matrices to (2.10) is

(2.11)
∑

Z(Q)∩Z(R)ZK\Z(Q)
meas(Z(R)ZKG(Q)\G(A))

meas(Z(R)\G(R)
× (−1)qtrace ξ(z)φp(z)hjp(z) .

It will remove some complication from the discussion of the remaining terms of the trace formula if we take
advantage of the possibility we have allowed ourselves of only working with sufficiently smallK . It is convenient
so to arrange matters that the equation

r−1tg = zt

with g ∈ G(Q), t ∈ G(Q), and z ∈ Z(Q)∩Z(R)ZK implies that z = 1. The equation certainly implies that z lies
in the center of the derived group. Since this is finite, its intersection with Z(R)ZK will be {1} when K is small.

The remaining contribution to the stabilized trace formula is a sum over a set of representatives T for the
stable conjugacy classes of Cartan subgroups of

1
2

∑′
T (Q)∩Z(R)ZK\T (Q)

meas(T (Q)Z(R)ZK\T (A))µ(T )
[E(T/A) : ImE(T/F )]

× ΦT/1(t, fξ)ΦT/1(t, φp)ΦT/1(t, hjp) .

The prime indicates that scalars are excluded from the sum. Since ΦT/1(t, fξ) is 0 unless T (R) is fundamental,
we agree to sum only over such T . Then

ΦT/1(t, fξ) = trace ξ(t)
/
(Z(R)\T (R)) .

By appealing to our earlier discussion and to the formalism of Hecke algebras, we easily see that the following
assertions are valid.
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(i) hjp = 0 if e = [Ep · Qp] does not divide j.

(ii) If
Gv = ResFv/Qp

G̃

there is a natural imbedding of Hp into ⊗v/pHp(Gv).

(iii) The image of hjp under this imbedding is a product of ⊗hjp,v.

(iv) If Tv is a split Cartan subgroup of Gv and t1, t2 the eigenvalues of t ∈ Tv(Qp) � L×
v , then, when e|j,∫

Tv(Qp)\Gv(Qcurp)

hjp,v(g−1tg)dg

is equal to

|t1t2|1/2v

|t1 − t2|v
∑

mv/kv |νv

kv!
k′v!k′′v !

θν′
v
(t)

(
ν′v =

j

nv
νv

)
.

The last assertion is, of course, a consequence of the definition of the Satake homomorphism, and the
relation of the Satake homomorphism with the formalism of the associate group. Here νv is defined by a pair of
non-negative integers m′

v, m′′
v with m′

v + m′′
v = mv, and the sum is over those for which

k′v = kvm
′
v/mv k′′v = kvm

′′
v/mv

are integral.
For any T let Up be, as before, the maximal compact subgroup of T (Qp), and Ũp =

∏
Uv the maximal

compact subgroup of T̃1(Qp). Let K̃p =
∏

Kv be the maximal compact subgroup of G̃1(Qp) containing Kp.

Replacing T̃1 by a conjugate if necessary, suppose Ũp ⊆ K̃p and define

u(T ) = [K̃p : KpŨp] .
Then

u(T )meas UpΦT/1(t, h
j
p)

is equal to ∏
v
meas Uv

∫
Tv(Qp)\Gv(Qp)

hjp,v(g−1tg)dg .(2.12)

To verify this we observe that both sides are independent of the measures chosen, and that it therefore
suffices to work with one convenient choice of measure. Let h be (meas Kp)h

j
p, where hjp is taken in Hp(G) and

let h′ be (meas K̃p)h
j
p, with hjp now regarded as an element of Hp(G̃1) = ⊗ιHp(G). Then h is the restriction of

h′ to G(Qp).

ΦT/1(t, h) =
∑

eT (Qp)G(Qp)\ eG1(Qp)

∫
T (Qp)\G(Qp)

h(g−1tg)dg .

If we take the measure on T (Qp)\G(Qp) to be the same as that on its image T̃1(Qp)\
T̃1(Qp)G(Qp) in T̃1(Qp)\G̃1(Qp), the right side is equal to∫

eT1(Qp)/
eG1(Qp)

h′(g−1tg)dg .

To check the assertion completely we need to show that with this choice

u(T )meas Jp\Kp = meas Ũp\K̃p .

However
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meas Up\Kp = meas Ũp\ŨpKp

and

meas Ũp\K̃p = u(T )meas Ũp\ŨpKp .

We have only to evaluate the individual integrals on the right of (2.12). They have been given in §6 of
[12], albeit for the group GL(2,Qp) and not for Gv(Qp) = GL(2, Fv), but the formulae and the proofs are valid
without change. In order to disencumber ourselves of the subscript v when stating the results, we suppose that
p remains prime in F .

We start from Gv(Qp) = GL(2, Fv) and a

ν = a′δ2 + a′′δ1 .

Let

ν̃ = a′δ1 + a′′δ2

and let h be a spherical function on GL(2, Fv) for which

(|t1 − t2|v/|t1t2|1/2v )
∫
A(Fv)\GL(2,Fv)

h(g−1tg)dg =
1
2
{θν(t) + θν̃(t)}

if A is a split torus in GL(2). If a′ = a′′ and Kv the maximal compact subgroup containing Kp, then h is the
characteristic function of (

�a′
v 0
0 �a′′

v

)
Kv

divided by the measure of Kv. There will be no need for an explicit evaluation of the other orbital integrals in
this case.

In general set

ΦTv (t, h) =
∫
Tv(Qp)\Gv(Qp)

h(g−1th) .

If a′ �= a′′ these integrals can be computed directly, along the lines of §3 of [15] or of §7 of [6], but I prefer to apply
the method of §6 of [12]. Lemma 6.4 of that paper and the Weyl integration formula imply that

1
2

∑′
Tv

∫
Tv(Qp)

χπ(t)ΦTv (t, h)∆2(t)dt = 0

if π is an absolutely cuspidal representation of Gv(Qp). The sum is over a set of representatives for the non-split
Cartan subgroups and

∆(t) = |(t1 − t2)2|1/2v /|t1t2|1/2v .

In addition ΦTv (t, h) is 0 unless
|det t|v = |�v|a a = a′ + a′′ .

Let G′
v(Qp) be the multiplicative group of the quaternion algebra over Fv . Exploiting the relation between

characters of Gv(Qp) and characters of G′
v(Qp) provided in [6], and using as well the Weyl integration formula

for G′
v(Qp) and orthogonality of characters, we deduce that there is a function ϕ(x) on F× such that

ΦTv (t, h) = meas(Tv(Qp)\G′
v(Qp))ϕ(det t)

if Tv is not split. The measure on G′
v(Qp) may be assumed to be obtained by transferring that of Gv(Qp).

Let χ be the representation g → χ(det g). If we use the Satake homomorphism to compute the trace of χ(h)
we obtain

0 χ ramified

1
2

(
|�v|a′−a′′/2 + |�v|a′′−a′/2

)
χ(�v)a χ unramified .
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We may also compute it by using the Weyl integration formula. This yields the sum of

1
2

∑′
Tv

meas(Tv(Qp)\G′
v(Qp))

∫
Tv(Qp)

χ(det t)ϕ(det t)∆2(t)dt

and
1
2

∫
Av(Qp)

χ(det t)θν(t)∆(t)dt .

The second expression is 0 unless χ is unramified, but then it equals

1
2
|�v|−|a′−a′′|/2χ(�v)a .

This yields a value for the first expression. Applying the orthogonality relations and the Weyl integration formula
to the characters of the one-dimensional representations of G′

v(Qp), we conclude that ϕ(x) is 0 unless |x| = |�v|a
and that then

ϕ(x) =
|�v||a′−a′′|/2
2measK ′

v

if K ′
v is the maximal compact subgroup of G′

v(Qp). In order to have a convenient notation we let Ξa be 0 unless
|det t| = |�|a when Ξa(t) is to be 1.

Finally we deduce from Lemma 4.1 of [15] that if z is a scalar then h(z) = 0 unless |det z| = |�v|a but then

h(z) = −|�v||a′−a′′|/2
2measK ′

v

.

All the information we need is now at our disposal. It will be a help to review it once again, and display it
in a form convenient for reference.

Summary of the discussion of the sum (2.9).

(a) It can be expressed as a sum over the primes p of E dividing p and over the possible ν, defined by
{(m′

v,m
′′
v)|m′

v + m′′
v = mv}. The m′

v , m′′
v are to be integral except perhaps when m′

v = m′′
v = mv/2, and then we

allow them to be half-integral.

(b) The term corresponding to p and ν may itself be expanded in powers of |�p|s = |�p|se, e = [Ep : Qp].
We now fix a p and a ν and consider the coefficients of |�p|j/j.

(c) We treat the case that m′
v �= m′′

v for at least one v first. Then the coefficient is a double sum, over the
stable conjugacy classes of Cartan subgroups T fundamental at infinity and split at every v for which m′

v �= m′′
v ,

and over non-scalar t in T (Q) ∩ Z(R)ZK\T (Q). The individual terms are given as products. One factor is

µ(T )
2[E(T/A) : ImE(T/F )]

meas(T (Q)ZK\T (Af )) .

A second is

ΦT/1(t, φp)trace ξ(t) · u(T ) meas Ũp

measUp
.

The third may again be written as the product over the places of v dividing p of factors depending only on the
image of t in Tv(Qp). If Tv is split, the factor is 0 unless mv/kv divides m′

v and m′′
v . Otherwise it is

mjemv/2
kv!

k′v!k′′v !
θν′

v
(t)

|t1t2|1/2v

|t1 − t2|v .
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If Tv is not split the expression is more complicated. It is the sum of two terms. The first is{∑
0� i<kv/2

pjemvi/kv

(
kv
i

)}
measTv(Qp)\G′

v(Qp)
measK ′

v

Ξjemv/nv
(t) .

The second is 0 unless kv is even, but it is then

pjemv/2

(
kv
kv/2

)
1

measKv

∫
Tv(Qp)\Gv(Qp)

ϕmv (g
−1tg)dg

if ϕmv is the characteristic function of (
�mv/2 0

0 �mv/2

)
Kv .

The point is that for split Tv there are several possible νv, and we can decompose the contributions from the
orbital integrals of hjp into parts labeled by them; but for a Tv that is not split there is only one reasonable νv and
we have to take the orbital integral in one piece.

(d) Whatever is not included in the terms gathered in (c) must now be put together and credited to that ν
for which m′

v = m′′
v for all v. There are two contributions; the first is a sum over z in Z(Q) ∩ Z(R)ZK\Z(Q).

Each term of the sum is a product, the first factor being

measZ(R)ZKG(Q)\G(A)
measZ(R)\G′(R)

trace ξ(z)φp(z)
meas K̃p

measKp
.

The second factor is itself a product over the places v dividing p of terms depending only on the image of z in the
group Gv(Qp). It will be easier to write them down if we first observe that a simple calculation, which can be left
to the reade4r (cf. §15 of [6]), shows that

measKv =
(|�v|−1 − 1

)
measK ′

v .

The factor at v is itself a sum of two terms. The first is

−(−1)mv

(|�v|−1 − 1
)

measKv
Ξjemv/nv

(z)
{∑

0� i<kv/2

(
kv
i

)
pjemvi/kv

}
.

The second is 0 unless kv is even, when it is

(−1)mv

measKv
Ξjemv/nv

(z)
(

kv
kv/2

)
pjemv/2 .

The second contribution is a sum over the stable conjugacy classes of Cartan subgroups T with T (R)
fundamental of a sum over the non-scalar elements in T (Q) ∩ Z(R)ZK\T (Q). The terms of the sum are
themselves products. The first factor of the product is

µ(T )
2[E(T/A) : ImE(T/F )]

meas(T (Q)ZK\T (Af ))ΦT/1(t, φp)× trace ξ(t) · u(T )meas Ũp

measUp
.

The second is a product over v dividing p of terms that once again depend only on the image of t in Tv(Qp). If
Tv is split the first factor is 0 unless kv is even, but then it is

pjemv/2

(
kv
kv/2

)
Θν′

v
(t)

|t1t2|1/2v

|t1 − t2|v , ν′v =
je

nv
νv .

If Tv is not split, the factor is the same as in (c).
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3. The zeta-function.

The next step in the proof is to use the structure of the set of geometric oints on S(K) over the algebraic
closure κ̃p of the residue field κp of E at p to obtain a formula for

log Zp(s, S(K), Fξ)

which can be compared with the formulae of the preceding paragraph. This logarithm has a power series
expansion

∑∞
j=1

M(j)
|�p|js

j

with

M(j) =
∑

i
(−1)itrace τ i(Φ) ,

and we shall be concerned only with the coefficients M(j).
According to [13] the set S(K, κ̃p) is a union of subsets indexed by equivalence classes of Frobenius pairs

(γ, h0). These must be described. Recall that we have supposed that the totally real field F used to define G is
imbedded in Q ⊆ C. The set of imbeddings of F in Q or C is then represented by the finite homogeneous space

Q = G(Q/F )\G(Q/Q) .

To nourish our intuition we wrote this set as

×× . . .×© . . .©× .

The infinite places at which the algebra splits are marked by a cross; the others are not marked, but represented
by circles. We assumed that F is unramified at p. Hence the Frobenius Φp acts, and we decomposed the set into
its orbits. × . . .© . . .×︸ ︷︷ ︸

Qv1

;© . . .× . . .©︸ ︷︷ ︸
Qv2

;

let nv be the number of elements in the orbit labelled by v. Then∑
nv = n = [F : Q] .

To be definite we viewed the Frobenius as acting on each orbit by a cyclic shift to the right. We also let mv be
the number of marked points in the orbit, and observed that the orbits or the indices v also label the primes of F
dividing p.

There are two kinds of Frobenius pairs, or rather of equivalence classes of such pairs. To describe one of
the first type we start from a totally imaginary quadratic extension L of F which splits at least one prime of
F dividing p. We choose a set of representatives for the isomorphism classes over F of such fields. Each L
determines a stable conjugacy class of Cartan subgroups of G over Q. Choose a representative TL for each such
class. TL is contained in a unique Cartan subgroup T̃L of G̃1. it will be less taxing on my powers of abstraction if I
fix an isomorphism of T̃L with the algebraic group over Q defined by the multiplicative group of L. In particular
T̃L(Q) will be identified with L×, and every imbedding of L in Q defines a rational character of T̃L and as such
it is a basis of the lattice of all rational characters. The dual basis of the lattice of coweights is also indexed by P .

We fix, to have a point of reference, hL: R → TL which is conjugate under G(R) to the h defining the
Shimura variety. Suppose g ∈ A(T/Q). Let

T = T gL = g−1Tg .



Zeta-functions of some simple Shimura varieties 34

An h0: R → T must be of the form

hxL: r → x−1hL(r)x, x ∈ G(R) .

The diagram

T
L

x g-1
hL

h
0

R

T

g

is commutative. Since D(T/F ) → D(T/R) is surjective we may by a suitable choice of x and g arrange that

hxg
−1

L is any element in the orbit of hL under the Weyl group of TL(C) in G(C). However, hL itself can only vary
within an orbit of the Weyl group of T (R) in G(R).

As in [13] h0 defines a coweight µ∨ of T . Since g has been fixed for now, we may pull µ∨ back to a coweight
of TL and hence of T̃L, which I again denote by µ∨. It may be written in terms of the dual basis we have chosen.
The coefficients will be 0 or 1. It will help to have a pictorial way of representing these coefficients.

Let Pv be the inverse image of Qv in P . The group G(Qp/Qp) acts on Pv . If v splits in L then Pv falls into
two orbits and we represent the map Pv → Qv by the diagram:

Pv

{×© . . .© . . .×
©× . . .© . . .×"

Qv ×× . . .© . . .× .

Each horizontal line represents an orbit. A point is marked by an × if the coefficient of the corresponding
element of the dual basis is 1 and is left unmarked if the corresponding coefficient is 0. Above a marked point of
Qv there is one marked and one unmarked point, and above an unmarked point there is no marked point. let m′

v

and m′′
v be the number of marked points in the two orbits. Then

m′
v + m′′

v = mv .

If v does not split in L we may still represent Pv → Qv as{© . . .× . . .©
© . . .© . . .×"
© . . .× . . .× .

However there is only one orbit inPv and no significance is to be attached to the two horizontal rows inits pictorial
representation.

