
Problems in the Theory of Automorprhic Forms†

To Salomon Bochner

In Gratitude

1. There has recently been much interest, if not a tremendous amount of progress, in the arithmetic

theory of automorphic forms. In this lecture I would like to present the views not of a number theorist

but of a student of group representations on those of its problems that he finds most fascinating. To

be more precise, I want to formulate a series of questions which the reader may, if he likes, take as

conjectures. I prefer to regard them as working hypotheses. They have already led to some interesting

facts. Although they have stood up for a fair length of time to the most careful scrutiny I could give,

I am still not entirely easy about them. Indeed even at the beginning in the course of the definitions,

which I want to make in complete generality, I am forced, for lack of time and technical competence, to

make various assumptions.

I should perhaps apologize for such a speculative lecture. However, there are some interesting

facts scattered amongst the questions. Moreover, the unsolved problems in group representations

arising from the theory of automorphic forms are much less technical than the solved ones, and their

significance can perhaps be more easily appreciated by the outsider.

Suppose G is a connected reductive algebraic group defined over a global field F . F is then an

algebraic number field or a function field in one variable over a finite field. Let A(F ) be the adèle ring

of F . GA(F ) is a locally compact topological group with GF as a discrete subgroup. The group GA(F )

acts on the functions on GF \ GA(F ). In particular, it acts on L2(GF \ GA(F )). It should be possible,

although I have not done so and it is not important at this stage, to attach a precise meaning ot the

assertion that a given irreducible representation π of GA(F ) occurs in L2(GF \GA(F )). If G is abelian

it would mean that π is a character of GF \GA(F ). if G is not abelian it would be true for at least those

representations which act on an irreducible invariant subspace of L2(GF ) \GA(F ).

IfG isGL(1) then to each such π one, following Hecke, associates anL­function. IfG isGL(2) then

Hecke has also introduced, without explicitly mentioning group representations, some L­functions.

The problems I want to discuss center about the possibility of defining L­functions for all such π and

proving that they have the analytic properties we have grown used to expecting of such functions. I
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shall also comment on the possible relations of these new functions to the Artin L­functions and the

L­functions attached to algebraic varieties.

Given G, I am going to introduce a complex analytic group ĜF . To each complex analytic

representation σ of ĜF and each π I want to attach an L­function L(s, σ, π). Let me say a few words

about the general way in which I want to form the function. GA(F ) is a restricted direct product
∐
p

GFp
.

The product is taken over the primes, finite and infinite, of F . It is reasonable to expect, although to

my knowledge it has not yet been proved in general, that π can be represented as
∏
p

⊗πp where πp is a

unitary representation of GFp
.

I would like to have first associated to any algebraic group G defined over Fp a complex analytic

group ĜFp
and to any complex analytic representation σp of ĜFp

and any unitary representation πp of

GFp
a local L­function L(s, σp, πp) which, when p is non­archimedean, would be of the form

n∏

i=1

1

1 − αi|$p|s

where n is the degree of σp. Some of the αi may be zero. For p infinite it would be, basically, a product

of Γ­functions. L(s, σp, πp) would depend only on the equivalence classes of σp and πp. I would also

like to have defined for every non­trivial additive character ψFp
of Fp a factor ε(s, σp, πp, ψFp

) which,

as a function of s, has the form aebs.

There would be a complex analytic homomorphism of ĜFp
into ĜF determined up to an inner

automorphism of ĜF . Thus σ determines for each p a representation of σp of ĜFp
. I want to define

L(s, σ, π) =
∏

p

L(s, σp, πp) . (A)

Of course it has to be shown that the product converges in a half­plane. We shall see how to do this.

Then we will want to prove that the function can be analytically continued to a function meromorphic

in the whole complex plane. Let ψF be a non­trivial character of F \A(F ) and let ψFp
be the restriction

of ψF to Fp. We will want ε(s, σp, πp, ψFp
) to be 1 for all but finitely many p. We will also want

ε(s, σ, π) =
∏

p

ε(s, σp, πp, ψFp
)

to be independent of ψF . The functional equation should be

L(s, σ, π) = ε(s, σ, π)L(1 − s, σ̃, π)

if σ̃ is the representation contragredient to σ.
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We are asking for too much too soon. What we should try to do is to define theL(s, σp, πp) and the

ε(s, σp, πp, ψFp
) when there is no ramification, verify that there is ramification at only a finite number

of primes, and show that if the product in (A) is taken only over the unramified primes it converges

for Re s sufficiently large. As we learn how to prove the functional equation we shall be able to make

the definitions at the unramified primes. By the way, we introduce the additive characters, whose

appearance must appear rather mysterious, only because we can indeed prove some things and know

better than to leave them out.

What does unramified mean in our context? First of all for p to be unramified G will have to

be quasi­split over Fp and split over an unramified extension. In that case there is, as we shall see, a

canonical conjugacy class of maximal compact subgroups ofGFp
. For p to be unramified, the restriction

ofπp to any one of these groups will have to contain the identity representation. There is also a condition

to be imposed on ψFp
. Although it is not very important I would like to mention it explicitly. If p is

non­archimedean the largest ideal of Fp on which ψFp
is trivial will have to beOFp

, the ring of integers

in Fp. If Fp is R then ψFp
(x) will have to be e2πix and if Fp is C then ψFp

(z) will have to be e4πiRe z .

We want ε(s, σp, πp, ψFp
) to be 1 if p is unramified.

2. ĜF can be identified for a connected reductive group over any field F . Take first a quasi­split group

G over F which splits over the Galois extension K . Choose a Borel subgroup B of G which is defined

over F and let T be a maximal torus of B which is also defined over F . Let L be the group of rational

characters of T . Write G as G0G1 where G0 is abelian and G1 is semi­simple. Then G0 ∩G1 is finite.

If T 0 = G0 and T 1 = T ∩G1 then T = T 0T 1. Let L0
+ be the group of rational characters of T0 and let

L0
− be the elements of L0

+ which are 1 on T0 ∩ T 1. Let L+
− be the group generated by the roots of T1.

If R is any field let E1
R = L1

− ⊗Z R. The Weyl group Ω acts on L1
− and therefore on E1

R. Let ( · , · ) be

a non­degenerate bilinear form on E1
C which is invariant under Ω. Suppose also that its restriction to

E1
R is positive definite. Let

L1
+ =

{
λ ∈ E1

C

 2
(λ, α)

(α,α)
∈ Z for all roots α

}
.

Set L− = L0
− ⊕ L1

− and L+ = L0
+ ⊕ L1

+. We may regard L as a sublattice of L+. It will contain L−.

Let α1, . . . , α` be the simple roots of T 1 with respect to B and let

(Aij) = 2
(αi, αj)

(αi, αi)

be the Cartan matrix. If σ belongs to G(K/F ) and λ belongs to L then σλ, where σλ(t) = σ(λ(σ−1t)),

also belongs to L. Thus G(K/F ) acts on L. It also acts on L− and L+ and the actions on these three
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lattices are consistent. Moreover the roots α1, . . . , α` are permuted amongst themselves and the Cartan

matrix is left invariant.

If R is any field containing Q let ER = L⊗Z R and let ÊR = HomR(ER, R). The lattices

L̂+ = Hom(L−,Z) = Hom(L0
−,Z) ⊕ Hom(L1

−,Z) = L0
+ ⊕ L̂1

+

L̂ = Hom(L,Z)

L̂− = Hom(L+,Z) = Hom(L0
+,Z) ⊕ Hom(L1

+,Z) = L̂0
− ⊕ L̂1

−

may be regarded as subgroups of ÊC. IF E0
R = L0

− ⊗Z R then ER = E0
R ⊗ E1

R. With the obvious

definitions of Ê0
R and Ê1

R we have ÊR = Ê0
R ⊕ Ê1

R. Let ( · , · ) also denote the form on Ê1
C adjoint

to the given form on E1
C. To be precise if λ and µ belong to E1

C, if λ̂ and µ̂ belong to Ê1
C, and if

〈
η, λ̂
〉

= (η, λ) and 〈η, µ̂〉 = (η, µ) for all η in E1
C then (λ, µ) = (λ̂, µ̂).