Starting from L, g, and h0 we set about defining Frobenius pairs (γ, h0) of the first kind. We must suppose
that m′

v �= m′′
v for at least one v with v split. If kp is a sufficiently large but finite Galois extension of Qp we set

Nmkp/Qp
µ∨ = ν∨

and write ν∨ as an integer linear combination of the elements of the dual basis. If l = [kp : Qp] the coefficient of a
coweight in Pv is lmv/2nv if v does not split in L. If v splits the coefficient is lm′

v/nv in the first row and lm′′
v/nv

in the second.
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We first construct an appropriate γ1 in TL(Q) ⊆ L× and then take γ = g−1γ1g. If v splits let av and bv be the
two prime ideals in L dividing it. If it does not let gv be the ideal of L generated by the prime ideal in F defined
by the valuation v. Set

a =
(∏

gmv
v

)(∏
a
2m′

v
v b

2m′′
v

w

)
.

Some power as of a is principal. Let
as = (δ1) .

δ1 lies in T̃L(Q). Recall that G was defined as the inverse image of A in ResF/QGL(1). If B is the quotient of
these two groups we have injections

TL(Q)\T̃L(Q) ↪→ B(Q) A(Q)\F× ↪→ B(Q) .

Let δ̄1 be the image of δ1. Since µ∨ and ν∨ are coweights of TL, χ(δ̄1) is a unit for all weights of B and some
power δ̄t1 of δ̄1 is the image of a unit β in F×. Set

γ1 = δ2t1 /β .

The pair (γ, h0) is then of Frobenius type.
Suppose γ lies in T and (γ, h0) is also of Frobenius type. Let

γ = g−1γ1g .

By the definition of pairs of Frobenius type there are positive integers c and d for which

|γd1|v = |γc1|v
at every finite place v of L. Thus γ−c

1 γd1 is a unit. Since L is a totally imaginary extension of F we may even
arrange, by multiplying c and d by a common factor, that γ−c

1 γd1 is a unit in F . Consequently (γ, h0) and (γ, h0)
are equivalent, and the critical data for the construction of a pair of the first kind are L, g, and h0, or, if one

prefers,hxg
−1

L . Actually, hxg
−1

L is determined by µ∨, regarded as a coweight of TL, and we use µ∨ rather than
h0. It is also clear that the class of (γ, h0) depend sonly on the image δ of g in D(T/Q), and it is finally most
convenient to take L, δ, and µ∨ as the fundamental data. I note in passing that, because m′

v �= m′′
v for some i, no

power of γ is central and the group H0 of [13], now denoted by I0, is T .
The use of the symbol H in [13] conflicts with its use in [7]. Since the construction of those two papers appear

simultaneously in the study of Shimura varieties, it will be best to use I 0 and I for the groups denoted H0 and

H in [13]. It will also be best to denote the groups G
0

and G of that paper by J0 and J , and not overburden the
letter G.

Not every pair δ, µ∨ can arise, and it may save us some confusion if we describe now the relation between δ
and µ∨ that must be satisfied. Observe first that µ∨ must lie in the orbit of µL∨ under the Weyl group if µL∨ is the
coweight associated to hL. Since the image of TL is anisotropic, µL∨ − µ∨ defines an element of H−1(G(C/R),
X∗(TL)) and hence, by the Tate-Nakayama theory, an element α∞(µ∨) of H1(R, TL). On the other hand δ lies in
D(TL/Q) which may be mapped to D(TL/R) ⊆ H1(R, TL). The condition is that the image of δ is α∞(µ∨). To
verify this we observe that the image of δ is the class of H1(R, TL) corresponding to

µL
∨ − gx−1(µL∨) = µL

∨ − µ∨ .

Lemma 3.1. Suppose L, TL, and hL are given. Then L, δ, µ∨ are possible data for the construction of a
Frobenius pair if and only if α∞(µ∨) is the image of δ in D(T/R).

The necessity has just been verified. On the other hand if g represents δ, the image of δ is α∞(µ∨), and
µ∨ = ω(µL∨), with ω in the Weyl group over C, then there is an x in G(R) such that gx−1 normalizes T and
represents ω. We then define h0 by

h0(r) = x−1hL(r)x .

We next describe sufficient conditions for the class of pairs associated to L, δ, and µ∨ to be the same as that
associated to L, δ̄, and µ̄∨. We continue to assume that the pairs are of the first kind. Let Ω(TL, G;Q) be the
quotient of the intersection of A(T/Q) with the normalizer of T by T (F ). It is a group and may be properly larger
than Ω(TL(Q), G(Q)), the Weyl group over Q. It acts on D(TL/Q) to the right, and in the present circumstances
consists of two elements, corresponding to the two automorphisms of L over F .
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Lemma 3.2. Suppose δ, µ∨ and δ̄, µ̄∨ are given, and yield classes of Frobenius pairs of the first kind. These
classes are the same if the following conditions are satisfied:

(i) There is an ω in Ω(TL, G;Q) such that

Nmkp/Qp
(µ̄∨ − ω(µ∨)) = 0

if kp is any sufficiently large Galois extension of Qp.
(ii) If (i) is satisfied then µ̄∨ − ω(µ∨) defines an element of H−1(G(kp/Qp), X∗(TL)) and hence, by the

Tate-Nakayama theory, an element αp(µ̄∨, ω(µ∨)) of H1(Qp, T). The equation

ωδαp(µ̄∨, ω(µ∨)) = δ̄

is to obtain.
(iii) If l is a finite prime different from p then ωδ and δ̄ have the same image in D(T/Ql).

Let δ and δ̄ be represented by g and g. Because of the first condition we may take

γ = g−1γ1g, g−1ω(γ1)g,

with a common γ1 in TL(Q). If ω is represented by w the third condition implies that for l �= p

g = twgu, t ∈ TL(Ql), u ∈ G(Ql),

and, consequently, that
γ = u−1γu .

There is one more condition to be verified if equivalence is to be established. It is a condition on b, the
element associated to (γ, h0) in [13] and discussed at length in the appendix of this paper, and on b, the element
associated in the same way to (γ, h̄0). The elements γ and γ are conjugate over G(Q) and hence, by the corollary
on p. 170 of [18] over G(Qun

p ). Let
γ = u−1γu u ∈ G(Qun

p ) .

In order to establish equivalence we must show that there is a t in T (k) for which

b = t−1u−1bσ(u)σ(t)

if σ is the Frobenius on Qun
p or k.

Since no power of γ1 is central
g = swgu, s ∈ TL(Qun

p ) .

Thus δ̄ is represented by the cocycle

{τ(w)τ(g)τ(u)u−1g−1w−1}, τ ∈ G(Qp/Qp),
and

δ̄ = ωδβ

in D(T/Qp) if

β = wgτ(u)u−1g−1w−1 .

Notice that β is represented by the inflation of a cocycle of G(Qun
p /Qp) and is completely determined by

wgσ(u)u−1g−1w−1aσ .
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It is a consequence of the definitions and the corollary on p. 170 of [18] that, after multiplying b and b by
yσ(y−1) and yσ(y−1), y ∈ T (k), y ∈ T (k), we may suppose that αp(µ̄∨, ω(µ∨)) is represented by the inflation of
a cocycle {ατ} of G(Qun

p /Qp) and that

gbg−1 = wgbg−1w−1aσ .

Thus

ubu−1 = bg−1w−1aσwg .

The second assumption is that

β ∼ αp(µ̄∨, ω(µ∨)) .
Thus we may even assume that

g−1w−1aσwg = σ(u)u−1 .

Then

b = u−1bσ(u) .

Lemma 3.3. Suppose the classes of Frobenius pairs associated to L, δ, µ∨ and L̄, δ̄, µ̄∨ are of the first kind
and the same. Then L = L̄ and the conditions of the previous lemma are fulfilled.

If the classes are the same then L ⊗ Fv and L̄ ⊗ Fv are isomorphic for all finite places v of F which do not
divide p. Consequently L and L̄ are isomorphic. Since we are working within a set of representatives for the
isomorphism classes of quadratic extensions, L = L̄ and TL = TL̄.

Let δ and δ̄ be represented by g and g and let (γ, h0) and (γ, h0) be corresponding Frobenius pairs. We
suppose they are equivalent. Replacing γ and γ by appropriate powers of themselves and perhaps multiplying
by an appropriate central element as well, we may suppose they are conjugate in G(Ql) for l �= p and hence in
G(Q). As usual let

γ = g−1γ1g γ = g−1γ1g .

Then γ1 and γ1 are also conjugate in G(Q) and there is an ω in Ω(TL, G,Q) such that

γ1 = ω(γ1) .

Recall that if λ is a rational character of TL then

|λ(γ1)| = |�|τ〈λ,ν∨〉
and

|λ(γ2)| = |�|τ〈λ,ν̄∨〉 .

Here r and r are two positive rational numbers and

ν∨ = Nmkp/Qp
µ∨, ν̄∨ = Nmkp/Qp

µ̄∨ .

Consequently

rν̄∨ = rω(ν∨) .

Since the sum of the coefficients in the expression of ν∨ as a linear combination of the elements in the dual basis
is the same as the sum of the coefficients for ν̄∨, r = r and

Nmkp/Qp
µ̄∨ = Nmkp/Qp

ω(µ∨) .
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This is the first condition of the previous lemma. To verify the second we have only to observe that if ω is
represented by w then

γ = g−1γ1g = g−1w−1γ1wg
and

γ = g−1γ1g
are conjugate in G(Ql), and hence

wg = tgu, t ∈ T (Ql), u ∈ G(Ql) .

As in the proof of the previous lemma

g = swgu, s ∈ TL(Qun
p ), u ∈ G(Qun

p ),
and

γ = u−1γu .

Since γ is not central, u is determined modulo T (Qun
p ) and the class of the cocycle in TL

{wgτ(u)u−1g−1w−1 | τ ∈ G(Qun
p /Qp)}

is well-defined. As we observed before
δ̄ = ωδβ .

Moreover we may once again suppose that αp(µ̄∨, ω(µ∨)) is obtained by inflating a cocycle {ατ} of
G(Qun

p /Qp) and that
ubu−1 = bg−1w−1aσwg .

Since we are assuming the two Frobenius pairs equivalent, there is a t in T (k) for which

b = t−1u−1bσ(u)σ(t)
and

(ut−1u−1)bσ(u)u−1(uσ(t)u−1) = bg−1w−1aσwg .

Canceling b and taking

z = wgutu−1g−1w−1,
we obtain

zwgσ(u)u−1g−1w−1σ(z−1) = aσ .

Since {aτ} and {τ(u)u−1} are both continuous cocycles, it follows readily from this equation that z ∈ TL(Qun
p )

and that
β = αp(µ̄∨, ω(µ∨)) .

We introduce next another type of Frobenius pair, which we will say is of the second kind. We again start
from the totally imaginary quadratic extension L of F , the Cartan subgroup TL, an element g in A(T/Q), and an
h0, but suppose that m′

v = m′′
v for every place v of F dividing p and splitting in L. Such data exist, for we may

so choose L that no place dividing p splits in it. We construct γ as before. The ideal a is now an ideal in F , and
so some power of γ is central.
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Lemma 3.4. Any two Frobenius pairs of the second kind are equivalent.

Suppose (γ, h0) and (γ, h̄0) are two pairs of the second kind. We take γ and γ central. Choosing kp so large
that it splits both TL and TL̄ and noting that

m′
v = m′′

v = m̄′
v = m̄′′

v = mv/2

we see easily that there are two positive integers c and d and a unit ξ in F× for which

ξγc = γd .

Replacing γ by ξγc and γ by γd we may suppose γ = γ. The equivalence now follows from the fact that b is
well-defined (cf. Lemma A.2).

It is clear that a pair of the second kind cannot be equivalent to a pair of the first kind. With the following
lemma, which is really a matter of definition, our classification of Frobenius pairs is complete.

Lemma 3.5. Every Frobenius pair is equivalent to one of the first or second kind.

The definition of (γ, h0) involves the introduction of a subgroup I0 of G [13], and the choice of a Cartan
subgroup T of I0 which is defined over Q and through which h0 factors. Replacing γ by a conjugate over Q if
necessary, we may suppose that, for one of the representatives L and some g in A(T/Q),

T = g−1TLg .

If we also suppose, as we may, that the image of T in I0ad is anisotropic over Qp then, by the very definitions,
(γ, h0) must be a Frobenius pair associated to L, g, and h0.

In addition to the group I0 there is a group I over Q and groups J0 and J over Qp attached to a Frobenius
pair (recall that J0 and J are denoted by G0 and G in [13]). I is an inner twisting of I0. For a pair of the first kind,
I0 is T and the twisting is trivial. For a pair of the second kind I0 is G. An inner twisting of G is obtained from
an inner twisting of ResF/QG̃ or a twisting of the quaternion algebra D defining G̃. Thus for pairs of the second
kind, I will be defined by the same subgroup A of ResF/QGL(1) and a new quaternion algebra D′. According
to the prescription for passing from I0 to I we are not to twist away from infinity and p, but D′ must be ramified
at every infinite place. Since the number of infinite places at which D splits is

m =
∑

v
mv

the invariant will be changed at m infinite places. Once we decipher the prescription given in [13] for the twisting
at p, we will see that the invariant of D at v is to be changed if and only if mv is odd. In particular, the total
number of places at which the invariant is to be changed is even, and the prescription can actually be carried out.

Over Qp

ResF/QG̃ =
∏

v
ResFv/Qp

G̃ =
∏

v
Gv .

The centralizer of T in this group is a product
∏

T v, and if we regard µ∨ as a coweight of the product it may be
factored as ∏

µ∨
v (multiplicative notation) .

The cocycle which defines the twisting is also a product and the vth factor lifts to the cochain

σ → avσ =
∏

τ∈G(kp/Qp)
aστµ

∨
σ,τ

in G∨. Here {aσ,τ} is a representative of the fundamental class of the extension kp/Qp.
A straightforward calculation shows that

H1(Qp, G
v
ad) � H1(Fv, G̃ad) .
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The isomorphism is obtained by writing Gv
ad over Qp as a product∏

G(Qp/Qp)/G(Qp/Fv)

σG̃ad,

and then restricting a cocycle of G(Qp/Qp) with values in Gv
ad to G(Qp/Fv) and projecting to the factor 1G̃ad.

We also have the familiar imbedding

H1(Fv, G̃ad) ↪→ H2(G(Qp/Fv),Qp) .

We have to show that, starting from the given element in H 1(Qp, G
v
ad), we finish with the element of

H2(G(Qp/Fv),Qp) with invariant mv/2. We may restrict and project before or after taking the co-boundary of
{avσ}, and it is convenient to take the co-boundary first. We obtain{∏

τ
a
ρτµ∨

v
ρ,τ

}{∏
τ
ρ(aσ,τ )ρστµ

∨
v

∏
τ
a
−ρστµ∨

v
ρσ,τ

}
.

The products run over τ ∈ G(kp/Qp). substituting στ for τ in the first factor and using the co-cycle relation

aρ,σ = ρ(aσ,τ )aρ,στa−1ρσ,τ
we see that this co-boundary equals

{aν∨
v
ρ,σ}

with

ν∨v = Nmkp/Qp
µ∨
v .

The invariant of the restriction of {aρ,σ} to G(kp/Fv) is

nv/[kp : Qp] ,
and the invariant of the image of the composite homomorphism is therefore

mv[kp : Qp]
2nv

· nv

[kp : Qp]
=

mv

2
.

For the pairs of the second kind J0 = I0 and J = I . For pairs of the first kind J0, a group over Qp is the
inverse image of A in ∏

Jv

where Jv is T v if v splits in L and m′
v �= m′′

v and is Gv otherwise. J is obtained in the same manner with D′

replacing D.
There is also a space X and a multiplicity d to associate to a pair (γ, h0) or, rather, to a class of such pairs.

For the moment we ignore the multiplicity and forego a detailed analysis of the space X . The group K is taken
to be a product KpKp with Kp ⊆ G(Ap

f ) and Kp a special compact subgroup of G(Qp), that is, the stabilizer of
a special vertex in the Bruhat-Tits building. X depends on Kp. The set of points in S(κ̄p) corresponding to the
class of (γ, h0) is formally d copies of

YK = H(Q)\G(Ap
v)×X/Kp .

The group Kp acts on the right through its action on G(Ap
f ). I(Q) acts on both factors, and the Frobenius Φp acts

on Y through its action on X .
As in [12] we use the Lefschetz fixed point formula to compute the alternating sum of the traces of Φjp, j > 0,

on the cohomology of Fξ . We take the sum over the fixed points of the traces on the fibers. The fibers over Ql are
obtained by first taking the fibers of the sheaves over Z/lkZ, then letting k → ∞ to obtain fibers over Zl, and then
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tensoring with Ql. Since the fixed points lie in S(κ̄p) = SK(κ̄p), the only thing that really matters is the resulting
sheaf over S(κ̄p), a set with the discrete topology, and the action of Φp on it.

We first look at the points in YK , and find a formula for their contribution to the alternating sum. If
K = KpKp with Kp ⊆ Kp then the inverse image of YK in SK(κ̄p) is

YK = H(Q)\G(Ap
v)×X/Kp .

The map is the obvious one. Consequently [12] the sheaf over YK is

(H(Q)\G(Ap
f )×X)×Kp V (Ql) .

Here Kp acts on V (Ql) through its projection on G(Ql). The action of Φp on the sheaf is obtained by letting it act
on X .

The point y ∈ YK represented by (g, x) is fixed by Φjp if

(g,Φjpx) = (hgk, hx), k ∈ Kp, h ∈ I(Q) .

There are really two equations here

Φjpx = hx and k = g−1h−1g .

The map from the fiber at Φjp to the fiber at y is

(g,Φjpx)× v → (g, x)× v .

At a fixed point,
(g,Φjpx)× v = (hgk, hx)× v = (g, x)× kv

and the trace is
trace ξ(k−1) = trace ξ(h) .

There is a lemma to be proved before we can find an expression for the contribution of the points on YK to
the alternating sum of the traces. If h1, h2 lie in I(Q) and k1, k2 lie in Kp, the equation

(h1gk1, h1x) = (h2gk2, h2x)
is equivalent to the two equations

h−1
1 h2 = gk1k

−1
2 g−1 and h−1

1 h2x = x .

Since the center Z of G is contained in I0 and I is obtained from I0 by an inner twisting, Z is also a subgroup of
I .

Lemma 3.6 There is an open compact subgroup K0 of G(Af ) such that if K ⊆ K0 then for any Frobenius
pair the equations

h = gkg−1, hx = x,

with h ∈ I(Q), g ∈ G(Ap
f ), k ∈ Kp, x ∈ X imply that h lies in Z.

We may as well divide byZ , and consequently suppose thatZ is {1}. Since I(R) is compact, h is semi-simple.
Let it lie in the torus T over Q. I claim that if λ is a rational character of T and v any valuation of Q, then

|λ(h)|v = 1 .

If v is archimedean, this is a consequence of the compactness of I(R). If v is non-archimedean but prime to
p, it is a consequence of the first of the assumed equations. If v divides p, it is a consequence of the second
assumed equation and the definition of X [13]. We conclude that λ(h) is a root of unity. Since λ(h) lies in a Galois
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extension whose degree is at most the product of the order of the Weyl group of G with the order of the group of
automorphisms of the Dynkin diagram, it is one of a fixed finite set of roots of unity. We have merely to take K0

sufficiently small that the ensuing congruence conditions force it to be 1.
We assume henceforth that K ⊆ K0. There is another vexatious possibility with which I would prefer not

to have to deal, simply because it encumbers the notation. Suppose h ∈ I(Q), g ∈ I(Q) and g−1hg = zh with
z ∈ (Q) ∩K . Then z certainly must lie in the center of the derived group which is finite. I take K0 so small that
this equation implies z = 1.

If z ∈ Z(Q) ∩K then (zg, zx) = (gz, x). If

(g,Φjpx) = (hgk, hx)
and h1 ∈ I(Q), k1 ∈ K ′′, then

(h1gk1,Φ
j
ph1x) = ((h1hh−1

1 )h1gk1(k−11 kk1), (h1hh−1
1 )h1x) .

Thus to each fixed point in YK is associated a conjugacy class {h} in Z(Q)∩K\I(Q), and if Nj(h) is the number
of fixed points yielding the conjugacy class {h} then the total contribution of YK to the alternating sum of the
traces is ∑

(h)
N j(h)trace ξ(h) .

If x ∈ X and j > 0, set
T jx = {g ∈ J(Qp) | Φjpx = gx} .

Lemma 3.7. If h lies in I(Q) and in T jx , j > 0, then the centralizer I(h,Qp) of h in I(Qp) is the same as its
centralizer J(h,Q)p) in J(Qp).

The proof of this lemma will have to be postponed until we have examined the sets T jz more closely.
Let ψjx be the characteristic function of T jz , and if {x} is a set of representatives for the orbits of J(Qp) in X ,

set

ϕj(h) =
∑

{x}
1

measJ(x)

∫
J(h,Qp)\J(Qp)

ψjx(g
−1hg)dg .

Here h is an arbitrary element of J(Qp) and J(x) is the stabilizer of x in J(Qp). We shall eventually see that the
integrals are finite and that, for each j, all but finitely many of the ψjx are identically zero.

Lemma 3.8. Suppose φp is the characteristic function of Kp divided by its measure, and let

ZK = Z(Af ) ∩K .

Then N j(h) is equal to
meas(ZKI(h,Q)\I(h,Af ))ϕj(h)

measZK

∫
I(h,Ap

f )\G(Ap
f )

φp(g−1hg)dg .

This lemma is a more general form of some of the lemmas in §5 of [12]. The number N j(h) is equal to the
sum over i of ∑

h1

∑
(g,g)

measKpφ(g−1h1g)ψjxi
(g−1h1g) .

Here h1 runs over the conjugates of h in I(Q) modulo Z(Q) ∩K and (g, g) runs over

I(Q)\G(Ap
f )× J(Qp)/K

p × J(xi) .

We may drop the sum of h1 if we divide on the left, not by I(Q), but by I(h,Q). Since

ZKI(Q) ∩ (gKpg−1 × gJ(xi)g−1) = ZK ,
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we may also replace the sum by an integral over ZKI(h,Q)\G(Ap
f )× J(Qp) provided we multiply by

measZK/(measKp)(meas J(xi)) .

The integration may be taken first over ZKI(h,Q)\I(h,Af ) and then over

I(h,Ap
f )\G(Ap

f )× I(h,Qp)\J(Qp) .

Appealing to Lemma 3.7, we replace the denominator in the second factor by J(h,Qp). The first integration
simply yields a factor

meas(ZKI(h,Q)\I(h,Af )) .

The lemma follows.
We must next consider the multiplicity d attached to a Frobenius pair. I have first to confess that the

multiplicity suggested in [13] is not quite correct. It was suggested that it could be incorrect because insufficiently
many examples had been studied, and that is still a possibility, but the error to be mentioned now arises from
a difference source, a misinterpretation of my calculations for the special cases. Such mistakes — another is
correction [14] — must be annoying to anyone who is seriously attempting to understand this sequence of papers.
I can only apologize and assure him that they do not seem serious. I hope to have a fairly thorough discussion
of the conjectures and the examples available sooner or later. It appears to be safe for now to take d to be the
number of elements in H1(Q, I) which become trivial in H1(Qv, I) for all places v of Q and which have trivial
image in H1(Q, Gder\G). In [13] triviality in H1(Qp, I) was not demanded. I observe as well that in [13] a rather
eccentric notation was employed. The set H1(G(Q/Q), I(Q)) was denoted by H1(Q, I) and not by H1(Q, I).

With this definition of d, we have the following simple lemma.

Lemma 3.9 (a) For Frobenius pairs of the second kind d = 1.
(b) For Frobenius pairs of the first kind d is equal to µ(T ), if T = I0, a Cartan subgroup, and µ(T ) is

the order of the kernel of E(T/Q) → E(T/A).

For a pair of the second kind,
Gder\G � Ider\I

and Ider is a simply-connected group. Thus it follows from the Hasse principle or, more directly, from the fact
that H1(Q, Ider) = 1 that d = 1. For pairs of the first kind, T = I0 = I and the kernel of

H1(Q, T ) → H1(Q, Gder\G)

is E(T/Q). The lemma is verified.
In order to compare the alternating sum of the traces with the results of §2, we need to express it as the sum

of a stable and labile part. We begin with the contribution from the Frobenius pairs of the first kind attached to a
given totally imaginary quadratic extension of F .

Earlier we fixed TL and µ∨
L and, when g ∈ A(T/Q) and h0 were given, regarded µ∨ as a coweight of TL.

There is more than one possibility for
ν∨ = Nmkp/Qp

µ∨ .

Letν∨
1 , ν

∨
2 , . . .be the finitely many possibilities. For each of them we choose aµ∨

j with normν∨
j and a gj ∈ A(TL/Q)

with image δj in D(TL/Q) so that δj and µ∨
j satisfy the condition of Lemma 3.1. It follows from the density of

D(Q) in D(R) that gj exists. Set Tj = g−1j TLgj and regard µ∨
j now as a coweight of Tj . Rather than working

with TL and µ∨
L we prefer now to work with Tj ,g ∈ A(Tj/Q), and those µ∨ for which

Nmkp/Qp
µ∨ = Nmkp/Qp

µ∨
j .

However, when we come to assemble the contributions from the various Tj , we must divide by 2, the order of
the group Ω(TL, G;Q), because, by Lemma 3.2, ν∨

i and ν∨
j yield the same classes of Frobenius pairs if

ν∨
j = ω(ν∨

i ), ω ∈ Ω(Tj , G;Q) .
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If
Nmkp/Qp

µ∨ = Nmkp/Qp
µ∨
i

then by the Tate-Nakayama theory µ∨ − µ∨
i defines elements αp(µ∨, µ∨

i ) and α∞(µ∨, µ∨
i ) in

H1(Qp, Ti) and H1(Q∞, Ti). By Lemma A.9 there is an element α(µ∨, µ∨
i ) in H1(Q, Ti) whose image in

H1(Qv, Ti) is α−1∞ (µ∨, µ∨
i ) if v = ∞, αp(µ∨, µ∨

i ) if v = p, and 1 otherwise. If g and µ∨ actually define a
Frobenius pair then δα−1(µ∨, µ∨

i ) is trivial at ∞, and, by Lemma 3.2, the class of the Frobenius pair is determined
by its local behavior at the finite places. Conversely Lemma 3.3 shows that, for a given i, the cohomology class of
δα−1(µ∨, µ∨

i ) is determined locally by the Frobenius pair. To free ourselves of any ambiguity we first of all agree
to take µ∨ = µ∨

i , and then to choose g from a set of representatives {g} for those elements A(Ti/Q) which are
trivial at ∞ modulo those which are trivial everywhere.

For such g set T gi = g−1Tig. A datum such as a measure may be transported from Ti toT gi . The part of the
contribution to the alternating sum of the traces corresponding to Ti is the product of

(d/2)meas(ZKTi(Q)\Ti(Af ))/measZK
and ∑

{g}

∑
h∈Ti(Q)

ϕjg(h)
∫
T g(Ap

f )\G(Ap
f )

φ(x−1hgx)dx .(3.1)

Here ϕjg is ϕj , but for the Frobenius pair attached to g. I have not stressed this before, but it is understood that
any term of this sum is zero if the first factor is zero, even when the second factor is infinite. It will eventually be
clear that if the first factor is not zero, then the second factor is finite.

If E(Ti/Af ) is the set of elements in E(Ti/A) which are trivial at ∞, then

E(Ti/Af )/E(Ti/Af ) ∩ ImE(Ti/Q) � E(Tk/A)/ImE(Ti/Q) .

Thus it should be possible to write (3.1) as a sum over the characters κ of E(T/A)/ImE(T/Q) of

[E(Ti/A) : ImE(Ti/Q)]−1
∑

h

∑
{g} κ(δ)ϕ

j
g(h

g)×
∫
T g

i (A
p
f )\G(Ap

f )

φ(x−1hgx)dx .

Here g runs over a set of representatives for E(Ti/Af ) and δ in E(Ti/Af ) is the image of g. However we do have
to observe that in the definition of X and J it was not essential that g lie in A(Ti/Q). It need only lie in A(Ti/Qp).
Thus ϕjg is defined for g ∈∏

v A(T/Qv) by its coordinate in A(Ti/Qp). We set

ϕjg(h
g) = ϕjδ(h) ,

sometimes taking δ in D(Ti/Q) and sometimes in D(Ti/Qp).
The inner sum may be written as the product of

ΦTi/κ(h) =
∑

E(Ti/A
p
f
)
κ(δ)Φδ(h, f)

and ∑
E(Ti/Qp)

κ(δ)ϕjδ(h) .

The first of these two factors we have met before, and there is little to be said about it. It is the second which must
be studied carefully.

Let k be the completion of the maximal unramified extension of Qp. If bi is the element of Ti(k) associated
to µ∨

i by the procedure of the appendix, then the element b of T g(k) associated to µ∨
i by the same procedure is

bg = g−1btg. We recall the manner in which bg is used to construct the space X [13]. To stress that it depends on
g, I write Xg instead of X .
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The group G(k) is contained in G̃1(k), and if Q = G(Q/F )\G(Q/Q) then

G̃1(k) =
∏
QGL(2, k) .

Since F is unramified at p the action of G(Qp/Qp) on Q factors through G(Qun
p /Qp), which is also the group

of continuous automorphisms of k and contains σ as Φp. To obtain the action of σ on G̃1(k) we choose a set of
representatives {τ} for the cosets of Q and write τσ = dτ (σ)τ ′ with dτ (σ) ∈ G(Q/F ). Then

σ : (gτ ) → (g′τ )

with g′τ = dτ (σ)(g′τ ). Observe that in fact dτ (σ) is determined only modulo the inertial group of F ⊆ Qp, but
that does not matter, for dτ (σ) is acting on g′τ ∈ GL(2, k) in the usual way.

Let ok be the ring of integers in k. The element σ acts in the same way on the collection of (Mi), i ∈ Q, where,
for each i, Mi is an ok-lattice in the space of column vectors of length two over k. Let (M 0

i ) be a fixed point of σ
and let K̃p(k) be the stabilizer of (M 0

i ) in G̃1(k). We may so choose (M0
i ) that if

K̃p = K̃p(k) ∩ G̃1(Qp)
then

Kp = K̃p ∩G(Qp) .

Observe that G̃1(Qp) is taken to be the set of points in G̃1(k) fixed by σ.
We introduce the set

X = G(k)/Kp(k) ⊆ X̃ = G̃1(k)/K̃p(k)
with

Kp(k) = K̃p(k) ∩G(k) .

X̃ is just the set of (Mi). the action of σ on X is given by its action on G(k) or by its action on the sequences (Mi).
We introduce the transformation Fv of X which sends c to bgσ(c).

Let x in X be (Mi) and let Y = Fgx be (Ni). According to the definition of [13], supplemented by the
correction in [14], the point x lies in Xg if and only if the following two conditions are satisfied.

(i) Mi = Ni if i is an unmarked point.

(ii) Mi � Ni � pMi if i is a marked point.

It will be easier to make the comparison of the following paragraph if we can express

(3.2)
∑

E(Ti/Qp)
κ(δ)ϕjδ(h)

entirely in terms of the set X̃. By the corollary on p. 170 of [18]

H1(Qp/Q
un
p , Ti) = 1 .

Thus we may choose the g to lie in G(Qun
p ) and then write

g = tu, t ∈ T̃i(Qun
p ), u ∈ G̃1(Qp) .

Here T̃i is the centralizer of Ti in G̃1. Thus

T gi = u−1Tiu
and
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bg = u−1biu .

We let Fi be the operator on X̃ which takes the point represented by x in G̃1(k) to the point represented by
biσ(x), and define X̃iP in the same way that we defined Xg except that Fi replaces Fg. Then

uXg = uX ∩ X̃i .

As in [7], E(Ti/Qp) may be identified with

G̃1(Qp)/T̃i(Qp)G(Qp) �
∏
v|p

F×
v A(Qp)

∏
v|p

NmL×
v

with

Lv = L⊗F Fv .

We may therefore regard κ as a character of G̃1(Qp). If

J(Qp) = {g ∈ G(Qp) | bσ(g)b−1 = g}
the sum (3.2) is equal to∑

u∈ eG1(Qp)/Ti(Qp)G(Qp)

∑
{x}

κ(u)
meas J(X)

∫
Ti(Qp)\(Qp)

ψjx(g
−1hg)dg .(3.3)

Here {x} is a set of representatives for the orbits of J(Qp) in uX ∩ X̃i and ψjx is the characteristic function of

{g ∈ J(Qp) | Φjpx = gx}

with Φp = Fei if e = [Ep : Qp]. I observe that, by the definition of E, the operator Φp must take the set of marked

points to itself, and does in fact operate on X̃i.
It is manifest that G̃1(Qp)∩ K̃p(k) takes uX to itself for all u, and hence that (3.3) is 0 unless κ is unramified.

We assume then that κ is unramified. For a given Ti there are at most two possibilities for κ. If it is not trivial, it
can be unramified only if L is unramified at every place of F dividing p.