If α is a root define its coroot α̂ in Ê1
C by the condition:

〈λ, α̂〉 = 2
(λ, α)

(α,α)

for all λ in E1
C. The coroots generate L̂1

−. Moreover

(α̂, β̂) = 4
(α, β)

(α,α)(β, β)

and

2
(α̂, β̂)

(α̂, α̂)
= 2

(α, β)

(β, β)
.

Thus the matrix

(Âij) =

(
2

(α̂i, α̂j)

(α̂i, α̂i)

)

is the transpose of (Aij). The linear transformation Ŝi of Ê1
C defined by

Ŝi(α̂j) = α̂j − Âijα̂i = α̂j −Ajiα̂i

is contragredient to the linear transformation Si of Ê1
C defined by

Si(αj) = αj − Aijαi .

Thus the group Ω̂ generated by {Ŝi|1 ≤ i ≤ `} is canonically isomorphic to the finite group Ω and, by a

well­known theorem (cf. Chapter VII of [7]) (Âij) is the Cartan matrix of a simply­connected complex

group Ĝ1
+. Let B̂1

+ be a Borel subgroup of Ĝ1
+ and let T̂ 1

+ be a Cartan subgroup in B̂1
+. We identify

the simple roots of T̂ 1
+ with respect to B̂1

+ with α̂1, . . . , α̂` and the free vector space over C with basis
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{α̂1, . . . , α̂`} with Ê1
C. We may also identify Ω and Ω̂. The roots of T̂ 1

+ are the vectors ωα̂i, ω ∈ Ω,

1 ≤ i ≤ `. If ωαi = α then ωα̂i = α̂ because

〈λ, ωα̂i〉 =
〈
ω−1λ, α̂i

〉
= 2

(ω−1λ, αi)

(αi, αi)
= 2

(λ, ωαi)

(ωαi, ωαi)
= 2

(λ, α)

(α,α)

Thus the roots of T̂ 1
+ are just the coroots. If λ belongs to Ê1

C then

2
(λ, α̂)

(α̂, α̂)
= 〈α, λ〉

so that

L̂1
+ =

{
λ ∈ Ê1

C

 2
(λ, α̂)

(α̂, α̂)
∈ Z for all coroots α̂

}

and is therefore just the set of weights of T̂ 1
+.

Let

Ĝ0
+ = HomZ(L̂0

+,C
∗) .

Ĝ0
+ is a reductive complex Lie group. Set Ĝ+ = Ĝ0

+ × Ĝ1
+. If T̂ 0

+ = Ĝ0
+ and T̂+ = T̂ 0

+ × T̂ 1
+ then L̂+ is

the set of complex analytic characters of T̂+. If

Ẑ =
{
t ∈ T̂+

 λ(t) = 1 for all λ in L̂
}

then Ẑ is a normal subgroup of Ĝ+ and Ĝ = Ĝ+/Ẑ is also a complex Lie group. G(K/F ) acts in

a natural fashion on L̂−, L̂, and L̂+. The action leaves the set {α̂1, . . . α̂`} invariant. G(K/F ) acts

naturally on Ĝ0
+. I want to define an action on Ĝ1

+ and therefore an action on Ĝ+. Choose H1, . . . ,H`

in the Lie algebra of T̂ 1
+ so that

λ(Hi) = 〈αi, λ〉

for all λ in L̂1
+. Choose root vectors X1, . . . ,X` belonging to the coroots α̂1, . . . , α̂` and root vectors

Y1, . . . , Y` belonging to their negatives. Suppose [Xi, Yi] = Hi. If σ belongs to G(K/F ) let σ(α̂i) =

α̂σ(i). There is (cf. Chapter VII of [7]) a unique isomorphism σ of the Lie algebra of Ĝ1
+ such that

σ(Hi) = Hσ(i), σ(Xi) = Xσ(i), σ(Yi) = Yσ(i) .

These isomorphisms clearly determine an action of G(K/F ) on the Lie algebra and therefore one on

Ĝ1
+ itself. Since G(K/F ) leaves L invariant its action on Ĝ+ can be transferred to Ĝ. If B̂ is the image

of B̂+ = T̂ 0
+ × B̂1

+ and T̂ the image of T̂+ in Ĝ the action leaves B̂ and T̂ invariant. I want to define

ĜF to be the semi­direct product Ĝ× G(K/F ).
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However ĜF as defined depends upon the choice ofB, T andX1 . . . ,X` and ĜF comes provided

with a Borel subgroup B̂ of its connected component, a Cartan subgroup T̂ of B̂, and a one­to­one

correspondence between the simple roots of T with respect to B and those of T̂ with respect to B̂.

Suppose G′ is another quasi­split group over F which is isomorphic to G over K by means of an

isomorphism ϕ such that ϕ−1σ(ϕ) is inner for all σ in G(K/F ), B′ is a Borel subgroup of G′ defined

over F , and T ′ is a Cartan subgroup of B′ also defined over F . There is an inner automorphism ψ of

Gwhich is defined overK so that ϕψ takesB toB′ and T to T ′. Then ϕψ determines an isomorphism

of L̂ and L̂′ and a one­to­one correspondence between {α1, . . . , α`} and {α′
1, . . . , α

′
`} both of which

depend only onϕ and, as is easily verified, commute with the action of G(K/F ). There is then a natural

isomorphism of Ĝ0
+ with (Ĝ0

+)′ associated to ϕ. Moreover there is a unique isomorphism of Ĝ1
+ with

(Ĝ1
+)′ whose action on the Lie algebra takes Hi to H ′

i , Xi to X ′
i, and Yi to Y ′

i . The two together define

an isomorphism of Ĝ+ with Ĝ′
+. If we assume that αi corresponds to α′

i, 1 ≤ i ≤ ` this isomorphism

takes Ẑ to Ẑ ′ and determines an isomorphism of Ĝ with Ĝ′ which commutes with G(K/F ). This in

turn determines an isomorphism ϕ̂ of Ĝ′
F with ĜF . In particular takingG′ = G and ϕ to be the identity

we see that ĜF is determined up to a canonical isomorphism.

Suppose G is any reductive group over F ,K is a Galois extension of F ,G′ and G′′ are quasi­split

groups over F which split over K , and ϕ: G′ → G, ψ: G′′ → G are isomorphisms defined over K

such that ϕ−1σ(ϕ) and ψ−1σ(ψ) are inner for all σ in G(K/F ). Then (ψ−1ϕ)−1σ(ψ−1ϕ) is also inner

so that there is a canonical isomorphism of Ĝ′
F and Ĝ′′

F . We are thus free to set ĜF = Ĝ′
F . ĜF depends

on K but there is no need to stress this. However we shall sometimes write ĜK/F instead of ĜF .

3. Although it is a rather simple case, it may be worthwhile to carry out the previous construction

when G isGL(n) andK = F . We take T to be the diagonal andB to be the upper triangular matrices.

G0 is the group of non­zero scalar matrices and G1 is SL(n). If λ belongs to L and

λ:




t1 0

. . .

0 tn



 −→ tm1

1 . . . tmn

n

with m1, . . . ,mn in Z we write λ = (m1, . . . ,mn). Thus L is identified with Zn. We may identify ER

with Rn and EC with Cn. If λ belongs to L0
+ and

λ: tI → tm
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with m in Z we write λ =
(
m
n , . . . ,

m
n

)
. Then L0

− which is a subgroup of both L and L0
+ consists of the

elements (m, . . . ,m) with m in Z. The rank ` is n− 1 and

α1 = (1,−1, 0, . . . , 0)

α2 = (0, 1,−1, 0, . . . , 0)

...

α` = (0, . . . , 0, 1,−1)

Thus

L1
− =

{
(m1, . . . ,mn) ∈ L


n∑

i=1

mi = 0

}
.

E1
C is the set of all (z1, . . . , zn) in EC for which

n∑

i=1

zi = 0 .

The bilinear form on E1
C may be taken as the restriction of the form

(z, w) =
n∑

i=1

ziwi

on EC. Thus

L1
+ =

{
(m1, . . . ,mn)


n∑

i=1

mi = 0 and mi −mj ∈ Z

}
.

We may use the given bilinear form to identify ÊC with EC. Then the operation “ ̂ ” leaves

all lattices and all roots fixed. Thus Ĝ0
+ = Hom(L0

+,C). Any non­singular complex scalar matrix tI

defines an element of Ĝ0
+, namely, the homomorphism

(m
n
, . . . ,

m

n

)
−→ tm .

We identify Ĝ0
+ with the group of scalar matrices. Ĝ1

+ is SL(n,C). There is a natural map of Ĝ0
+ × Ĝ1

+

onto GL(n,C). It sends tI ×A to tA. The kernel is easily seen to be Ẑ so that ĜF is GL(n,C).

4. To define the local L­functions, to prove that almost all primes are unramified, and to prove that

the product of the local L­functions over the unramified primes converges for Re s sufficiently large

we need some facts from the reduction theory for groups over local fields (cf. [1]). Much progress has

been made in that theory, but it is still incomplete. Unfortunately, the particular facts we need do not
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seem to be in the literature. Very little is lost at this stage if we just assume them. For the groups about

which something definite can be said, they are easily verified.

SupposeK is an unramified extension of the non­archimedean local field F and G is a quasi­split

group over F which splits over K . Let B be a Borel subgroup of G and T a Cartan subgroup of B,

both of which are defined over F . Let v be the valuation on K . It is a homomorphism from K∗, the

multiplicative group of K , onto Z whose kernel is the group of units. If t belongs to TF , let v(t) in L̂

be defined by 〈λ, v(t)〉 = v(λ(t)) for all λ in L. If σ belongs to G(K/F ), then

〈λ, σv(t)〉 =
〈
σ−1λ, v(t)

〉
= v(σ−1(λ(σt))) = v(λ(t))

because σt = t and v(σ−1a) = v(a) for all a in K∗. Thus v is a homomorphism of TF into M̂ , the

groups of invariants of G(K/F ) in L̂. It is in fact easily seen that it takes TF onto M̂ .

We assume the following lemma.

Lemma 1. There is a Chevalley lattice in the Lie algebra of G whose stabilizer UK is invariant

under G(K/F ). UK is its own normalizer. Moreover, GK = BKUK , H
1(G(K/F ), UK) = 1, and

H1(G(K/F ), BK ∩UK) = 1. If we choose two such Chevalley lattices with stabilizers UK and U ′
K ,

respectively, then U ′
K is conjugate to UK in GK .

If g belongs to GK and σ belongs to G(K/F ), let gσ = σ−1(g). If g belongs to GF , we may write

it as = bu with b in BK and u in UK . Then gσ = bσuσ and uσu−1 = b−σb. By the lemma, there is a

v in BK ∩ UK such that uσu−1 = b−σb = vσv−1. Then b′ = bv belongs to BF , u′ = v−1u belongs to

UF = GF ∩ UK , and g = b′u′. Thus, GF = BFUF .

If gUKg
−1 = U ′

K for some g in GK , then gσUKg
−σ = U ′

K so that g−σg belongs to UK , which is

its own normalizer. By the lemma, there is u in UK such that g−σg = uσu−1. Then g1 = gu lies in GF

and g1UKg
−1
1 = U ′

K . Thus, UF and U ′
F are conjugate in GF .

LetCc(GF , UF ) be the set of all compactly supported functions forGF such that f(gu) = f(ug) =

f(g) for all u in UF and all g inGF . Cc(GF , UF ) is an algebra under convolution. It is called the Hecke

algebra. If N is the unipotent radical of B let dn be a Haar measure on NF and let
d(bnb−1)

dn = δ(b) if b

belongs to BF . If λ belongs to M̂ , choose t in TF such that v(t) = λ. If f belongs to Cc(GF , UF ), set

f̂(λ) = δ1/2(t)

{∫

NF ∩UF

dn

}−1 ∫

NF

f(tn)dn .

The group G(K/F ) acts on Ω. Let Ω0 be the group of invariant elements. Ω0 acts on M̂ . Let A(M̂) be

the group algebra of M̂ over C, and let Λ0(M̂) be the invariants of Ω0 in Λ(M̂). We also assume the

following lemma (cf. [12]).
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Lemma 2. The map f → f̂ is an isomorphism of Cc(GF , UF ) and Λ0(M).

Suppose B is replaced by B1 and T by T1. Observe that T ' B/N and T1 ' B1/N1. If u in GF

takes B to B1, it takes N to N1 and defines a map from T to T1. This map does not depend on u. It

determines G(K/F ) invariant maps from L1 to L and from L̂ to L̂1 and thus maps from M̂ to M̂1 and

from Λ0(M̂) to Λ0(M̂1). Suppose f̂ goes to f̂1 and λ̂ goes to λ̂1. If we choose, as we may, u in UF , then

f̂1(λ̂1) = f̂(λ̂) = δ1/2(t)

{∫

NF ∩UF

dn

}−1 ∫

NF

f(tn)dn .

Let NF ∩ UF = V . Denote the corresponding group associated to N1 by V1. Then uV u−1 = V1.

Choose d(unu−1) = dn1. Since f(ugu−1) = f(g), the expression on the right equals

δ1/2(utu−1)

{∫

V1

dn1

}−1 ∫

NF

f(utu−1unu−1)dn .

If utu−1 projects on t1 in T1, then δ(utu−1) = δ(t1) and v(t1) = λ̂1. Moreover,

∫
f(utu−1unu−1)dn =

∫
f(t1n1)dn1

and the diagram

Cc(GF , UF )

↙ ↘

Λ0(M) −−−−→ Λ0(M1)

is commutative.

If gUF g
−1 = U ′

F , the map f → f ′ with f ′(h) = f(g−1hg) is an isomorphism of Cc(GF , UF ) with

Cc(GF , U
′
F ). It does not depend on g. We can take g in BF . Then

f̂ ′(λ) = δ1/2(t)

{∫

NF ∩U ′

F

dn

}−1 ∫

NF

f(g−1tng)dn .

Since g−1tng = t(t−1g−1tg)g−1ng, the second integral is equal to

∫

NF

f(tg−1ng)dn .

Since

d(g−1ng)

dn
=

{∫

NF ∩U ′

F

dn

}−1 ∫

NF ∩UF

dn

we conclude that f̂ ′(λ̂) = f̂(λ̂) and that the diagram
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Cc(GF , UF ) −→ Cc(GF , U
′
F )

↘ ↙

Λ0(M̂)

is commutative.

I shall not explicitly mention the commutativity of these diagrams again. However, they are

important because they imply that the definitions to follow have the invariance properties which are

required if they are to have any sense.

If π is an irreducible unitary representation of GF on H whose restriction to UF contains the

identity representation, then

H0 = {x ∈ H
 π(u)x = x for all u in UF }

is a one­dimensional subspace. If f belongs to Cc(GF , UF ), then

π(f) =

∫

G

f(g)π(g)dg

maps H0 into itself. The representation of Cc(GF , UF ) on H0 determines a homomorphism χ of

Cc(GF , UF ) or of Λ0(M̂) into the ring of complex numbers. π is determined by χ. To define the local

L­functions, we study such homomorphisms. First of all, observe that, if χ is associated to a unitary

representation, then

|χ(f)| ≤

∫

GF

|f(g)|dg .