We want to transform the expression (3.3), and in order to do so we need the following lemma.

Lemma 3.10. The set X̃i is contained in G̃1(Qp)X.

If G1 = ResF/QGL(1) then

Nm : G̃1(Qp) → G1(Qp)

is surjective. Let g ∈ G̃1(k) and let a = Nm g. We want to show that if the image of g in X̃ lies in X̃ then

g ∈ G̃1(Qp)G(k)K̃p(k) .

Since G is the inverse image of A in G̃1, all we need do is show that

a = a1a2a3

with a1 ∈ G1(Qp), a2 ∈ A(k), a3 ∈ G1(k), and |λ(a3)| = 1 for every rational character of G1.
The composition of µ∨

i with Ti → A is a coweight µ̄∨
i of A and thus of G1. Both A and G1 are split over Qun

p

because F is assumed to be unramified at p. Consequently �µ′
i lies in A(Qun

p ) if � is a uniformizing parameter

of Qp. Let b = Nm bi. The condition for the image of g to lie in X̃ which was added in [14] and used to deduce
conditions (i) and (ii) above is that

aσ(a−1) = b�−µ∨
i b3
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with |λ(b3)| = 1 for every rational character of G1. A simple variant of Lemma A.7 allows us to establish that
b3 = a3σ(a−13 ) with a3 of the desired form. For simplicity we replace a by aa−13 and suppose that b3 = 1.

The considerations of the appendix apply to the group A and the coweight µ̄∨
i . There are two ways to

construct an element bA, that is, the element b of the appendix when A replaces G. On one hand, we can take b.
On the other, we can observe that A splits over an unramified extension lp of Qp with Galois group generated by
σ, and that the fundamental cocycle of lp/Qp may be taken to be

aσj ,σk =

{
1, 0� j, k < [lp : Qp], j + k < [lp : Qp],

�, 0� j, k < [lp : Qp], j + k � [lp : Qp]

This leads to � µ̄∨
i . The considerations of the appendix show that

b�−µ∨
i = a2σ(a−12 ), a2 ∈ A(k) .

Thus
a1 = aa−12 ∈ G1(Qp) .

We may now regard x as a function on X̃i, defined by

κ(x) = κ(u)

if x ∈ uX. It is constant on orbits of T̃i(Qp). Let

J̃1(Qp) = {g ∈ G̃1(Qp) | bσ(g)b−1 = g} .

This group contains T̃i(Qp) and the usual bijection

Ti(Qp)\J(Qp) � T̃i(Qp)\(Q)J(Qp) ⊆ T̃i(Qp)\J̃1(Qp)

is defined. We choose measures on T̃i(Qp) and J̃1(Qp) in such a way that the restriction of the quotient measure
to the image of the arrow corresponds by transport of structure to the measure on Ti(Qp)\J(Qp) appearing in
(3.3).

Recall the definition of the number u(Ti) (p. 1156). Replacing Ti by a conjugate if necessary, we suppose that
Kp ⊆ K̃p ⊆ Ũp where K̃p is a maximal compact subgroup of G̃1(Qp) and Ũp the maximal compact subgroup of

T̃i(Qp). Let J̃1(x) be the stabilizer of x in J̃1(Qp). We want to show now that the expression (3.3) is equal to

u(Ti)
meas Ũp

measUp

times ∑ κ(x)
measJ1(x)

∫
eTi(Qp)\ eJ1(Qp)

ψjx(g
−1hg)κ(g)dg .(3.4)

The sum is over a set of representatives for the orbits of J̃1(Qp) in X̃i, and Up, Ũp are the maximal compact

subgroups of Ti(Qp) and T̃i(Qp).
We described J(Qp) explicitly above. It is clear that J̃1(Qp) admits a similar description. It follows from

these descriptions that
Norm J(Qp) = Norm G(Qp),

Norm J̃1(Qp) = Norm G̃1(Qp) .



Zeta-functions of some simple Shimura varieties 48

Consequently the outer sum in (3.3) may be taken over

T̃1(Qp)J(Qp)\J̃1(Qp)

and the index in the inner sum may be taken to be ux where x runs over a set of representatives for the orbits of
J(Qp) in X ∩ X̃i. Changing the order of summation and combining the new inner sum and the integral into a
single integral, we obtain

∑
{x}

κ(x)
meas J(x)

∫
eT1(Qp)\ eJ1(Qp)

ψjx(g
−1hg)κ(g)dg .

The sum is over a set of representatives for the orbits.
Every orbit of J̃1(Qp) in X̃ meets X, and so the set {x} does meet every orbit of J̃1(Qp). The difficulty with

which we have to contend is that it may contain several points from the same orbit. Given x in {x}, choose a
maximal compact subgroup C̃ of J̃1(Qp) containing J̃1(x) and let C = C̃ ∩ J(Qp). If g ∈ J̃1(Qp) then gx ∈ X if

and only if g ∈ J(Qp)C̃ . The number of orbits of J(Qp) in

J̃1(Qp)x ∩ X

is

[J(Qp)C̃ : J(Qp)J̃1(x)] = [C̃ : CJ̃1(x)] .

Thus we are free to sum over a set of representatives for the orbits of J̃1(Qp), provided we incorporate the factor

[C̃ : CJ̃1(x)]/meas J(x) .

What we must do is show that this equals

u(Ti)meas Ũp/measUpmeas J̃1(x) .

Let T̃i(x) and Ti(x) be the stabilizers of x in T̃i(Qp) and Ti(Qp). Then

[C̃ : CJ̃1(x)]
meas J(x)

=
[C̃ : CT̃i(x)]

[J̃1(x) : J(x)T̃i(x)]
· 1
measTi(x)\J(x) · 1

measTi(x)
.

The middle factor on the right combines with the denominator of the first factor to give

(meas T̃i(x)\J̃1(x))−1 = meas T̃i(x)/meas J̃1(x) .

On the other hand,

[C̃ : CT̃i(x)] = u(Ti)[Ũp : UpT̃i(x)]
and

[Ũp : UpT̃i(x)] =
[Ũp : T̃i(x)]
[Up : Ti(x)]

=
meas Ũp

measUp

· measTi(x)

meas T̃i(x)
.

The desired equality follows.
We started with a particular quadratic extension L, chose TL, and then ν∨

1 , ν
∨
2 , . . . , and g1, g2, . . . , as well as

T1, T2, . . . . On the other hand, in the previous paragraph we expressed at leaast part of the contribution to the
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sums (2.1) and (2.9) as a sum over T and ν. We may as well assume the T are the TL. Moreover the ν∨
i and the ν

are essentially the same. If

ν∨
i =

∑
v
ν∨
v and ν =

∑
νv

then

ν∨
v =

nv

[kp : Qp]
νv .

Since we are dealing with Frobenius pairs of the first kind, m′
v �= m′′

v for at least one v.
Let δi be the image of gi in D(T/Q)(T = TL) and δi∞ and δip the images of δi in D(T/R) and D(T/Qp).

Then
ΦT/κ(t, φp) = κ(δi∞)κ(δip)Φ

Ti/κ(t, φp) .

The term κ(δi∞) is 1 if κ is trivial and cancels the term β(ν) if κ is not trivial. The term κ(δip) if 1 if κ is trivial.
Otherwise it is just what is needed to allow us to refer the definition of the sign appearing in part (g) of our
summary of the discussion of (2.1) to Ti rather than T .

Observe that u(T ) is 1 when every place v of F dividing p is unramified, that the space X̃i, together with
the action of Φp, may be represented as a Cartesian product over the v dividing p, and that the expression is
then also a product. A comparison of the summaries in the previous paragraph with our results for Frobenius
pairs of the first kind shows that, in order to have perfect cancellation of the contributions of these pairs with
the contributions from the Selberg trace formula parametrized by the ν with m′

v �= m′′
v for some v, we need only

verify the combinatorial facts to be reviewed below.

Combinatorial facts to be proved. Before describing these facts, we recapitulate the relevant definitions in
the form and with the notation that is now appropriate. Fv ⊆ Qun

p ⊆ Qp is an unramified extension of Qp and
we take G to be ResFv/Qp

GL(2). The imbeddings of Fv in Qp are indexed by

G(Qun
p /Fv)\G(Qun

p /Q)

and the imbedding x → Φ−i
p (x) will also be labelled by the integer i. Let M 0 be a lattice in the space of column

vectors of length two over Ov invariant under G(Fv/Qp) and let K ⊆ GL(2, Fv) = G(Qp) be the stabilizer of
M0. K is a maximal compact subgroup. Let k be be completion of Qun

p . Then

G(k) = {(gi) | 1� i�n, g1 ∈ GL(2, k)} .

Let M0 also denote M0 ⊗ ok and let

K(k) = {(gi) ∈ G(k) | giM0 = M0 for all i} .

A point x in
X = G(k)/K(k)

is a sequence (Mi), 1� i�n, where Mi is an ok-lattice in the space of column vectors of length two over k. The
action of σ, the Frobenius of k, on (Mi) is σ : (Mi) → (M ′

i) with M ′
i = Mi=1, 2� i�n, and M ′

1 = σn(Mn), if in
the last equation σn denotes the usual action of σn on ok-lattices.

Suppose J0 is either a split Cartan subgroup of G or G itself, and T is a Cartan subgroup of J0 whose image
in J0ad is anisotropic. Let µ be a coweight of T of the form

n∑
i=1

aiγ
i
j(i) ,

with j(i) equal to 1 or 2 and ai equal to 0 or 1. The set {γij} is the standard basis of the lattice of coweights. We
suppose that

Nmkp/Qp
µ
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factors through the center of J0, but if J0 �= G not through the enter of G, and use µ as in the appendix to define
b, and then let F be the operator x → bσ(x).

The set X is a subset of X. If x = (Mi) and Y = Fx = (Ni), then x lies in X if and only if the following two
conditions are satisfied:

(i) M8 = Ni if i is an unmarked point.

(ii) Mi � Ni � pMi if i is a marked point.

Observe in particular that if (Mi) and (M ′
i) with M ′

i = giMi lie in X then ord(det gi) is independent of i.
If we fix an index i0, 1� i0 � n, we may define a function κ on X by

κ(x) = εord(det gi0 ),

if x = (Mi) and Mi = giM
0
i . Here ε is 1 if J0 is a split Cartan subgroup and ±1 if J0 is G. If g = gx with g = (gi)

in J(Qp) and u = ord(det gi), then
κ(g) = εuκ(x) .

If there are no marked places κ is independent of i0 even when ε = −1. If there are marked places a different
choice of i0 may change its sign, but that does not matter.

If e = [Ep : Qp] then Φp = Fe maps X to itself and we set

T jx = {g ∈ J(Qp) | Φjpx = gx} .

J is obtained from J0 by the usual inner twisting. Finally, if {x} is a set of representatives for the orbits of J(Qp)
in X and ψjx is the characteristic function of T jx , we set

ϕjκ(h) =
∑

{x}
κ(x)

measJ(x)

∫
J(h,Qp)\J(Qp)

ψjx(g
−1hg)κ(g)dg

with κ(g) = εord(Norm g). We must assume that g → x(g) is trivial on J(h,Qp).
Here is what we must establish.

(a) Suppose J0 is a split Cartan subgroup and ε = 1. Let

Nmkp/Qp
µ =

[kp : Qp]
n

(m′′δ1 + m′δ2)

with

δc =
n∑
i=1

γic, c = 1, 2 ,

m′ �= m′′, and m′ + m′′ = m, the number of marked places. Let l be the number of orbits under Φj
p and k

the number of marked orbits. Then ϕjκ(h) is 0 unless m/k divides m′ and m′′. However, if k′ = m′/km and
k′′ = m′′k/m are integral, then

ϕjκ(h) =
k!

k′!k′′!
pjeqθv(h)

with q equal to the smallest of m′ and m′′ and

ν = jcn−1(m′′δ1 + m′δ2)

(b) Suppose m′ = m′′ and they are both integral. Then J0 = J = G. Let t lie in the split Cartan subgroup
T and have distinct eigenvalues t1, t2. Let ε be 1. If k′ = m′k/m = k/2 and k′′ = m′′/m = k/2 are not integral,
then ϕjκ(t) is 0. Otherwise it is (

k

k/2

)pjem/2 |t1t2|1/2
|t1 − t2|1/2 θν(t)

with
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ν = jen−1(m′δ2 + m′′δ1) .

Suppose t lies in a Cartan subgroup T that is not split. If ε = −1, only the case of a T associated to an
unramified quadratic extension matters. If m �= 0, then ϕjκ(t) must be 0. If m = 0, then b = 1 and

ϕjκ(t) =
±1

measU
|t1t2|1/2

|(t1 − t2)2|1/2 .

Here U is the maximal compact subgroup of T (Qp), and the sign is to be determined by the rule given in part (g)
of the summary of our discussion of (2.1).

If ε = 1 but the eigenvalues are still distinct, then ϕjκ(t) is a sum of two terms. The first is{∑
0� i<k/2

pjem/k
(
k

i

)}
measT (Qp)\G′(Qp)

measK ′ Ξjem/n(t) .

Here G′ is the group obtained from the quaternion algebra over Fv , and K ′ is a maximal compact subgroup of
G′(Qp). The second term is 0 unless k/2 is integral, when it is

pjem/2
(

k

k/2

)
1

measK

∫
T (Qp)\G(Qp)

ϕejm/n(g−1tg)dg

if ϕejm/n is the characteristic function of (
�ejm/2n 0

0 �ejm/2n

)
K .

(c) The final case to consider is that m′ = m′′, and they are both half-integral. The formulae are to be the
same as before. Notice, however, that split T no longer come into question, and that k/2 can no longer be integral.

Notice also that Lemma 3.7 is a consequence of part (a).
Finally, we have to examine the contribution of Frobenius pairs of the second kind to the alternating sum

of the traces and compare it with the results of §2. We take the sum over conjugacy classes {h} in I(Q) of the
contributions N j(h) given by Lemma 3.8 and decompose it into stable and labile parts. The group I is now G′,
defined in the same manner as G, but in terms of a different quaternion algebra D′. The Hasse invariants of D′

are the same as those of D at all finite places that do not divide p, but they are 1
2 at every infinite place, and the

invariant at a place v dividing p is mv/2.
The contribution of the scalar matrices is already stable. It is a sum over Z(Q) ∩K\Z(Q). The terms of the

sum may be represented as products. The first factor is

meas(ZKG′(Q)\G′(Af ))
measZk

φp(h) .

In order to make the comparison with the results of §2, we must recall a simple property of Tamagawa numbers,
viz.,

meas(ZKZ(R)G(Q)\G(A)) = meas(ZKZ(R)G′(Q)\G′(A)) .
The measure on the right is equal to

meas(Z(R)\G′(R))meas(ZKG′(Q)\G′(Af ))

The second factor is ϕj(h), defined with respect to the space X associated to G. Since it is X̃ , the space
associated to G̃1, that factors as a Cartesian product, we want to replace ϕj(h) by ϕ̃j(h). Lemma 3.10 is still valid,



Zeta-functions of some simple Shimura varieties 52

and hence every orbit of J̃1(Qp) = G̃′
1(Qp) in X̃ meets X . The number of orbits of J(Qp) = G′(Qp) contained

in the J̃1(Qp)-orbit of x is

[C̃ : CJ̃1(x)] .

Here C̃ is again a maximal compact subgroup of J̃1(Qp) containing J̃1(x). Since

[C̃ : CJ̃1(x)] =
[C̃ : J̃1(x)]
[C : J1(x)]

=
meas C̃

measC

measJ1(x)

meas J̃1(x)
and

meas C̃
measC

=
meas K̃p

measKp
,

we may replace ϕj(h) by ϕ̃j(h), provided that we multiply by the quotient

meas K̃p/measKp .

If we observe that
∑

mv is the dimension of the Shimura variety, we see that, to establish that the contribution
of the scalar matrices is equal to their contribution to (2.9), we need only the following:

Additional combinatorial facts. We must revert to the notations ued when describing the other combinatorial
facts to be proved.

(d) Let κ be identically 1 and let z lie in the center of G′(Qp). If k is odd, then ϕjκ(h) is equal to

− (|�v|−1 − 1)
measK

Ξjem/n(z)
{∑

0� i<k/2

(
k

i

)
pjemi/k

}
.

If k is even, it is the sum of this and
1

measK
Ξjem/n(z)

(
k

k/2

)
pjem/2 .