Since Λ(M̂) is a finitely generated module over Λ0(M̂), any homomorphism of Λ0(M̂) into C may

be extended to a homomorphism of Λ(M̂) into C which will necessarily be of the form

∑
f̂(λ)λ −→

∑
f̂(λ)λ(t) (B)

for some t in T̂ . Conversely, given t the formula (B) determines a homomorphism χt of Λ0(M̂) into C.

We shall show that χt1 = χt2 if and only if t1 ×σF and t2 ×σF , where σF is the Frobenius subsitution,

are conjugate in ĜF . If t belongs to Ĝ and σ belongs to G(K/F ), we shall abbreviate t × σ to tσ. It

is known [4] that every semi­simple element of ĜF whose projection on G(K/F ) is σF is conjugate

to some tσF with t in T̂ . Thus, there is a one­to­one correspondence between homomorphisms of the

Hecke algebra into C and semi­simple conjugacy classes in ĜF whose projection on G(K/F ) is σF .

If ρ is a complex analytic representation of ĜF and χt is the homomorphism of Λ0(M̂) into C

associated to π, we define the local L­function to be

L(s, ρ, π) =
1

det(I − ρ(tσF )|πF |2)
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if πF generates the maximal ideal of OF .

T̂ may be identified with HomZ(L̂,C∗). The exact sequence

0 −→ Z
ϕ

−→C
ψ

−→C∗ −→ 0

with ϕ(z) = 2πi
log |πF |

z and ψ(z) = |πF |
−z leads to the exact sequence

0 −→ L = HomZ(L̂,Z)
ϕ

−→EC = HomZ(L̂,C)
ψ

−→ T̂ −→ 0 .

Let VC be the invariants of G(K/F ) in EC and let WC be the range of σF − 1. Then EC = VC ⊕WC. If

w belongs to WC and λ belongs to M̂ , then 〈w, λ〉 = 0 and, replacing t by tψ(w) does not change χt. If

w = σF v − v and ψ(v) = s, then

tψ(w)σF = ts−1σF (s)σF = s−1(tσF )s

is conjugate to tσF . Thus, we have to show that if t1 = ψ(v1) and t2 = ψ(v2) with v1 and v2 in C, then

t1σF and t2σF are conjugate if and only if χt1 = χt2 .

Some preliminary remarks are necessary. We also have a decomposition ÊC = V̂C ⊕ ŴC and

M̂ = L̂ ∩ V̂C. Let Q̂ be the elements of V̂C obtained by projecting the positive coroots on V̂C. If S is an

orbit of G(K/F ) in the set of positive coroots, every element in S has the same projection on V̂C. Since
∑
α̂∈S α̂ belongs to V̂C, the projection must be

1

n(S)

∑

α̂∈S

α̂

if n(S) is the number of elements in S. Let S1, . . . , Sm be the orbits of G(K/F ) in {α̂1, . . . , α̂`} and set

β̂i =
1

n(Si)

∑

α̂∈Si

α̂ .

Every element of Q̂ is a linear combination of β̂1, . . . , β̂m with non­negative coefficients. Notice that

if ω belongs to Ω0 and ω acts trivially on M̂ , then ω leaves each βi fixed and therefore takes positive

roots to positive roots. Thus, it is 1. If we extend the inner product in any way from Ê1
R to ÊR and set

Ĉ =
{
x ∈ V̂R

 (β̂i, x) ≥ 0, 1 ≤ i ≤ m
}

and

D̂ =
{
x ∈ ÊR

 (α̂i, x) ≥ 0, 1 ≤ i ≤ `
}
,
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then Ĉ = D̂ ∩ V̂R. Consequently, no two elements of Ĉ belong to the same orbit of Ω0.

Let ĝi be the subalgebra of the Lie algebra of Ĝ generated by the root vectors belonging to the

coroots in Si and their negatives. ĝi is fixed by G(K/F ). Let Ĝi be the corresponding analytic group

and let T̂i = T̂ ∩ Ĝi. Let µi be the unique element of the Weyl group of T̂i which takes every positive

root to a negative root. If σ belongs to G(K/F ), then σ(µi) has the same property, so that σ(µi) = µi.

Let w be any element in the normalizer of T̂ whose image in Ω̂ is µi. Then wσF (w−1) lies in T̂ . Its

image in T̂ /ψ(WC) is independent of w. I claim that this image is 1. To see this write ĝi as a direct

sum
∑n
k=1 ĝik of simple algebras. If [K: F ] = n the stabilizer of ĝi1 is

{
σjni

F

 0 ≤ j ≤ n
ni

}
. We may

suppose that

ĝik = σk−1
F (ĝi1) .

If Ĝik is the analytic subgroup of Ĝwith Lie aglebra ĝik, choosew1 in the normalizer of T̂ ∩ Ĝi1 so that

w1 takes the positive roots of ĝi1 to the negative roots. We may choose w to be
∏ni−1
k=0 σkF (w1). Then

wσF (w−1) = (w1σF (w−1
1 ))(σF (w1)σ

2
F (w−1

1 )) . . . (σni−1
F (w1)σ

ni

F (w−1
1 ))

= w1σ
ni

F (w−1
1 ) .

The Dynkin diagram of ĝi1 is connected and the stabilizer of ĝi1 in G(K/F ) acts transitively on it.

This means that it is of type A1 or A2.

In the first case the diagram reduces to a point and the action of the stabilizer must be trivial, so

that w1 = σni

F (w1). In the second case SL(3,C) is the simply­connected covering group of Gi1; we

may choose the covering map to be such that T̂ ∩ Ĝi1 is the image of the diagonal matrices and σni

F

corresponds to the automorphism

A→




0 0 1
0 −1 0
1 0 0



 tA−1




0 0 1
0 −1 0
1 0 0





of SL(3,C). We may take w1 to be the image of




0 0 1
0 −1 0
1 0 0



 .

Then σni

F (w1) = w1.

µi acts on V̂ as the reflection in the hyperlane perpendicular to βi. Thus µ1, . . . , µm generate Ω0.

If ω belongs to Ω0, choose w in the normalizer of T̂ whose image in Ω is ω. The image of wσF (w−1) in

T̂ /ψ(WC) depends only on ω. Call it δω . Then

δω1ω2
= w1w2σF (w−1

2 w−1
1 ) = w1(w2σF (w−1

2 ))w−1
1 (w1σF (w−1

1 )) = ω1(δω1
)δω1

.
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Since δω is 1 on a set of generators, this relation shows that it is identically 1.

Returning to the original problem, we show first that if χt1 = χt2 there is an ω in Ω0 such

that ω(w1) = t2. Then, if w lies in the normalizer of T̂ in Ĝ and its image in Ω is ω, we will have

w(t1σF )w−1 = t2wσF (w−1)σF . Since wσF (w−1) lies in ψ(WC), the element on the right is conjugate

to t2σF .

If t belongs to T̂ , let χt also denote the homomorphism

∑
f̂(λ)λ→

∑
f̂(λ)λ(t)

of Λ(M̂) into C. If there were no ω such that ω(t1) = t2, there would be an f̂ in Λ(M̂) such that

χt2(f̂) 6= χω(t1)(f̂)

for all ω in Ω0. Let
∏

(X − ω(f̂)) =
n∑

k=0

f̂kX
k .

Each f̂k belongs to Λ0(M̂). Applying χt1 and χt2 , we find that

∏

ω

(X − χω(t1)(f̂)) =
n∑

k=0

χt1(f̂k)X
k =

n∑

k=0

χt2(f̂k)X
k =

∏

ω

(X − χω(t2)(f̂)) .

The polynomial on the right has χt2(f̂) as a root, but that on the left does not. This is a contradiction.

If t1σF and t2σF are conjugate, then for every representation ρ of ĜF

trace ρ(t1σF ) = trace ρ(t2σF ) .

Let ρ act on X and if λ belongs to M̂ , let tλ be the trace of ρ(σF ) on

Xλ =
{
x ∈ X

 ρ(t)x = λ(t)x for all t in T̂
}
.

If t belongs to ψ(WC), then λ(t) = 1. If ω belongs to Ω0 and w in the normalizer of T has image ω in Ω,

theXωλ = ρ(w)Xλ. Then tωλ is the trace ofw−1σFw = w−1σF (w)σF onXλ. Sinceλ(w−1σF (w)) = 1,

we have tωλ = tλ and

trace ρ(tσF ) =
∑

λ∈Ĉ

tλ




∑

µ∈S(λ)

µ(t)





if S(λ) is the orbit of λ. If

f̂ρ =
∑

λ∈Ĉ

tλ
∑

µ∈S(λ)

µ
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then f̂ρ belongs to Λ0(M̂) and

trace ρ(tσF ) = χt(f̂ρ) .

All we need to show is that the elements f̂ρ generate Λ0(M̂) as a vector space. This is an easy induction

argument because every λ in Ĉ is the highest weight of a representation of ĜF whose restriction to Ĝ

is irreducible.

5. If t belongs to T̂ , there is a unique function φt on GF which satisfies φt(ug) = φt(gu) = φt(g) or all

u in UF and all g in F , such that

χt(f) =

∫

GF

φt(g)f(g)dg

for all f in Cc(GF , UF ). A formula for φt, valid under very general assumptions, has been found by

I. G. MacDonald. However, because of the present state of reduction theory, his assumptions do not

cover the cases in which we are interested. I am going to assume that the obvious generalization of his

theorem is valid. In stating it we may as well suppose that t belongs ot ψ(VC).

Let N̂ be the unipotent radical of B̂, let n̂ be its Lie algebra, and let τ be the representation of

T̂ × G(K/F ) on n̂. If t belongs to ψ(VC) , consider the function θt on M̂ defined by

θt(λ) = c|πF |
−〈ρ,λ〉σω∈Ω0

det(I − |πF |τ
−1(ω(t)σF ))

det(I − τ−1(ω(t)σF ))
λ−1(ω(t)) .

If n(B̂) is the number of positive roots projection onto β̂ in Q̂,

c =
∏

β∈Q

{
1 − |πF |

n(β̂)〈ρ,β̂〉

1 − |πF |n(β)(〈ρ,β〉+1)

}
.

As it stands, θt(λ) makes sense only when none of the eigenvalues of τ(ω(t)σ)F are 1 for any ω in Ω0.

However, using the results of Kostant [8], we can write it in a form which makes sense for all t. Let ρ̂ be

one­half the sum of the positive coroots. ρ̂ belongs to V̂ . If λ belongs to M̂ and λ + ρ̂ is non­singular,

that is (λ+ ρ̂, β̂) 6= 0 for all β̂ in Q̂, let ω in Ω0 take λ+ ρ̂ to Ĉ and let χλ be sgnω times the character

of the representation of ĜF with highest weight ω(λ+ ρ̂) − ρ̂. If λ+ ρ̂ is singular, let χλ ≡ 0. If

det(I − |πF |τ
−1(tσF )) =

∑

µ∈M̂

bµµ(t)

then

θt(λ) = c|πF |
−〈ρ,λ〉

∑

µ∈M̂

bµχµ−λ((tσF )) .
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Clearly bµis 0 unless

µ = −
∑

α̂∈S

α̂

where S is a subset of the set of positive coroots invariant under G(K/F ). If U is the collection of

such µ, then {ρ̂+ µ|µ ∈ M} is invariant under Ω0. Suppose ρ̂ + µ is non­singular and belongs to Ĉ.

Since 〈αi, ρ̂〉 = 1 and 〈αi, µ〉 is integral, for 1 ≤ i ≤ `, µ itself must belong to Ĉ . This can only happen

if µ is 0. Thus if bµ 6= 0 either ρ̂ + µ is singular or ρ̂ + µ belongs to the orbit of ρ̂ and χµ(g) ≡ ±1

on ĜF . As a consequence θt(0) is independent of t. Choose t0 such that β̂i(t0) = |π|−〈ρ,β̂i〉 for

1 ≤ i ≤ m. The eigenvalues of τ(ω(t0)σF ) are the numbers ζ|πF |
−〈ρ,ω−1β̂〉 where β̂ belongs to Q

and ζ is an n(β̂)th root of unity. If ω 6= 1 there is a β̂i such that ω−1β̂ = −β̂i for some β in Q. Then
〈
ρ, ω−1β̂

〉
= −

〈
ρ, β̂i

〉
= −1 and τ(ω(t0)σF ) has |πF | is an eigenvalue. Thus

θt0(0) = c
det(I − |πf |τ

−1(t0σF ))

det(I − τ−1(t0σF ))
= 1 .

We are going to assume that if t belongs to ψ(VC), a belongs to TF , and λ = v(a), then

φt(a) = θt(λ) .

If

|χt(f)| ≤

∫

GF

|f(g)|dg

for all f in Cc(GF , UF ) then φt is bounded. I want to show that if φt is bounded, λ belongs to L̂, λ̄ in

D̂ belongs to the orbit of λ under Ω, and t lies in ψ(VC), then

|λ(t)| ≤ |πF |
−〈ρ,λ̄〉 .

Let t = ψ(v). Then v is not determined by t but Rev is and

|λ(t)| = |πF |
−Re〈v,λ〉 .

We will show that if φt is bounded thenRe 〈v, λ〉 ≤
〈
ρ, λ̄
〉

for all λ in ÊR. If ω belongs to Ω0 andReωv

lies in Ĉ then Re 〈ωv, ωλ〉 = Re 〈v, λ〉. With no loss of generality, we may suppose that v lies in C , the

analogue of Ĉ. Then, as is well­known,

Re 〈v, λ〉 ≤ Re
〈
v, λ̄
〉

and we may as well assume that λ = λ̄. We want to show that Re 〈v, λ〉 ≤ 〈ρ, λ〉 for all λ in D̂. Since

ρ and v both belong to VC, it is sufficient to verify it for λ in Ĉ . Let Ĉ0 be the interior of Ĉ . The set of
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λ in Ĉ for which the assertion is true is closed, convex, and positively homogeneous. Therefore, if it

contains M̂ ∩ Ĉ0, it is Ĉ .

Let S be the set of simple coroots α̂ for which Re 〈v, α̂〉 = 0. Let Σ0 be the positive coroots which

are linear combinations of the elements of S and let Σ+ be the other positive coroots. If n̂0 is the span of

the root vectors associated to the coroots in Σ0 and n̂+ is the span of the root vectors associated to the

coroots in Σ+, then τ breaks up into the direct sum of a representation τ0 on n̂0 and a representation

τ+ on n̂+. Let Ĥ be the analytic subgroup of ĜF whose Lie algebra is generated by the root vectors

associated to the coroots of Σ0 and their negatives and let Θ0 be the subgroup of Ω0 consisting of those

elements with representatives in Ĥ . If ω belongs to Ω0 and Reωv = Rev, then ω belongs to Θ0. If

Reωv 6= Rev, then Re 〈ωv, λ〉 < Re 〈v, λ〉 for λ in M̂ ∩ Ĉ0. Write λ = λ1 + λ2 where λ1 is a linear

combination of the coroots in S and λ2 is orthogonal to these roots. If s = ψ(u) with u in VC, consider

θ′s(λ) = c|πF |
〈u−ρ,λ2〉

det(I − |πF |τ
−1
+ (sσF ))

det(I − τ−1
+ (sσF ))

{
∑

Θ0

det(I − |πF |τ
−1
0 (sσF ))

det(I − τ−1
0 (sσF ))

|πF |
〈ωu−ρ,λ1〉

}
.