The contribution of the non-scalar elements in G′(Q) remains to be treated, but for it no new combinatorial
facts are needed. The treatment is by now routine. We obtain a double sum, over a set of representatives T for
the stable conjugacy classes of Cartan subgroups, and over the characters κ of

E(T/A)/ImE(T/Q) = E(T/Af )/\E(T/Af ) ∩ ImE(T/Q) .

Each term is itself a sum over h in ZKT (Q)\T (Q) of

µ(T )
2[E(T/A) : ImE(T/F )]

trace ξ(y)ΦT/κ(t, φp)

times ∑
δ∈E(T/Qp)

κ(δ)ϕj(hδ) .

This sum is basically the same as (3.2), except that ϕj(hδ) is here defined with respect to a fixed X rather than
with respect to varying Xg. It may, however, be treated in exactly the same way, with the same conclusions.

This is the reason that no additional combinatorial facts are needed. Now m′
v = m′′

v for all v, whereas earlier
this happened only for some v. Since we factored the set into a product over v, every possibility for the individual
factors has had to be taken into account already.

4. Combinatorics.
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The preparation over, we come now, with sighs of relief from reader and author, to the amusing part of the
paper. The combinatorial facts to be verified turn out to be statements about a simple type of tree, the Bruhats-Tits
buildings for SL(2). They may well be familiar to combinatorialists, but a cursory glance at the standard texts
yielded nothing of help.

The notation will now be that used when stating the facts to be proved. Once a few preliminary remarks
are out of the way, we will be able to dismiss most of the preceding discussion from our minds, and indulge
ourselves in a little elementary mathematics.

We have agreed to take b = 1 whenµ = 0. Otherwise, we have not made any particular choice of the element
b used to define X . It will be convenient to do so for the calculations of this paragraph. b lies in J0(k), but we are
free to modify it to cbσ(c−1) with c in J0(k). Thus we can suppose it is of the form b = (bi) with

b2 = . . . = bn = 1 and b1 = B .

If J0 is a split torus, which we take to be the group of diagonal matrices, we may take

B =
(
pm′′

0
0 pm′

)
.

If J0 is G we may take

B =
(
pm/2 0
0 pm/2

)
when m is even and

B = pm−1/2
(
0 1
p 0

)
when m is odd. There is no real need for a specific choice of B, but it does no harm.

A point x ∈ X is represented by a sequence {Mi | 1� i�n}. Define Mi for all i ∈ Z by the periodicity
condition

Bσn(Mi+n) = Mi .

In addition, extend the notion of marked or unmarked point by periodicity. Then {Mi} defines a point of X if
and only if the following conditions are satisfied.

(o) Bσn(Mi+n) = Mi ;

(i) At an unmarked point i, Mi = Mi−1 ;

(ii) At a marked point i, Mi � Mi−1 � pMi .

The supplementary condition is absorbed into (i) and (ii). Because of the special form of b, it states simply that, if
Mi = giM

0
i , then

ord(det(gig−1i−1)) =
{

0, i unmarked,
−1, i marked .

The operation of Φjp takes (Mi) to (M ′
i) with

M ′
i = Mi−ej .

The point h = (hi), 1� i�n, lies in J(Qp) if and only if hi is independent of i and

Bσn(hi)B1 = hi

for all i. It will be convenient to change the notation slightly and to write h = (h, . . . , h), that is, we identify h
with any one of its coordinates. If x = (Mi), then h ∈ T jx if and only if

Mi−ej = hMi
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for all i.
If M and M ′ are two-dimensional lattices over ok, they are said to be homothetic if M ′ = λM with λ ∈ kx.

Let M be the class of lattices homothetic to M . The Bruhat-Tits building for SL(2, k) is a tree whose vertices
consist of the homothety classes of lattices, the classes M and N being joined by an edge if, for some λ ∈ kx,

M � λN � pM .

σ acts on this building and the fixed point set of σj is the Bruhat-Tits building for SL(2, k) if k is the unramified
extension of Qp of degree j.

The point x in X determines an infinite path in the building

-1 0 = 21 MM M M

with vertices M i. If x and x′ = (M ′
i) determine the same path then, because of conditions (i) and (ii), there is a

z ∈ Z(Qp) for which x′ = zx, that is, M ′
i = zMi for all i. Since J(Qp) contains Z(Qp), x and x′ lie in the same

orbit. Observe also that if we have a sequence (M i) satisfying the following three conditions, then it may be
lifted to a point of X .

(o) BM i+n = σ−n(M i);

(i) M i = M i−1 if i is unmarked;

(ii) M i and M i−1 are joined by an edge if i is marked.

We may as well dispose immediately of the case that µ = 0 and B = 1. Then J(Qp) = G(Qp) = GL(2, Fv),
and Mi = M is independent of i. Since BMi+n = σ−n(Mi), L is actually a lattice over Fv. There is only one
orbit and we may take it to be the point with M = M 0 or, if we were being extremely precise, M 0 ⊗ ok, but
at present it is best not to distinguish between a lattice over ov and the lattice over ok it determines. If ψ is the
characteristic function of K , then

ϕjκ(h) = (measK)−1
∫
G(h,Qp)\G(Qp)

κ(g)ψ(g−1hg)dg .

That ϕjκ(h) has the desired value when h is regular and lies in a split torus follows form the properties of the
Satake homomorphism. That it has the desired value otherwise is immediate for κ trivial, and follows from an
observation in §2 of [7] when κ is not trivial.

It is also easy to show that, if there are marked points and κ is not trivial, then ϕjκ(h) is 0. Suppose x = (Mi)
is a point of X . We may define another point x′ = (M ′

i) by demanding that M ′
i = Mi′ whenever i is marked and

i′ is the first marked point following i. If h ∈ J(Qp) and y = hx, then y′ = hx′. Moreover

κ(x′) = −κ(x) .

Since ϕjκ(h) can be calculated by a sum over {x′} rather than a sum over {x}, we conclude that ϕjκ(h) = −ϕjκ(h).
We suppose henceforth not only that there are marked points, but also that κ is trivial, and fix our attention

on a specific h in J(Qp). We observe first of all that ϕjκ(h) is the sum over the orbits of J(h,Qp), the centralizer
of h in J(Qp), of

κ(x)ψjx(h)/measJ(h, x) .
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Here J(h, x) is the stabilizer of x in J(h,Qp). To see this start from the definition of ϕjκ(h) as

∑
{x}

κ(x)
measJ(x)

∫
J(h,Qp)\J(Qp)

κ(g)ψjx(g
−1hg)dg .

This expression is equal to

∑
{x}

κ(x)
meas J(x)

∑
J(h,Qp)\J(Qp)/J(x)

κ(g)ψjgx(h)×meas(J(h,Qp)\J(h,Qp)gJ(x)) .

Since
κ(g)κ(x) = κ(gx)

and
meas(J(h,Qp)\J(h,Qp)gJ(x))

meas J(x)
=

1
measJ(h, gx)

,

the assertion follows.
We are therefore interested only in the set U of those x for which h ∈ T jx . Suppose we have a subset U ′ of U

and an open subgroup J0 of J(h,Qp) satisfying the following three conditions.

(i) Every orbit of J(h,Qp) in U meets U ′.

(ii) If x and y in U ′ lie in the same orbit of J(h,Qp), then x = gy with g ∈ J0.

(iii) For all x ∈ U ′, J(h, x) is a subgroup of J0.

It is then clear that

(4.1) ϕjκ(h) = measJ0
∑

x∈U ′ κ(x) .

We also want to reformulate the two conditions of periodicity:

(a) σn(BMi) = Mi−n;

(b) hMi = Mi−ej .

Let uej + vn = l. I claim that (a) and (b) are equivalent to the conditions

(c) σejn/l(Mi) = B−ej/lhn/lMi;

(d) huBvσvn(Mi) = Mi−l.

From (b)
hn/lMi = Mi−enj/l .

Since σ(B) = (B), the relation (a) implies that

Mi−enj/l = σenj/lBej/lMi ,

and we deduce (c). Applying (a) and (b) again, we have

Mi−l = Mi−vn−uej = huMi−vn = huBvevn(Mi) .

Conversely, if we assume (d), we may write

Mi−n = Mi−ln/l = hun/lBvn/lσvn
2/l(Mi)
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because h ∈ J(Qp) and
Bσn(h) = hB .

We then apply (c) to infer that the right side of

hun/lBvn/lσvn
2/l(Mi) = hun/lBB−uej/lσn−uejn/l(Mi)

is equal to
Bσn(Mi) = σn(BMi) .

This is (a). To deduce (b) from (c) and (d), we write

Mi−ej = Mi−lej/l = huej/lBvej/lσvejn/l(Mi) ,

and replace the right side by
h−vn/lBvej/lσvejn/l(Mi) = Mi .

The conditions (c) and (d) will be more useful than (a) and (b), but there is still one useful consequence to
be drawn from (a). Consider the set Ā of points M in the Bruhat-Tits building for which dist(M,σn(BM)) is a
minimum. It is clear that Ā is invariant under M → σn(BM). Moreover, Ā is convex, in the sense that every
vertex on the path joining two points of Ā is again in Ā. To prove this statement, we proceed by induction on the
length of the path. Thus it is enough to show that if M and N lie in Ā but no other point on the path joining M
and N does, then M and N are adjacent.

We examine first the path connecting M and σn(BM)

M

L Mnσ B( )

if M �= σn(BM) and L̄ is the point in the path succeeding M then

dist(L̄, σn(BL̄))� dist(M,σn(BM)) .

Since we must have equality, σn(B,M) is on the path joining L̄ to σn(BI)

Mnσ B( )L

nσ LB( ) .

Observe that L̄ lies in Ā.
Returning to M and N , we notice that we can construct a cycle of the form:

Mnσ B( )

nσ NB( )

M

N



Zeta-functions of some simple Shimura varieties 57

If M and N are not adjacent, the sides can have no edge in common with the top or bottom, and the cycle is not
trivial. This is impossible, because the building is a tree.

Suppose x = (Mi) lies in X . Let M i0 be such that

dist(M i0 , Ā)� dist(M i, Ā)

for all i. I claim that M i0 ∈ Ā. Otherwise, we could again construct a nontrivial cycle

M i
0

M i
0

+1 M i
0

+n

M B-1 n- M( )σ

Here M is the point in Ā closest to M i0 .
The skeleton S(x) of x = (Mi) in X will either be the set of integers i for which M i ∈ Ā or the path formed

by joining these vertices in succession. Suppose, for example, that Ā is

. . .. . .

and M → σn(BM) is a shift to the left by two. Let n be 8. Then the skeleton could be

M M51 = M 9

M6 M 8=

To form the full path we have to add subpaths which issue from Ā. Thus the full path, or at least a representative
part, could be

M6 M 8=

=M M2 4

M M51 = M 9

M 3

M7

The sets A are easily described explicitly. If J(Qp) is the split Cartan subgroup, then A consists of the
lattices M(u′, u′′) formed by the set of (

�u′
x

�u′′
y

)



Zeta-functions of some simple Shimura varieties 58

with x, y in ok. Here u′ and u′′ are any two integers. The set Ā is an infinite line

. . .. . .

and M → σn(BM) is a shift of size |m′ − m′′|. We take it to be to the right.
If J(Qp) is GL(2, Fv), then A is the set of lattices defined over Fv and m → σn(BM) acts trivially on Ā. If

J(Qp) is G′(Fv), then Ā consists of two points, the image of the lattice formed by(
x

y

)
, x, y ∈ ok,

together with the image of the lattice formed by(
x

�y

)
, , x, y ∈ ok .

The map M → σn(BM) interchanges the two points in Ā.
The sets A and Ā are invariant under J(Qp), and J(Qp) acts transitively on Ā. I now introduce a convex

subset D̄ of Ā, as well as D, the set of lattices M for which M ⊆ D̄. D̄ will be invariant under J(h,Qp). If h
is central in J(Qp), then D̄ will be Ā. Otherwise, J(h,Qp) is a Cartan subgroup of J(Qp). We can pass to an
extension bv, at most quadratic, of Fv that splits J(h). The Bruhat-Tits building over Fv becomes, perhaps after
taking the first barycentric subdivision, a subset of the Bruhat-Tits building over Lv (cf. §3 of [15]). Over Lv
we may associate an apartment to J(h,Qp). D̄ is to consist of the points in Ā at a minimum distance from this
apartment. It is geometrically clear that D̄ can contain at most two points.

It is also easily seen (cf. §3 of [15]) that in all cases D̄ is a connected tree and that the same number q0 + 1
of edges issue from each vertex. We tabulate the possibilities and give, in addition, the number f of orbits in D̄
or D under the action of J(h,Qp).

(a) J0 = J is a split torus. Then q0 = 1 and f = 1.

(b) J0 = G and h is central. Then q0 = pn and f = 1.

(c) J0 = G and the centralizer of h is a split torus. Then q0 = 1 and f = 1.

(d) J0 = J = G and the centralizer of h is not a split torus. If the extension splitting J(h) is unramified, then
q0 = −1 and f = 1. If it is ramified, then q0 = 0 and f = 1.

(e) J0 = G but J = G′, and the centralizer of h is not a split torus. If the extension splitting J(h) is unramified,
then q0 = 0 and f = 2. If it is ramified, then q0 = 0 and f = 1.

The reduced skeleton RS(x) will either be the set of i on which dist(L̄i, D̄) attains its minimum or the path
obtained by joining these points in order. The reduced skeleton is contained in the skeleton. We choose a set of
representatives D1 for the orbits of J(h,Qp) in D. Then D̄1 is a set of representatives for the orbits of J(h,Qp)
in D̄. In all cases but one, D1 consists of a single element. All points of D1 have the same stabilizer J0 and J0 is
a maximal compact subgroup of J(h,Qp).

We may now define the set U ′. For each possible reduced skeleton RS, we choose an integer i(RS) in it.
Then U ′ consists of those x = (Mi) which are such that if RS = RS(x) and i = i(RS), then the minimum distance
from the path ( . . . ,M−1,M0,M1, . . . ) to D̄ is equal to dist(M i, N) with N ∈ D1 and Mi = gN with

order(det g) = dist(M i, N) .

To verify that U ′ satisfies the three conditions imposed, we have only to observe that if g is any element of
J(h,Qp) and, for the same Mi and N ,

dist(gM i, N) = dist(M i, N) ,

then gN = N .
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There are some remarks to be made about the periodicity condition (c) before we examine the set U ′ more
closely. Since that condition is to be valid for all i, it implies in particular that if ϕjκ(h) �= 0, the transformation

M → h−n/lBej/lσejn/l(M)

has a fixed point in D, because it fixes a point in the reduced skeleton and therefore the closest point in D̄ to the
reduced skeleton. Recalling that in all but a single case there is only one orbit in D, and that in the exceptional
case D̄ consists of two points, we conclude that the transformation fixes every point of D. So does σejn/l . Thus,
h−n/lBej/l fixes every point of D.

Examining the various cases, we come to the following conclusions about the nature of those h for which
ϕjκ(h) �= 0.

(a) If J0 = J is a split torus, then

h =
(
α 0
0 β

)
with

|α| = |�ejm′′/n|, |β| = |�ejm′/n| .

In particular, n must divide ejm′ and ejm′′, and consequently n/l = m/k must divide m′ and m′′.
(b) If J = G and the centralizer of h is a split Cartan subgroup, then the eigenvalues α and β of h have equal
absolute values and

|α| = |β| = |�|ejm/2n .

(d) J0 = G and the centralizer of h is not split, then

|Normh| = |�|ejm/n .

In all cases, the order of the determinant of huBv is

uejm/n+ vm = ml/n = k .

The conditions described here are also sufficient for the transformation to fix every element of D. Moreover,
thatϕjκ(h) is 0 when they are nto satisfied is a part of the combinatorial facts to be proved. We suppose henceforth
that the conditions are satisfied.

Suppose
M = h−n/lBej/lσejn/l(M) .

The set of points in the Bruhat-Tits building over k that can be joined to M by an edge may be viewed as the
projective line over the algebraic closure of the finite field Fp. The transformation

N → h−n/lBej/lσejn/l(N)

allows us to put on it the structure of a projective line over Fpd , d = ejn/l. According to Lang’s theorem, there
is only one such structure. Thus the set of N that are fixed by the transformation and can be joined to M by an
edge contains pejn/l + 1 elements.

If the minimum distance from { . . . ,M−1,M0,M1, . . . } to D̄ is positive, then the path of the reduced
skeleton consists of a single point, say Mi. Since D̄ is invariant under Bσn and under h, the periodicity condition

M i−1 = huBvσvn(M i) = huM i
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implies that M i−1 also lies in the reduced skeleton. Hence M i−1 = M i when the minimum distance is positive,
as we now assume. Since u and n/l are relatively prime, we deduce from the two equations

huM i = M i and h−n/lM i = M i

that

hM i = M i .