The function θ′s is not necessarily defined for all s. However, the preceding discussion, applied to Ĥ

rather than Ĝ, shows that it is defined at t and that θ′t(0) 6= 0. A simple application of l’Hospital’s rule

shows that, as a function of λ, θ′t is the product of |πF |
〈v−ρ,λ〉 and a linear combination of products of

polynomials and purely imaginary exponentials in λ1. Thus, it does not vanish identically in any open

cone.

Set θ′′t = θt − θ′t. θ
′′
t is a linear combination of products of polynomials in λ and an exponential

|πF |
〈ωv−ρ,λ〉 with Reωv 6= Rev. Thus, if λ belongs to the interior of Ĉ,

lim
n→−∞

|πF |
〈ρ−v,nλ〉θ′′t (nλ) = 0

and

lim
n→−∞

|πF |
〈ρ−v,nλ〉θt(nλ) = lim

n→−∞
|πF |

〈ρ−v,nλ〉θ′t(nλ) .

If 〈ρ, λ〉 is less than Re 〈v, λ〉 for some λ in Ĉ, then 〈ρ, λ〉 is less than Re 〈v, λ〉 for a λ in Ĉ for which

θ′t(nλ) does not vanish identically as a function of n. Since φt is bounded,

lim
n→−∞

|πF |
〈ρ−v,nλ〉θ′t(nλ) = 0 .

But |πF |
〈ρ−v,nλ〉θ′t(nλ) is a function of the form

q∑

k=0

ϕk(n)nk
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where ϕk(n) is a linear combination of purely imaginary exponentials eixn. It is easy to see that it

cannot approach 0 as n approaches −∞.

6. Suppose G is a group defined over the global field F . There is a quasi­split group G′ over F and

an isomorphism ϕ: G→ G′ defined over a Galois extension K of F such that, for every σ in G(K/F ),

aσ = ϕσϕ−1 is an inner automorphism of G′. We assume that there is a lattice gOF
over OF in the Lie

algebra of G′ such that OKg0F
is a Chevalley lattice.

If p is a finite prime of K and P is a prime of K dividing p, the group G over Fp is obtained from

G′ by twisting by the restriction a of the cocycle {aσ} to G(KP/Fp). Let G
′

be the adjoint group of

G′. If Ū ′
KP

is the stabilizer of the lattice OKP
G0F

then, for almost all p, a takes values in Ū ′
KP

. If

KP/Fp is also unramified, then G is quasi­split over Fp because H1(G(KP/Fp), Ū
′
Kp

) = {1}. Let S

be the set of those p, unramified in K , for which a takes values in Ū ′
KP

. Let G act on a vector space

X over F and let XOF
be a lattice in XF . Let UFp

be the stabilizer of OFp
X0F

in GFp
and let U ′

Fp

be the stabilizer of OFp
gOF

in G′
Fp

. Then ϕ(UFp
) = U ′

Fp
for almost all p. If p is also in S, choose

u in Ū ′
Fp

so that ϕσϕ−1 = Aduσu−1 for all σ in G(KP/Fp). Then ϕ−1Adu is defined over F and

ϕ−1Adu(U ′
Fp

) = UFp
. Consequently, UFp

is one of the compact subgroups of the fourth paragraph.

To show that almost all p are unramified, all we need do is observe that if π occurs in

L2(GF \ GZ(F )), whatever the precise meaning of this is to be, and π =
∏
p

⊗πp, then for almost

all p, the restriction of πp to UFp
contains the trivial representation.

If p is unramified let the homomorphism of Cc(GFp
, UFp

) associated to πp be χtp . To show that

the product of the local L­function converges in a half plane it would be enough to show that there is

a positive constant a such that for all unramified p every eigenvalue of ρ(tpσFp
) is bounded by |πp|

−a.

We may suppose that σFp
(tp) = tp. if n = [K : F ], then (tpσFp

)n = tnp so that we need only show that

the eigenvalues of ρ(tp) are bounded by |πp|
−a. This we did in the previous paragraph.

7. Once the definitions are made we can begin to pose questions. My hope is that these questions have

affirmative answers. The first question is the one initially posed.

Question 1. Is it possible to define the local L-functions L(s, ρ, π) and the local factors ε(s, ρ, π, ψF )

at the ramified primes so that if F is a global field π =
∏

⊗πp, and

L(s, ρ, π) =
∏

p

L(s, ρp, πp)
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then L(s, ρ, π) is meromorphic in the entire complex plane with only a finite number of poles and

satisfies the functional equation

L(s, ρ, π) = ε(s, ρ, π)L(1 − s, ρ̃, π)

and

ε(s, ρ, π) =
∏

p

ε
(
s, ρp, πp, ψFp

)
.

The theory of Eisenstein series can be used [9] to give some novel instances in which this question

has, in part, an affirmative answer. However, that theory does not suggest any method of attacking

the general problem. If G = GL(n) then ĜF = GL(n,C). The work of Godement and earlier

writers allows one to hope that the methods of Hecke and Tate can, once the representation theory of

the general linear group over a local field is understood, be used to answer the first question when

G = GL(n) and ρ is the standard representation of GL(n,C). The idea which led Artin to the general

reciprocity law suggests that we try to answer it in general by answering a further series of questions.

For the sake of precision, but not clarity, I write them down in an order opposite to that in which they

suggest themselves. If G is defined over the local field F let Ω(GF ) be the set of equivalence classes of

irreducible unitary representations of GF .

Question 2. Suppose G and G′ are defined over the local field F , G is quasi-split and G′ is obtained

from G by an inner twisting. Then ĜF = Ĝ′
F . Is there a correspondence F whose domain is

Ω(G′
F ) and whose range is contained in Ω(GF ) such that if π = R(π′) then L(s, ρ, π) = L(s, ρ, π′)

for every representation ρ of ĜF ?

Notice that R is not required to be a function. I do not know whether or not to expect that

ε(s, ρ, π, ψF ) = ε(s, ρ, π′, ψF ) .

One should, but I have not yet done so, look carefully at this question when F is the field of real

numbers. For this one will of course need the work of Harish­Chandra.

Supposing that the second question has an affirmative answer, one can formulate a global version.

Question 3.∗ Suppose that G and G′ are defined over the global field F , G is quasi-split, and G′ is

obtained from G by an inner twisting. Suppose π′ =
∏
p

⊗π′
p occurs in L2(G′

F \G′
A(F )). Choose for

each p a representation πp of GFp
such that πp = R(π′

p). Does π =
∏
p

⊗πp occur in L2(GF \GA(F ))?

∗ The question, in this crude form, does not always have an affirmative answer (cf. [6]). The

proper question is certainly more subtle but not basically different.
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Affirmative evidence is contained in papers of Eichler [3] and Shimizu [16] when G = GL(2) and

G′ is the group of invertible elements in a quaternion algebra. Jacquet [16], whose work is not yet

complete, is obtaining very general results for these groups.

Question 4. Suppose G and G′ are two quasi-split groups over the local field F . Let G split over K

and let G′ split over K ′ with K ⊆ K ′. Let ψ be the natural map G(K ′/F ) → G(K/F ). Suppse ϕ

is a complex analytic homomorphism from Ĝ′
K′/F to ĜK/F which makes

Ĝ′
K′/F −→ G(K ′/F )
yϕ

yψ

ĜK/F −→ G(K/F )

commutative. Is there a correspondence Rϕ with domain Ω(G′
F ) whose range is contained in Ω(GF )

such that if π = Rϕπ
′, then, for every representation ρ of ĜF and every non-trivial additive

character ψF , L(s, ρ, π) = L(s, ρ ◦ ϕ, π′) and ε(s, ρ, π, ψF ) = ε(s, ρ ◦ ϕ, π′, ψF ) ?