Since there are k marked points in an interval of length l, the path from M i to M i−1 = M i must have k edges.
Consequently, points of the above type can exist only for k even.

It is now an easy matter to construct the points of U ′ for which the minimum distance to D̄ is positive.
Given a possible reduced skeletonRS and i = i(RS), we choose anyM i and Āwhich is fixed byh, and construct a
path M i,M i−1, . . . ,M i−l, from M i to M i−l. To construct it we must suppose that k is even. Then M i′−1 = M i′

if i′ is unmarked and one of the pejn/l + 1 elements that can be joined to M i′ by an edge and satisfy

hn/lM i′−1 = bej/lσejn/l(M i′−1)

if i′ is marked. We say that the edge from M i′ to M i′−1 is progressive or retrogressive according as Mi′−1 is at a
greater or a lesser distance from D̄ than M i′ . We must be careful that at any stage we have added at least as many
progressive as retrogressive edges, for otherwise we would approach too closely to D̄, and we must ultimately
take as many retrogressive as progressive steps, in order that we arrive back at M i = M i−l. Indeed we must be
careful to return to the initial M i at any i′ that lies in the given rational skeleton. Finally, we have to choose M i

so that the closest point to it in D̄ is an N with N in D1. We define M i′ in general by the periodicity condition
(d), and we lift the full path to a point x = (Mi′) in X with Mi = gN and

order(det g) = dist(M i, N) .

Then x lies in U ′.
There are some observations to be made. First of all, the number W of points that are yielded by a

given choice of M i and all possible choices of the reduced skeleton and all possible paths from Mi to M i−l is
independent of M i. We shall show that

(4.2) W =
(

k

k/2

)
pejm/2 .

The minimum distance can be positive only when D �= A, that is, only when J(Qp) = G(Qp) and J(h,Qp)
is a Cartan subgroup. Then A is just the Bruhat-Tits building over Fv . The argument that led to (4.1) shows that
if T (Qp) = J(h,Qp) and |deth| = |�|ejm/n then

(4.3) (measKp)−1
∫
T (Qp)\G(Qp)

ϕejm/n(g−1hg)dg

is (measUp)−1 times the number of points M in the Bruhat-Tits building over Fv that are fixed by h and satisfy

dist(M, D̄1)� dist(M, D̄) .

However,
(
k
k/2

)
pejm/2 times (4.3) is the second term of the desired formula for ϕjκ(h) when κ is trivial. Therefore,

the contribution to (4.3) of those M for which

0�dist(M, D̄1)� dist(M, D̄)

is yielded by those x for which the minimum distance from{ . . . ,M−1,M0,M1, . . . } to D̄ is positive.
The equality (4.2) is a consequence of the next lemma, which will be proved towards the end of the

paragraph. Let T1 be a connected tree and suppose that from every vertex of T1 there issue q1 + 1 edges, with
q1 � 0. Let k � 0 be an even integer, and for each nonempty subset S of Z with period l choose i = i(S) in S. Let
P be a point of T1 and L an edge containing it.
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Lemma 4.1. Let k be the set of pairs (x, S) where x = (Pi, Pi−1, . . . , Pi−k), with i = i(S), is a path from P to
P in T1 with no edge in L and with Pi′ = P if and only if i′ ∈ S. The number of pairs in k is then(

k

k/2

)
q
k/2
1 .

The equality (4.2) follows upon taking q1 = pejn/l . This lemma will be proved at the same time as another
lemma from which we can deduce the combinatorial facts needed but not yet proved. Suppose T0 ⊆ T1 is another
connected tree and that there issue q0 + 1 points from every vertex of T0. Let P and P ′ be two points in T0 a
distance d apart and let r = (k − d)/2 be a non-negative integer.

Lemma 4.2. Let Q be the set of pairs (x, S) where x = (Pi, Pi−1, . . . , Pi−k) is a path from Pi = P to Pi−l = P ′

and Pi′ ∈ T0 if and only if i′ ∈ S. The number of points in Q is

−
∑

0� a<r
(q0 − 1)

(
k

a

)
qa1 +

(
k

r

)
qr1 .

This lemma will enable us to count the number of paths in U ′ for which the minimum distance to D̄ is 0.
The reduced skeleton is then a path in D̄. The distance

d = dist(L̄, huBvσvn(L̄))

is constant on D̄. If J0 = G then d is 0 if k is even and is 1 if k is odd. If J0 is a split Cartan subgroup, then

huBv =
(
αu�vm′′

0
0 βu�vm′

)
and ∣∣∣∣∣αu�vm′′

βu�vm′

∣∣∣∣∣ = |�|v(m′′−m′)+uej(m′′−m′)/n = |�|(k′′−k′) .

Consequently, d = [k′′ − k′] = k − 2r if r is the minimum of k′ and k′′.
To construct the set U ′

0 of points of U ′ whose reduced skeleton lies in D̄, we have merely to construct the
associated path in the Bruhat-Tits building over k, for we can uniquely lift the path to a point in U ′. If RS is
the reduced skeleton, we have only to construct that part of the path lying between i(RS) and i(RS) − l, for we
may complete the part of the path to the full infinite path by invoking the periodicity condition (d). Moreover,
the unmarked points are irrelevant, for at them we just mark time, and so we might as well discard them and
obtain the new period k. The reduced skeleton is also a path in D̄ labeled by the points of RS. That part of it
between i(RS) and i(RS)− k joins M i(RS) = M in D̄1 to M i(RS)−k = huBvσvn(M). We complete the reduced
skeleton to the complete path segment fromM i(RS) toM i(RS)−k by adding flagella which project into the ambient
Bruhat-Tits building. Thus, if n = 8 and i = i(RS), the reduced skeleton could be

M i M i-1

Mi-7

M i-2 Mi-6
=

M i-8

. . .. . .

and the full path

M i M i-1

Mi-7

M i-2 Mi-6
=

M i-8

M i-3 Mi-5

M i-4

=
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Applying the lemma with q1 = pejn/l, we see that the number of points inU ′ for which the reduced skeleton
lies in D̄ is

(4.4) f

{(
k

r

)
pejnr/l − (q0 − 1)

∑
0� a<r

(
k

a

)
pejna/l

}
,

if f is the number of orbits of J(h,Qp) in D̄.
To see that this gives us all the combinatorial facts we needed, we just have to run through the various

possibilities, adding the occasional simple comment. If J(h,Qp)is a split Cartan subgroup, then q0 = 1, q0−1 = 0,
and f = 1. Moreover, nr/l = q is the smallest of m′ and m′′. Thus

|U ′
0|

measJ0
=

1
measUp

(
k

k′

)
pejq

is the anticipated value ofϕjκ(h) if k′ �= k′′. If k′ = k′′, it is exactly what is required to supplement the contribution
to ϕjκ(h) from U ′ − U ′

0.
Suppose J(h,Qp) is a Cartan subgroup of J(Qp) but is not split. Then −f(q0− 1) is 2 if the corresponding

extension is unramified and 1 if it is ramified. If T (Qp) = J(h,Qp), then

measT (Qp)\G′(Qp)
measK ′ =

−f(q0 − 1)
measUp

.

Up is the maximal compact subgroup of T (Qp).
If k is odd, then U ′ = U ′

0. Moreover, the extension can be unramified only if m is odd; but then J(Qp) =
G′(Qp) and f = 2. The value of ϕjκ(h) is seen to be exactly that stated in the list of combinatorial facts to be
proved. If k is even, the value of ϕjκ(h) is given there as a sum of two terms, the first a sum over 0� i < k/2. This
term is yielded by the second part of (4.4), a sum over 0�a < r = k/2. The second part of ϕjκ(h) was expressed
in terms of the integral (4.3). Most of it was accounted for by the contribution from U ′ − U ′

0. The remainder is
taken care of by the first term of (4.4). Notice that f must be 1 if k is even.

Suppose, finally, that h is central. Then U ′ = U ′
0 and q0 = |�v|−1. It is consequently manifest that ϕjκ(h)

has the anticipated value.
We have still to prove Lemmas 4.1 and 4.2. Since there is nothing else to be done, all symbols apart from

those entering the statements of these two lemmas are free. The skeleton of a pair (x, S) in P or Q is S. If (x, S) is
in P, an edge will be called progressive if it is moving away from P . If it is in Q, an edge will be called progressive
if it is moving away from T0. An edge that is not progressive will be called retrogressive. The sense of the path is
from Pi to Pi−l.

We represent that part of the skeleton lying between i = i(S) and i− l as

×
i
©××© © ©× . . .×

i−l

The points in S are unmarked. If there is to be any pair with S as skeleton, the gaps must all be of even length.
Let there be m = m(S) gaps of length 2s1, . . . , 2sm. Given a pair (x, S), we add to S the integers j′ for which the
edge from Lj′ to Lj′−1 is progressive if i� j � i− l and j ≡ j′(mod k). The result will be called the frame F . We
can recover S from F . To do this, let εj be +1 or −1, according as j is or is not in F . If j2 � j1, set

Nj1,j2 =
j1∑
j=j2

εj .

Then j1 ∈ S if and only if Nj1,j2 � 0 for all j2. There are k − s points in a period of F and k − s� k/2.
Conversely, suppose we start from a subset F of Z which is periodic of period l and contains k − s� k/2

points in each period. Define εj and Nj1,j2 as before, and let S be the set of j1 for which Nj1,j2 � 0 whenever
j2 � j1. We verify by induction that S is not empty. Choose j1 ∈ F . If j1 ∈ S, there is nothing to prove.
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Otherwise, choose the largest j2 � j1 for which Nj1,j2 < 0. Then j2 < j1 because j1 ∈ F and Nj1,j2 = 1.
Moreover, j2 > j1 − k because

Nj1,j2−l = (k − 2s) +Nj1,j2 .

Finally, the set {j2 + 1, . . . , j1} must contain an even number of elements because Nj1,j2+1 = 0. Discard this set
and all sets congruent to it modulo k, and pull the remaining points together to obtain a new set F ′ of period
k − (j1 − j2). Since exactly half of the points {j2 + 1, . . . , j1} lie in F , the set F ′ contains

k − s− 1
2
(j1 − j2)

points within a period and

k − s− 1
2
(j1 − j2)�

1
2
(k − (j1 − j2)) .

It is clear that F and F ′ have the same skeleton. The induction assumption guarantees that the skeleton of F ′ is
not empty.

The points in S immediately preceding the gaps, as one moves toward smaller integers, will be called
extremities. The integer j1 is an extremity if and only if Nj1,j2 = 0 for some j2 � j1. To a frame we can attach:

(i) the skeleton;

(ii) the number m of extremities within a period;

(iii) to each extremity iα, 1�α� m, i− k < iα � i the length 2sα of the succeeding gap;

(iv) the spine, which is obtained from the skeleton by discarding the extremities. If s =
∑

sα, the spine has
k − 2s elements in a period and may therefore be empty.

We want to treat the two lemmas in a uniform manner, and to this purpose we introduce, when dealing
with Lemma 4.1, the tree T0 consisting of P alone. We take P ′ to be P , and let q = 0, q0 = −1. When dealing with
Lemma 4.2, we take q to be q0. Let N(c) be the number of paths of length c in T0 joining P to P ′. The number of
elements in P or Q is

(4.5)
∑

(1− q/q1)mqs1N(k − 2s) ,

the sum being taken over all possible frames. To see this we observe that to construct a path x = (Pi, . . . , Pi−k),
we first take one of the N(k−2s) paths from P to P ′ in T0, with points labeled by the integers between i and i− l
lying in the spine, and then at each extremity add one of the q1 − q possible edges from T0 into T1, and finally, at
all other points of the frame, add one of the q1 possible progressive edges.

The expression (4.5) is equal to

(4.6)
r∑
l=0

{∑
m � l

(
m

l

)
(−q)lN(k − 2s)

}
qs−11 .

The inner sum is taken over all frames with m � l. It can be put in a more manageable form.
If we have a frame F with k−s elements and m � l, then s� l. We construct

(
m
l

)
new frames with k− (s− l)

elements. Take any subset E of the extremities with l elements (within a period) and, for each element of the
subset, add to F the last element of the gap in the skeleton following it. Since the added elements do not lie in
F , the result is a frame with k − (s− l) elements. The added elements will not be extremities of F ′, because the
skeleton S of F is contained in the skeleton S ′ of F ′. The extremities of F ′ are the extremities of F that do not lie
in E.

The procedure yields not only F ′ but also a subset E′ of its spine. E′ consists of the added elements, and
any two elements of E′ are separated by a point in the spine of F ′. Conversely, suppose we start with F ′ and a
set E′ of l separated points in its spine. Remove these l points from F ′. The result is still a frame, and the skeleton
S of F is contained in the skeleton S′ of F ′. The points of E′ lie in the gaps of S. I claim that they are the last
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points of the gaps in which they lie. Since we may argue by induction, we have only to show that if j is a point of
the spine, j′ is the smallest point of the spine with j < j′, j′ < j + l, and we remove j from F ′ to obtain F , then
the skeleton of F is obtained by removing all j1 with j � j1 < j′ from the skeleton of F ′.

We must certainly remove j. Let j1 with j < j1 < j + l lie in the skeleton of F ′. Suppose first that
0 < j1 < j′. Then j1 must be an extremity, and so N ′

j1,j2 = 0 for some j2. If j2 � j, then

N ′
j1,j2 = N ′

j1,j+1 +N ′
j,j2 �N ′

j,j2 > 0 ,

because j lies in the spine. This is impossible and j < j2 < j1. If j3 < j2, then

0�N ′
j1,j3 = N ′

j1,j2 +N ′
j2−1,j3 = N ′

j2−1,j3 .

Thus, j2 − 1 also lies in the skeleton. Iterating, we conclude that

N ′
j1,j+1 = 0 .

Hence, N ′
j1,j

= −1, and j1 is not in the skeleton of F .
Now suppose that j′ � j1 < j + l. If j1 � j2 > j, then

Nj1,j2 = N ′
j1,j2 � 0 .

If j − l < j2 � j, then

Nj1,j2 = N ′
j1,j2 − 1 = N ′

j1,j′+1 + (Nj′,j+1 − 1) + (Nj,j2 − 1) .

Since j and j′ lie in the spine, all summands on the right are positive or zero.
Let Sn,l be the number of ways of choosing l separated points from a cyclic set with n elements. We now

regard the inner sum in (4.6) as taken over all F ′ with k − (s− l) elements, and all possible choices of E′. Since
the spine of F ′ has k − 2(s− l) elements and there are

(
k
s−l

)
possible choices for F ′, the sum (4.6) is equal to

∑r

l=0

∑r

s=l

(
k

s− l

)
(−q)lN(k − 2s)Sk−2(s−l),lq

s−l
1 .

We reverse the order of summation and replace s− l by l to obtain

∑r

s=0

∑s

l=0

(
k

l

)
(−q)s−lN(k − 2s)Sk−2l,s−lql1 .

We then change the order of summation once again, and consider∑r

s=l
(−q)s−lN(k − 2s)Sk−2l,s−l .

Here we substitute s for s− l to obtain

(4.7)
∑r′

s=0
(−q)sN(k′ − 2s)Sk′,s

with r′ = r − l, k′ = k − 2l.
To establish the lemmas, we must show that the sum (4.7) has the following values.

(i) When q = 0 and q0 = −1, it is 0 unless r′ = 0, and then it is 1.

(ii) When q = q0, it is 1 if r′ = 0 and −(q0 − 1) if r′ > 0.
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Observe that in the first case d = 0 and k′ = 2r′. If q = 0, the sum reduces to

N(k′)Sk′,0 .

If q0 = −1, then N(k′) = 0 unless k′ = 0 and N(0) = S0,0 = 1. If q = q0 = −1, the k′ = 2r′ and the sum reduces
to

N(0)S2r′,r′ = S2r′,r′ .

Since S2r′,∩′ is 2 if r′ > 0, the value of the sum is again correct. If q = q0 = 0, the sum reduces to

N(k′)Sk′,0 .

Since N(k′) is always 1 when q0 = 0 and since Sk′,0 = 1 for all k′ � 0, the value is again correct.
Suppose that q = q0 > 0. We regard Sk′,s as the number of ways of choosing a set of s points from 1, . . . , k′

which is cyclically separated. Let S0k′,s be the number of ways of choosing such X which do not contain k′. We
first show that

(4.8)
∑r′

s=0
(−q0)sN(k′ − 2s)S0k′,s = 1 .