Rϕ should of course be functorial and, in an unramified situation, ifπ′ is associated to the conjugacy

class t′ × σ′
F , then π should be associated to ϕ(t′ × σ′

F ). I have not yet had a chance to look carefully

at this question when F is the field of real numbers.

The question has a global form.

Question 5. Suppose G and G′ are two quasi-split groups over the global field F . Let G split over

K and let G′ split over K ′ with K ⊆ K ′. Suppose ϕ is a complex analytic homomorphism from

Ĝ′
K′/F to ĜK/F which makes

Ĝ′
K′/F −→ G(K ′/F )
yϕ

y

ĜK/F −→ G(K/F )

commutative. If P′ is a prime of K ′, let P = P′ ∩ K and let p = P′ ∩ F . ϕ determines a

homomorphism ϕp: Ĝ
′
K′

P′
/Fp

→ ĜKP/Fp
which makes

Ĝ′
K′

P′
/Fp

−→ G(K ′
P′/Fp)

y
y

ĜKP/Fp
−→ G(KP/Fp)
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commutative. If π′ =
∏

⊗π′
p occurs in L2(G′

F \ F ′
A(F )) choose for each p a πp = Rϕp

(π′
p). If

π =
∏
p

⊗πp does π occur in L2(GF \GA(F )) ?

An affirmative answer to the third and fifth questions would allow us to solve the first question

by examining automorphic forms on the general linear groups.

It is probably worthwhile to point out the difficulty of the fifth question by giving some examples.

Take G′ = {1} G = GL(1),K ′ any Galois extension of F and K = F . The assertion that, in this case,

the last two questions have affirmative answers is the Artin reciprocity law.

Suppose G is quasi­split and G′ = T . We may identify Ĝ′
F with T̂ × G(K/F ) which is contained

in ĜF . Thus we take K ′ = K . Let ϕ be the imbedding. In this case π′ is a character of G′
F \ G′

A(F ).

The fourth question is, with certain reservations, answered affirmatively by the theory of induced

representations. The fifth question is, with similar reservations, answered by the theory of Eisenstein

series. The reservations are not important. I only want to point out that the theory of Eisenstein series

is a prerequisite to the solution of these problems. with G as before, take G′′ = {1} and K ′′ = K so

that Ĝ′′
F = G(K/F ). Letψ take σ in G(K/F ) to σ to ĜF . There is only one choice of π′′. The associated

space of automorphic forms onGF \FA(F ) should be the space of automorphic forms associated to the

trivial character of G′
F \G′

A(F ). For this character all the reservations apply. I point out that the space

associated to π′′ is not the obvious one. It is not the space of constant functions. To prove its existence

will require the theory of Eisenstein series.

TakeG = GL(2) and letG′ be the multiplicative group of a separable quadratic extensionK′ of F .

Take K = F . Then Ĝ′
F is a semi­direct product (C∗ × C∗) × G(K ′/F ). If σ is the non­trivial element

of G(K ′/F ), then σ((t1, t2)) = (t2, t1). Let ϕ be defined by

ϕ: (t1, t2) −→

(
t1 0
0 t2

)

ϕ: σ −→

(
0 1
1 0

)

The existence ofRϕ in the local case is a known fact (see for example [6]) in the theory of representations

ofGL(2, F ). An affirmative answer to the fifth question can be given by means of the Hecke theory [6]

and by other means [15].

Let E be a separable extension of F and let G be the group over F obtained from GL(2) over D

by restriction of scalars. Let G′ be GL(2) over F and let K ′ = K be any Galois extension containing
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E. Let X be the homogeneous space G(K/E) \ G(K/F ). Then ĜF is the semi­direct product of
∏
x∈X

GL(2,C) and G(K/F ). If σ belongs to G(K/F ), then

σ
(∏

x∈X

Ax

)
σ−1 =

∏

x∈X

Bx

with Bx = Axσ . Define ϕ by

ϕ(A× σ)
(∏

x∈X

A
)
× σ .

Although not much is known about the fifth question in this case, the paper [2] of Doi and Naganuma

is encouraging.

Suppose G and K are given. Let G′ = {1} and let K ′ be any Galois extension of F containing

K . If F is a local field, the fourth question asks that, to every homomorphism ϕ of G(K′/F ) into ĜF

which makes
G(K ′/F )

ϕ
−→ ĜF

↘
y

G(K/F )

commutative, there be associated at least one irreducible unitary representation of GF . If F is global,

the fifth question asks that toϕ there be associated a presentation ofGA(F ) occurring inL2(GF \GA(F )).

TheL­functions we have introduced have been so defined that they include the Artin L­functions.

However, Weil [17] has generalized the notion of an Artin L­function. The preceding observations

suggest a relation between the generalized Artin L­function and the L­functions of this paper. Weil’s

definition requires the introduction of some locally compact groups – the Weil groups. If F is a local

field, let CF be the multiplicative group of F . If F is a global field, let CF be the idèle class group. If

K is a Galois extension of F , the Weil group WK/F is an extension

1 → CK →WK/F → G(K/F ) → 1

of G(K/F ) by CK . There is a canonical homomorphism τK/F of WK/F onto CF . If F is a global field,

P a prime of K , and p = F ∩ P, there is a homomorphism αp: WKP/Fp
→ WK/F . αp is determined

up to an inner automorphism. If σ is a representation ofWK/F , the class of σp = σ ◦αp is independent

of αp. By a representation σ ofWK/F we understand a finite dimensional complex representation such

that σ(w) is semi­simple for all w in WK/F .
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If F is a local field and ψF a non­trivial additive character of F , then for any representation σ of

WK/F we can define (cf. [11]) a local L­function L(s, σ) and a factor ε(s, σ, ψF ). If F is a global field

and σ is a representation of WK/F , the associated L­function is

L(s, σ) =
∏

p

L(s, σp) .

The product is taken over all primes, including the archimedean ones. If ψF is a non­trivial character

of F \ A(F ), then ε(s, σp, ψFp
) is 1 for almost all p,

ε(s, σ) =
∏

p

ε(s, σp, ψFp
)

is independent of ψF , and

L(s, σ) = ε(s, σ)L(1− s, σ̃)

if σ̃ is contragredient to σ.

Question 6. Suppose G is quasi-split over the local field F and splits over the Galois extension K.

Let ÛF be a maximal compact subgroup of ĜF . Let K ′ be a Galois extension of F which contains

K and let ϕ be a homomorphism of WK′/F onto ÛF which makes

WK′/F −→ G(K ′/F )
yϕ

y

ÛF −→ G(K/F )

commutative. Is there an irreducible unitary representation π(ϕ) of GF such that, for every repre-

sentation σ of ĜF , L(s, σ, π(ϕ)) = L(s, σ ◦ ϕ) and ε(s, σ, π(ϕ), ψF ) = ε(s, σ ◦ ϕ,ψF ) ?

Changing ϕ by an inner automorphism ÛF will not change π(ϕ), or at least not its equivalence

class. If F is non­archimedean and K′/F is unramified, the composition of v, the valuation on F , and

τK′/F defines a homomorphism ω ofWK/F onto Z. If u = t× σF belongs to ÛF , we could define ϕ by

ϕ(w) = uω(w) .

Then π(ϕ) would be the representation associated to the homomorphism χt of the Hecke algebra into

C.

We can also ask the question globally.
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Question 7. Suppose G is quasi-split over the global field F and splits over K. Let K ′ be a Galois

extension of F containing K and let ϕ be a homomorphism of WK′/F into ÛF which makes

WK′/F −→ G(K ′/F )
yϕ

y

ÛF −→ G(K/F )

commutative. If P′ is a prime of K ′ and p = P′ ∩ F , then ϕp = ϕ ◦ αp takes WK′

P′
/Fp

into ÛFp
.