Suppose that X doe snot contain k′. Remove from {1, . . . , k′} the points of X and their immediate
successors. This leaves k′ − 2s points which can be used ot label the edges of a path of length k′ − 2s from P to
P ′. Starting from this path and the labeling, we construct qs0 new paths of length k′. Choose any edge emanating
from P and cal it the exceptional edge. The exceptional edge at any other point will be the edge leading toward
P . If i ∈ X and there is no i′ < i not in X , then we add to the path an adge issuing from P and then the same
edge in the opposite direction. We are allowed to take any but the exceptional edge. These new edges are labeled
by i and i + 1. If there is such an i we take the largest and add an adge and its opposite in just the same way,
except that it must issue form the final point of the edge labeled by i− 1, and it must not be the exceptional edge.
Carrying this out for each i ∈ X , we obtain a path of length k′ from P to P ′ labeled by 1, . . . , k′.

The sum (4.8) is a sum over all paths from P to P ′ of length k′ of the sum over s of (−1)s times the
multiplicity with which it is obtained by the above construction. The sum over s is easily evaluated. Given a
path of length k′, let n be the number of subpaths of length two which consist of a move out from a point along
an edge which is not exceptional and a return. Then the sum is∑n

s=0
(−1)s

(
n

s

)
.

It is 0 unless there are no such subpaths, and then it is 1. A little reflection convinces one that there are no such
subpaths in only one case, that of the path which moves out from P along the exceptional edge and returns r′

times, and then proceeds directly to P ′. This establishes (4.8).
Let S1k′,s be the number of ways of choosing X so that it does contain k′. To complete the proof of the

lemma, we have only to show that ∑r′

s=1
(−q)s−1N(k′ − 2s)S1k′,s = 1

if r′ � 1 and k′ � 2. A separated subset of {1, . . . , k′} that contains k′ yields, upon removal of k′, a separated
subset of {2, . . . , k′ − 1} that does not contain k′ − 1. Conversely, a separated subset of {2, . . . , k′ − 1} that does
not contain k′ − 1 yields, upon addition of k′, a separated subset of {1, . . . , k′}. Thus

S1k′,s = S0k′−2,s−1 ,

and our sum is equal to ∑r′−1
s=0

(−q0)sN(k′ − 2− 2s)S0k′−2,s−1 ,

which is have already seen to equal 1.
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Appendix.

Suppose (γ, h0) is a Frobenius pair [13]. We choose a Cartan subgroup T over Q such that Tad, the image of
T in I0ad, is anisotropic at infinity and p, and let kp be a finite Galois extension of Qp which splits T . We suppose
h0 factors through T and let µ∨ be the coweight h00 of T . We set

ν∨ =
∑

τ∈G(kp/Qp)
τµ∨ .

Let {aσ,τ} be a fundamental 2-cocycle of the extension kp/Qp. We define the Weil group Wkp/Qp
as the set of

pairs (x, σ) with x ∈ k×p , and σ ∈ G(kp/Qp), multiplication being defined by

(x, σ)(y, τ) = (xσ(y)aσ,τ , στ) .

If σ belongs to G(kp/Qp), we set

aσ =
∏

τ∈G(kp/Qp)
aστµ

∨
σ,τ .

It lies in
T (kp) � X∗(T )⊗ k×p .

If w = (x, σ), we set
bw = xν

∨
aσ .

Lemma A.1. The 1-cochain w → bw is a cocycle.

It must be verified that
aρρ(aσ)a−1ρσ = aν

∨
ρ,σ .

The left side is {∏
τ
aρτµ

∨
ρ,τ

}{∏
τ
ρ(aσ,τ )ρστµ

∨}{∏
a−ρστµ

∨
ρσ,τ

}
.

Replace τ by στ in the first product and use the relation

aρσ,τρ(aσ,.τ )aρσ,τ = aρ,σ

to obtain ∏
τ
aρστµ

∨
ρ,σ = aν

∨
ρ,σ .

Suppose we replace aρ,σ by

aρ,σ = cρρ(cσ)c−1ρσ aρ,σ .

Then Wkp/Qp
is replaced by Wkp/Qp

, but

(x, σ) → (xc−1σ , σ)

is an isomorphism from Wkp/Qp
to W kp/Qp

. The 1-cochain {aσ} is replaced by

σ → aσ = aσ
∏

τ
(cστµ

∨
σ σ(cτ )στµ

∨
c−στµ

∨
στ )

= aσc
ν∨
σ σ(d)d−1

if

d =
∏
τ c

τµ∨
τ .

If we pull back the cocycle {bw} from W kp/Qp
to Wkp/Qp

, we obtain

w → σ(d)bwd−1 = w(d)bwd−1 ,

because w acts on T (kp) through its projection to σ. At all events, we obtain a cocycle in the same class, and so
our constructions do not depend on the choice of a fundamental 2-cocycle.

We choose another Cartan subgroup T for which T ad is still anisotropic at infinity and p and which still
splits over kp. We suppose that h̄0 : R → I0 is conjugate under I(R) to h0 and factors through T . Let µ̄∨ be the
coweight h̄00 of T . We use it to define the 1-cocycle {bw}.
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Lemma A.2. There is a c in I0(kp), such that

bw = cbww(c−1)

for all w.

Since Tad is anisotropic at p, the coweight ν∨ is actually a coweight of the center of I0, and hence bw and aσ
have the same image a′σ in I0ad(kp). We use the cocycle {a′σ} to twist I0 and obtain a group I over Qp. Then

dw = bwb
−1
w

is a cocycle of Wkp/Qp
with values in I(kp) and we have to show that it bounds.

The first step is to verify that it takes values in the derived group Ider of I and factors through G(kp/Qp).
The difference between µ∨ and µ̄∨, and hence that between ν∨ and ν̄∨, is a sum of coroots. Since ν∨ and ν̄∨ are
coweights of the center, ν∨ = ν̄∨. Thus

dw = aσa
−1
σ

and factors through G(kp/Qp). I write dσ instead of dw . If λ is a rational character of I , then λ is orthogonal to
coroots and

〈στµ∨, λ〉 = 〈στµ̄∨, λ〉 .
Consequently, λ(dσ) = 1 and dσ lies in Ider.

If Isc is the simply-connected covering group of Ider, then

H1G((kp/Qp), Isc(kp)) = H1(G(Qp/Qp), Isc(Qp)) = 1 .

If C is the kernel of
Isc → Ider ,

then the composition

H1(G(kp/Qp), Ider(kp)) → H1(G(Qp/Qp), Ider(Qp)) → H2(G(Qp/Qp), C(Qp))

is injective. We show that the image of dσ is trivial.
Choose an integer m so that

mµ∨ = µ∨
1 + µ∨

2

where µ∨
1 is a coweight of Tsc and µ∨

2 is a coweight of the center Z . Then

mµ̄∨ = µ̄∨
1 + µ̄∨

2 .

For each ρ, σ let bρ,σ be an mth root of aρ,σ . Then∏
τ
b
στ(µ∨

1 +µ
∨
2 )

σ,τ(1)

and ∏
τ
b
στ(µ̄∨

1 +µ
∨
2 )

σ,τ(2)

are liftings of aσ and aσ to Isc(Qp)× Z(Qp). Moreover{∏
τ
b
ρτ(µ̄∨

1 +µ
∨
2 )

σ,τ

}{∏
τ
b
στ(µ∨

1 +µ
∨
2 )

σ,τ

}−1
=
{∏

τ
b
στµ̄∨

1
σ,τ

}{∏
τ
b
στµ∨

1
σ,τ

}−1
(3)

is a lifting of dσ to Idc(Qp).
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Let {cρ,σ,τ} be the boundary of {bρ,σ}. The boundary of (1) is{∏
τ
b
ρτ(µ∨

1 +µ
∨
2 )

ρ,τ

}{∏
τ
ρb
ρστ(µ∨

1 +µ
∨
2 )

σ,τ

}{∏
τ
b
ρσ,τ(µ∨

1 +µ
∨
2 )

ρσ,τ

}−1
,

which equals

bmν
∨

ρ,σ

∏
τ
c
ρστ(µ∨

1 +µ
∨
2 )

ρ,σ,τ

It must of course lie in the center of Isc ×Z . There is a similar formula for the boundary of (2). Taking account of
the Galois action on I(Qp), one readily concludes that the boundary of (3) is

ρρ,σ =
{∏

τ
c
ρστ(µ̄∨

1 +µ
∨
2 )

ρ,σ,τ

}{∏
τ
c
ρστ(µ∨

1 +µ
∨
2 )

ρ,σ,τ

}−1
.

We should perhaps remind ourselves that µ∨
1 and µ̄∨

1 are coweights of different groups, namely, Tsc and T sc. We
may also write this boundary as

eρ,σ =
{∏

τ
c
ρστµ̄∨

1
ρ,σ,τ

}{∏
τ
c
ρστµ∨

1
ρ,σ,τ

}−1
.

Let X∗(Tder) and X∗(Tsc) be the lattices of coweights of Tder and Tsc and let

Y∗ = X∗(Tder)/X∗(Tsc) .

If X∗(Tder) and X∗(Tsc) are the lattices of weights and

Y ∗ = X∗(Tsc)/X∗(Tder),
then

Y ∗ = Hom(Y∗,Q/Z)
and

C(Qp) = Hom(Y ∗,Q
×
p ) .

Replacing T by T , we obtain Y ∗ and Y ∗, but

Y ∗ � Y∗
and

Y ∗ � Y ∗ .

The isomorphisms are canonical.
If we apply the local duality of Tate for finite G(Qp/Qp) modules, we have only to check that the cup

product of {eρ,σ} with any element of
H0(G(Qp/Qp), Y

∗)

is trivial. An element of this group is represented by a λ ∈ X∗(Tsc) with σλ − λ ∈ X∗(Tder) for all σ or by a
λ̄ ∈ X∗(T sc) with σλ̄− λ̄ ∈ X∗(T der). The cup product is

fρ,σ =
{∏

τ c
〈λ̄,ρστµ̄∨

1 〉
ρ,σ,τ

}{∏
τ c

〈λ,ρστµ∨
1 〉

ρ,σ,τ

}−1
.

To be definite, we take λ̄ to be h(λ) where h is an element of I(Qp) taking T to T and

h(λ)(hth−1) = λ(t) .
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We write
〈λ, ρστµ∨

1 〉 = 〈λ− ρστλ, ρστµ∨
1 〉+ 〈λ, µ∨

1 〉 .
Since λ− ρστλ is a weight of Tder, it is equal to the restriction to Tder of a weight λ′ of T , and

〈λ− ρστλ, ρστµ∨
1 〉 = 〈λ′,mµ∨〉 − 〈λ′, µ∨

2 〉 .

Each cρ,σ,τ is an mth root of unity and
c〈λ

′,mµ∨〉
ρ,σ,τ = 1 .

We treat 〈λ̄, ρστµ̄∨
1 〉 in the same manner, writing

λ̄− ρστλ̄ = h(λ)− ρστh(λ) = h(λ′) + h(λ′′)
with

λ′′ = (1− h−1ρστ(h))ρστ(λ) .

λ′′ is a weight of Tad, and so
〈h(λ′) + h(λ′′), µ∨

2 〉 = 〈h(λ′), µ∨
2 〉 = 〈λ′, µ∨

2 〉 .
We conclude that

fρ,σ = {∏τ cρ,σ,τ}〈λ̄,µ̄
∨
1 〉−〈λ,µ∨

1 〉 .

However, ∏
τ cρ,σ,τ = ρ (

∏
τ bσ,τ ) (

∏
τ bρ,στ ) (

∏
τ bρσ,τ )

−1 (
∏
τ bρ,σ)

−1
.

We may replace στ by τ in the second factor. The first three terms then form a boundary and {fρ,σ} is cohomol-
ogous to

b
−[kp:Qp](〈λ̄,µ̄∨

1 〉−〈λ,µ∨
1 〉)

ρ,σ .

However,

〈λ̄, µ̄∨
1 〉 − 〈λ, µ∨

1 〉 = 〈λ, h−1(µ̄∨
1 )− µ∨

1 〉 = m〈λ, h−1(µ̄∨)− µ∨〉 ,
and

〈λ, h−1(µ̄∨)− µ∨〉
is integral because

h−1(µ̄∨)− µ∨

is a coweight of Tsc. Since

bmρ,σ = aρ,σ

and {
a
[kp:Qp]
ρ,σ

}
is trivial, the lemma is proved.

Suppose k′p ⊆ kp are two finite Galois extensions of Qp that split T . There is a homomorphism w → w′

from Wkp/Qp
to Wk′p/Qp

and we may pull back the cocycle {bw′}, but the result may not be cohomologous to
{bw}.
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Lemma A.3. There is a cocycle cw with values in the units of k×p such that w → bwb
−1
w′ is cohomologous in

T (kp) to cν
∨
w .

We begin by recalling the manner in which the homomorphism from Wk′p/Qp
to Wkp/Qp

is defined [1]. Let
{aρ,σ} be a fundamental 2-cocycle for kp/Qp. For each ρ′ in G(k′p/Qp) choose a representative ρ̄ in G(kp/Qp) A
fundamental 2-cocycle for k′p/Qp is then

a′ρ′,σ′ = Nkp/kp′ (aρ̄,σ̄a
−1
γ,ρ̄σ̄)

∏
β∈G(kp/k′p)

aβ,γ

with
γ = ρ̄σ̄ρσ̄−1 .

An expression for a′ρ′σ′ which is more useful to us is ([1], p. 188)∏
β∈G(kp/k′p)

aρβ,σ̄aβ,ρ̄a
−1
β,ρ̄σ̄

if ρ is any lifting of ρ′ to G(kp/Qp). We apply the coboundary relation to the first factor to obtain∏
β
ρaβ,σ̄aρ,βσ̄a

−1
ρ,βaβ,ρ̄a

−1
β,ρ̄σ̄ .

An element of Wkp/Qp
may be written as xρσ̄ with x ∈ k×

p , ρ ∈ G(kp/k
′
p), and σ′ ∈ G(k′p/Qp). It is

mapped to

w′ =
{∏

β∈G(kp/k′p)
βx

}{∏
β∈G(kp/k′p)

aβ,ρ

}
σ′ .

Then bw′ is the product of{∏
β
βxν

∨}{∏
β
aν

∨
β,ρ

}
and ∏

α′∈G(k′p/Qp)

∏
β∈G(kp/k′p)

σaσαµ
∨

β,α aσαµ
∨

σ,βᾱ a−σαµ
∨

σ,β aσαµ
∨

β,σ̄ a−σαµ
∨

β,σ̄ᾱ

Here σ is the lifting ρσ̄ of σ′ and α any lifting of α′ to G(kp/Qp). If

c =
∏

α′

∏
β
aαµ

∨
β,ᾱ

the first term yields σ(c) and the last c−1. Since we are only interested in the cohomology class of w → bw′ , we
may drop these two terms. The second term yields∏

τ∈G(kp/Qp)
aστµ

∨
σ,τ .

The third and fourth yield {∏
β
a−1α,βaα,σ̄

}ν∨

.

Collecting the information at our disposal, we see that the lemma is valid with

cw =
∏

β
xβ(x)−1aβ,ρa−1σ,βaβ,σ̄ .

It must be verified that cw is a unit, but that is a consequence of the next lemma applied to the trivial torus
T = GL(1) and both kp and k′p.
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Lemma A.4. If λ is a rational character of T over Qp and v the image of w under the homomorphism
Wkp/Qp

→ WQp/Qp
= Q×

p , then

|λ(bw)| = |v|〈λ,µ∨〉 .

If w = x× σ, the left side is equal to

|x|〈λ,ν∨〉∏
τ
|aσ,τ |〈λ,µ∨〉 =

{∏
τ
|x|〈λ,µ∨〉

}{∏
τ
|aσ,τ |〈λ,µ∨〉

}
.

Since

(στ)−1σ = τ−1σ−1(aσ,τ )× τ−1

in Wkp/Qp
, v is equal to {∏

τ
τ(x)

}{∏
τ
τ−1σ−1(aσ,τ )

}
.

The lemma follows.
Let k be the completion of the maximal unramified extension Qun

p of Qp. We have still to explain in detail
how the element b of G(k) introduced in [13] is defined. Let D1 be the image of GL(1) in T under ν∨. It is an
algebraic subgroup over Qp. Let W 0

kp/Qp
be the inverse image of the units in Q×

p under the homomorphism

Wkp/Qp
→ WQp/Qp

= Q×
p .

Lemma A.5. If kp is sufficiently large, the cocycle {bw} is cohomologous to a cocycle {b′w} with the following
two properties:

(i) the restriction of {b′w} to W 0
kp/Qp

takes values in D1(kp);

(ii) the image of b′w in T/D1(kp) lies in T/D1(Qun
p ).

The second property is a consequence of the first, because the first implies that b′w is invariant underW 0
kp/Qp

moduloD1, and the image ofW 0
kp/Qp

in G(kp/Qp) is the inertial group. To obtain a cocycle with the first property,

we apply results from Chap. X, §7, of [18]. We may as well suppose that D1 is trivial, and hence that {bw} = {bσ}
is a cocycle of G(kp/Qp).

We have a diagram of fields
kunp

� �

kp Qun
p

� �

Qp

and we may regard {bσ} as a cocycle of G(kunp /Qp). By the corollary of Prop. 11 of [18], its restriction to
G(kunp /Qun

p ) is cohomologous to the trivial cocycle, and may therefore be assumed to be trivial, for we are willing
to enlarge the field kp. Thus {bσ} is the lifting to G(kp/Qp) of a cocycle of

G(kp ∩ Qun
p /Qp)

and is trivial on the inertial group. Consequently, {bw} is trivial on W 0
kp/Qp

.
Our purposes demand a strengthening of the previous lemma.
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Lemma A.6. Suppose kp is sufficiently large and lp is the maximal unramified extension of Qp in kp. Then
{bw} is cohomologous to a product {b′wb′′w}, where {b′w} is the lifting of a cocycle of Wlp/Qp

with values in

T (lp) and {b′′w} is of the form b′′w = dν
∨
w where w → dw is a cocycle of Wkp/Qp

with values in the units of k×p .

We begin with an extension kp over which T splits, and let lp be the unramified extension of Qp with

[lp : Qp] = [kp : Qp] = n .

We shall prove the lemma not for kp but for k′p, the composition of kp and lp, in which lp is the maximal unramified
subfield. Schematically we have:

k′p
� �

lp kp

� �

kp ∩ lp

Qp

If we appeal to Lemma A.3, we see that it is sufficient to take the cocycle {bw} associated to the Weil group
Wkp/Qp

, and then prove that its lifting to Wk′p/Qp
can be factored as {b′wb′′w}.

The Galois group G(lp/Qp) is cyclic of order n and is generated by the Frobenius element which we shall,
during the present proof, denote by Φ. We take a uniformizing parameter � for Qp, which could be p itself, and
take the fundamental cocycle cρ,σ of the extension lp/Qp to be

cΦi,Φj =

{
1, 0� i, j < n, i+ j < n,

�, 0� i, j < n, i+ j �n .

We may also simplify matters by supposing that the lattice of coweights of T is the free G(kp/Qp)-module
generated by µ∨.

Suppose we can find a chain {cσ} of G(lp/Qp) with values in T (lp) and boundary {cν∨
ρ,σ}. Then we may

define a cocycle {dw} of Wlp/Qp
with values in T (lp) by

dw = xν
∨
cσ, w = x× σ .

Suppose in addition that if

cΦ =
∏

τ∈G(kp/Qp)
cΦ(τ)τµ

∨

then ∏
τ
|cΦ(τ)| = |�| .

I claim that if {bw′} and {dw′} denote the liftings of {bw} and {dw} to Wk′p/Qp
, then {bw′d−1w′ } is cohomol-

ogous to a cocycle w′ → cν
∨
w′ where {cw′} is a cocycle with values in the group of units of k′p. To see this we pull

back {aσ} and {cσ} to cochains {aσ′} and {cσ′} of G(k′p/Qp). Their boundaries are obtained by pulling back
{aν∨

ρ,σ} and {cν∨
ρ,σ} to {aν∨

ρ′,σ′} and {cν∨
ρ′,σ′}. By local class-field theory, the two cocycles {aρ′,σ′} and {cρ′,σ′} are

cohomologous, and
aρ′,σ′ = eρ′ρ

′(eσ′)e−1ρ′,σ′cρ′,σ′ .

Thus {aσ′} and {eν∨
σ′ cσ′} have the same boundary. Because of our simplifying assumption, T (k′p) has no

cohomology in dimension 1, and
aσ′ = feν

∨
σ′ cσ′σ′(f−1) .
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In particular,
w′ → uw′ = bw′f−1d−1w′ w

′(f) = bw′f−1d−1w′ σ
′(f)

takes values in D1(k′p). With the simplifying assumption that the lattice of coweights is freely generated over
G(kp/Qp) by µ∨,

D1(k′p) = {xν∨ | x ∈ k′p} .

To establish this claim, I must show that if λ is a rational character of D1, then

|λ(uw′)| = 1

for all w′. It will be enough to show this for a rational character of T defined over Qp. Clearly,

|λ(f−1σ′(f))| = 1
and, by Lemma A.4,

|λ(bw′)| = |v|〈λ,µ∨〉

if v is the image of w′ in Q×
p . We check that

|λ(dw′)| = |λ(dw)| = |v|〈λ,µ∨〉

if w′ maps to w in Wkp/Qp
.

This is easily seen to be so if w = x× 1 with x ∈ l×p , and so the point is to verify it when w = 1× Φ. Then
v = � and

|λ(dw)| =
∏

G(kp/Qp)
|cΦ(τ)|〈λ,τµ∨〉 .

Since 〈λ, τµ∨〉 = 〈λ, µ∨〉, the right side equals {∏
|cΦ(τ)|

}〈λ,µ∨〉

and is, by assumption, |�|〈λ,µ∨〉.
To completely prove the lemma we must establish the existence of the chain {cσ}. We first remark that

there is an a in k×p for which
� = Nmk′p/kp

a .

Set

cΦ =
∏
τ∈G(k′p/lp)

τ(a)τµ
∨

and

cΦi = cΦΦ(cΦ) . . .Φi−1(cΦ), 0� i < n .

The chain {cσ} then takes values in T (lp) and will have the boundary {cν∨
ρ,σ} if∏n−1

i=0
Φi(cΦ) = �ν∨

.

The product on the left is∏
G(k′p/Qp)

τ(a)τµ
∨
.

If we take the product over G(k′
p/kp) and then over G(kp/Qp), we obtain∏

G(kp/Qp)
�τν∨

= �ν∨
.

Finally, ∏
τ
|cΦ(τ)| =

∏
G(k′p/lp)

|τ(a)| = |a|[k′p:lp] = |a|[k′p:kp] = |�| .

In [13] I took k to be Qun
p , but I should have taken it to be the closure of Qun

p , for I am otherwise unable to
prove the next lemma. I shall denote the Frobenius automorphism of k by σ.
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Lemma A.7. If d ∈ k and |d| = 1, then the equation

d = cσ(c−1), c ∈ k,

can be solved.

Since the map c → cσ(c−1) takes Qp to 1, its image is closed, and so we must only verify that it is dense in
the group of units of k×. If y is a unit, we can always find a unit x such that

y ≡ xσ(x−1)(mod p) .

Moreover, the equation
(1 + apk)σ(1 + apk)−1 ≡ (a− σ(a))pk(mod pk)

and the simple fact that
a− σ(a) ≡ b(mod p)

can be solved with an integer a for any given integer b allows us to approximate any y ≡ 1(mod p). Since
D1(k) � k×, the lemma may be applied to D1(k) as well.

The element b introduced in [13] can now be defined. It lies in I0(k). It is not uniquely determined, but the
set

(4) {cbσ(c−1) | c ∈ I0(k)}

is. We start from a given T , a given, but sufficiently large, kp, and a given fundamental class {aρ,σ} for kp/Qp

and the associated cocycle {bw}. According to Lemma A.6, {bw} is cohomologous to {b′wb′′w}, where b′w and b′′w
have the properties specified there. We have the usual homomorphisms

Wkp/Qp
→ WQp/Qp

→ Z .

We choose a w0 that maps to 1 ∈ Z and set b = bw0 . The previous lemma shows that the collection (4) is
independent of the particular w0 chosen.

The cocycle {b′w} is not unique; it might be replaced by

b′wxw(x
−1)uw

with x ∈ T (kp), uw ∈ D1(kp). However, x and uw are not arbitrary. The absolute value |λ(uw)| must be 1 for
any rational character of D1, and the image of x in T/D1 must lie in T/D1(lp). By Hilbert’s Theorem 90, there is
a v in T (lp) such that

x ≡ v(mod D1(kp)) .

Let x = vz. Then
b′wxw(x

−1)uw = b′w(vw(v
−1))(zw(z−1)uw) .

We apply Lemma A.7 to zw0(z−1)uw0 to conclude that the set (4) remains the same. To change the fundamental
class {aρ,σ} does not affect the class of {bw}, and hence does not affect (4). Finally, Lemmas A.2, A.3, and A.7
show that it is not affected by the choice of T and kp.

T has been so taken that its image in I0ad is anisotropic. By the definition of a Frobenius pair, there is
therefore a positive rational number r such that

|λ(γ)| = |�|τ〈λ,ν∨〉

for all rational characters of T . The element � is again a uniformizing parameter of Qp, and absolute values are
taken in Qp.

In addition to the group I0 (or H0) over Q, I introduced in [13] a group J0 (or G0) over Qp. Its definition
did not involve T , but it is easily seen that it is the connected group generated by T and the one-parameter root
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groups corresponding to roots α for which 〈α, ν∨〉 = 0. Consequently, D1 lies not only in the center of I0 but
also in the center of J0 and the image of {aσ}, or what is the same, of {bw} in I0ad or J0ad, yields elements of
H1(Qp, I

0
ad) and of H1(Qp, J

0
ad) which can be used to twist I0 and J0, thereby obtaining new groups I and J .

The twisting of I0 can in fact be extended to a global twisting, but that will not be discussed yet.
Changing {aσ} or {bw} within its cohomology class has the usual effect on J(Qp) and on I(Qp). If {bw} is

replaced by xbww(x−1), then
J(Qp) → {xgx−1 | x ∈ J(Qp)} .

Since it is easy to keep track of such changes, I feel free to modify {bw} within its class, and indeed to replace
{bw} by {b′w}, where {b′w} satisfies the conditions of Lemma A.6, for {b′′w} commutes with J(Qp). Thus

J(Qp) = {g ∈ J0(k) | bσ(g)b−1 = g} .

I claim that

J(Qp) = {g ∈ G(k) | bσ(g)b−1 = g} .

When proving this, I may take b to be defined by the cocycle {b′w} constructed in the proof of Lemma A.6.
Choose kp, lp, and k′p as in the proof of that lemma with [kp : Qp] = [lp : Qp] = n. Then

bσ(b) . . . σn−1(b) = c = xν
∨
, |x| < 1 .

Iterating the relation

g = bσ(g)b−1

we obtain

g = cσn(g)c−1

and

g = c−1σ−n(g)c ,
or, more generally,

g = cmσmn(g)c−m

and

g = c−mσ−mn(g)cm

for every positive integer m. We may choose a sequence mi so that {σmin(g)} and {σ−min(g)} converge. Then
{c−migcmi} and {cmigc−mi} converge. Since G is a matrix group, we see, by passing to a larger field with respect
to which T can be diagonalized and taking the form of c into account, that this is possible only if c commutes
with g. Since the connected component of the centralizer of any positive power of c in G is J0, the centralizer of
c in G is connected and equals J0 [23].

Although the groups of this paper are simple enought that the existence of the global twisting of I0

demanded by the formalism of [13] is clear, it turns out nonetheless to be useful to say a few words about the
construction of the cocycle defining this global twisting.

Recall that we started with a Cartan subgroup T of I0 defined over Q such that Tad, the image of T in I0ad,
is anisotropic at ∞ and p. If µ̄∨ is the coweight of Tad obtained by composing µ∨ with T → Tad, then the twisting
at p is given by the cocycle

αp = {aσ}
with

aσ =
∏
τ∈G(kp/Qp)

aστµ
∨

σ,τ , a ∈ G(kp/Qp) .

We define a twisting cocycle at ∞ in exactly the same fashion

α∞ = {aσ}
with

aσ =
∏
τ∈G(C/R) a

−στµ̄∨
σ,τ , σ ∈ G(C/R) .

We have changed the sign in the exponent, but that has no effect on the resultant cohomology class.
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Lemma A.8. If I is the group over R obtained by twisting I0 by α∞, then Iad(R) is compact.

Let G(C/R) = {1, σ}. We may take the fundamental cocycle to be

a1,1 = a1,σ = aσ,1 = 1, aσ,σ = −1 .

Then

a1 = 1 aσ = (−1)µ̄
∨
.

Every root of T in I0 or in I is imaginary. All we must do is verify that the roots of T in I are compact. Let
β be a root of T in I0 and choose root vectors Xβ , X−β with

[Xβ, X−β ] = Hβ ,

where

λ(Hβ) = 〈λ, β∨〉 .

Since σ(β) = −β,

σ(Xβ) = cX−β σ(X−β) = dXβ .

It is easily seen that c must be real and that cd = 1. Examining the two forms of SL(2) over R, one sees that c > 0
if and only if β is compact. On the other hand, β is compact if and only if 〈β, µ∨〉 = 0. If β is not compact, then
〈β, µ∨〉 = +1. When we twist by αp, the new action on Xβ is

Xβ → (−1)〈β,µ
∨〉cX−β .

Thus c is replaced by (−1)〈β,µ
∨〉c, and compact roots remain compact while noncompact roots become compact.

The global twisting of I is by an elementα of H1(Q, Tad) whose image in H1(R, Tad) is α∞, in H1(Qp, Tad)
is αp, and whose image in H1(Ql, Tad), l �= p, is trivial. Its existence follows from standard results in Galois
cohomology, which we will now describe. We first state the appropriate lemma formally.

Lemma A.9. Let T be a torus over Q and µ∨ a coweight of T . Suppose T is anisotropic at ∞ and p. Then

α∞ =
{∏

τ∈G(C/R) a
−στµ∨
σ,τ

}
,

αp =
{∏

τ∈G(kp/Qp)
aστµ

∨
σ,τ

}
represent cohomology classes in H1(R, T ) and H1(Qp, T ), respectively. There is an element α in H1(Q, T )
whose local components are trivial everywhere except at ∞ and p, where they equal α∞ and αp.

Let K be a finite Galois extension of Q that splits T . Then

T (K) = X∗(T )⊗K×,

T (AK) = X∗(T )⊗ IK .

If CK = IK/K
× is the idèle-class group, set

TC = X∗(T )⊗ CK .

The exact sequence
1 → T (K) → T (AK) → TC → 1

leads to
H1(G(K/Q), T (K)) → H1(G(K/Q), T (AK)) → H1(G(K/Q), TC) .
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Let β be the element of the middle group with component α∞ at ∞, αp at p, and 1 elsewhere. All we have
to do is verify that its image in the final group is trivial. The middle group is

⊕vH
1(G(Kv/Qv), T (Kv))

and we must verify that the product of the images ᾱ∞, ᾱp of α∞ and αp in H1(G(K/Q), TC) is trivial.
The Tate-Nakayama isomorphisms are

Hi(G(Kv/Qv), X∗(T ) � Hi+2(G(Kv/Qv), T (Kv))
and

Hi(G(K/Q), X∗(T ) � Hi+2(G(K/Q), TC)

There is a diagram
Hi(G(Kv/Qv), X∗(T ) � Hi+2(G(Kv/Qv), T (Kv))" "
Hi(G(K/Qv), X∗(T ) � Hi+2(G(K/Qv), TC)

The left vertical arrow is corestriction. The right vertical is the composition of

Hj(Gv, T (Kv)) � Hj(G, T (K ⊗ Qv)) → Hj(G, T (AK)) → Hj(G, Tc)

with j = i + 2, Gv = G(Kv/Qv), G = G(K/Q). The place v of Q has been extended in some way, no matter
which, to K . It can be verified without too much difficulty, although it is more than a mere formality, that the
diagram is commutative. One examines the proof of the Tate-Nakayama theorems and recalls at the same time the
relation between the local and the global fundamental classes. I forego the details, although I have no reference
to furnish the reader.

Suppose in particular that i = −1. The corestriction takes the element of H−1((Kv/Qv),
X∗(T )) represented by λ with NmKv/Qv

λ = 0 to the element of H−1(G(K/Q), V∗(T )) represented by the
same λ. Therefore ᾱ∞ corresponds to the element of H−1(G(K/Q), X∗(T )) represented by −µ∨ and ᾱp to the
element represented by µ∨, and ᾱ∞ · ᾱp is trivial.
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