If π(ϕ) =
∏
p

⊗π(ϕp), does π(ϕ) occur in L2(GF \GA(F )) ?

Both questions have affirmative answers if G is abelian [10] and the correspondence ϕ → π(ϕ)

is surjective. In this case our L­functions are all generalized Artin L­functions. If G = GL(2) and

K = F , it appears that the Hecke theory can be used to give an affirmative answer to both questions

if it is assumed that certain of the generalized Artin L­functions have the expected analytic properties.

If all goes well, the details will appear in [6].

I would like very much to end this series of questions with some reasonably precise questions

about the relation of theL­functions of this paper to those associated to non­singular algebraic varieties.

Unfortunately, I am not competent to do so. Since it may be of interest, I would like to ask one question

about the L­functions associated to elliptic curves. If C is defined over a local field F of characteristic

zero, I am going to associate to it a representation π(C/F ) ofGL(2, F ). IfC is defined over a global field

F which is also characteristic zero, then for each prime p, π(C/Fp) is defined. Does π =
∏
p

⊗π(C/Fp)

occur inL2(GL(2, F )\GL(2,A(F )) ? If so, L(s, σ, π), with σ the standard representation ofGL(2,C),

whose analytic properties are known [6] will be one of the L­functions associated to the elliptic curve.

There are examples on which the question can be tested. I hope to comment on them in [6].

To define π(C/F ), I use the result of Serre [14]. Suppose that F is non­archimedean and the

j­invariant of C is integral. Take any prime ` different from the characteristic of the residue field and

consider the `­adic representation. There is a finite Galois extension K of F such that, if A is the

maximal unramified extension of K , the `­adic representation can be regarded as a representation of

G(A/F ). There is a homomorphism of WK/F into G(A/F ). The `­adic representation of G(A/F )

determines a representation ϕ of WK/F in GL(2, R), where R is a finitely generated subfield of the

`­adic field Q`. Let σ be an isomorphism of R with a subfield fo C. Then

ψ: w → |τK/F (w)|1/2ϕσ(w)
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is a representation ofWK/F in a maximal compact subgroup ofGL(2,C). Let π(C/F ) be the represen­

tation π(ψ) of Question 6. If C has good reduction, the class of ψ is independent of ` and σ. I do not

know if this is so in general. It does not matter, because we do not demand that π(C/F ) be uniquely

determined by C .

If the j­invariant is not integral, the `­adic representation can be put in the form

σ →

(
χ1(σ) ∗

0 χ2(σ)

)

where χ1 and χ2 are two representations of the Galois group of the algebraic closure of F in the

multiplicative group of Q`. If A is the maximal abelian extension of F , then χ1 and χ2 may be

regarded as representations of G(A/F ). There is a canonical map of F∗, the multiplicative group of

F , into G(A/F ). χ1 and χ2 thus define characters µ1 and µ2 of F ∗. µ1 and µ2 take values in Q∗

and µ1µ2(x) = µ1µ
−1
2 (x) = |x|−1. In, for example, [6], there is associated to the pair of generalized

characters x → |x|1/2µ1(x) and x → |x|1/2µ2(x) a unitary representation of GL(2, F ), a so­called

special representation. This we take as π(C/F ).

If F is C, take π(C/F ) to be the representation of GL(2,C) associated to the map

s→

( z
|z| 0

0 z̄
|z|

)

of C∗ = WC/C) into GL(2,C) by Question 6. C∗ is of index two in WC/R. The representation of WC/R

induced from the character z → 1
|z|

of C∗ has degree 2. If F = R, let π(C/F ) be the representation of

GL(2,R) associated to the induced representation by Question 6.

8. I would like to finish up with some comments on the relation of the L­functions of this paper to

Ramanujan’s conjecture and its generalizations. Suppose π =
∏

⊗πp occurs in the space of cusp

forms. The most general form of Ramanujan’s conjecture would be that for all p the character of πp is a

tempered distribution [5]. However, neither the notion of a character nor that of a tempered distribution

has been defined for non­archimedean fields. A weaker question is whether or not at all unramified

non­archimedean primes the conjugacy class in ĜF associated to πp meets ÛF (cf. [13]). If this is so, it

should be reflected in the behavior of the L­functions.

Suppose, to remove all ramification, that G is a Chevalley group and that K = F = Q. Suppose

also that each πp is unramified. If p is non­archimedean, there is associated to πp a conjugacy class {tp}

in GQ. We may take tp in T̂ . The conjecture is that, for all λ in L̂,

|λ(tp)| = 1 .



Problems in the theory of automorphic forms 25

Since there is no ramification at ∞, one can, as in [9], associate to π∞ a semi­simple conjugacy class

{X∞} in the Lie algebra of ĜQ. We may take X∞ in the Lie algebra of T̂ . The conjecture at ∞ is that,

for λ in L̂,

Reλ(X∞) = 0 .

If σ is a complex analytic representation of ĜQ, let m(λ) be the multiplicity with which λ occurs

in σ. Then

L(s, σ, π) =
∏

λ

{
π
−s(s+ λ(∞))

2
Γ

(
2 + λ(X∞)

2

)∏

p

1

1 −
λ(tp)
ps

}m(λ)

.

If the conjecture is true, L(s, σ, π) is analytic to the right of Re s = 1 for all σ.

Let F be any non­archimedean local field andG any quasi­split group over F which splits over an

unramified extension field. If f belongs to Cc(GF , UF ), let f∗(g) = f̄(g−1). If f̂ and f̂∗ are the images

of f and f∗ in Λ0(M), then f̂∗(λ) is the complex conjugate of f̂(−λ). If t belongs to T̂ , define t∗ by the

condition that λ(t∗) = λ(t−1) for all λ in L̂. The complex conjugate of χt(t
∗) is

∑
f̂(−λ)λ(t) =

∑
f̂(λ)λ(t∗) = χt∗(f) .

If χt is the homomorphism associated to a unitary representation, then χt(f
∗) is the complex conjugate

of χt(t) for all f so that t× σF is conjugate to t∗ × σF and for any representation ρ of ĜF , the complex

conjugate of trace ρ(t × σF ) is trace ρ̃(t × σF ) if ρ̃ is the contragredient of ρ. In the case under

consideration, when K = F this means that trace ρ(tp) is the complex conjugate of trace ρ̃(tp). A

similar argument can be applied at the infinite prime so show that the eigenvalues of ρ(X∞) are the

complex conjugates of the eigenvalues of ρ̃(X∞).

Suppose L(s, σ, π) is analytic to the right of Re s = 1 for all σ. Since the Γ­function has no zeros,

∏

λ

{
∏

p

1

1 −
λ(tp)
ps

}m(λ)

(C)

is also. Let σ be ρ⊗ ρ̃. Then the logarithm of this Dirichlet series is

∑

p

∞∑

n=1

1

n

trace σn(tp)

pns
.

Since

trace σn(tp) = trace ρn(tp)trace ρ̃n(tp) = |trace ρn(tp)|
2
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the series for the logarithm has positive coefficients. Thus, the original series does too. By Landau’s

theorem, it converges absolutely for Re s > 1 and so does the series for its logarithm. In particular,

det

(
1 −

σ(tp)

ps

)

does not vanish for Re s > 1 so that the eigenvalues of σ(tp) are all less than or equal to p in absolute

value. If λ is a weight, choose ρ such that mλ occurs in ρ. Then (mλ)(tp) = λ(tp)
m is an eigenvalue of

ρ(tp) and λ(tp)
m

is an eigenvalue of ρ̃, so that |λ(tp)|
2m is an eigenvalue of σ and

|λ(tp)| ≤ p
1

2m

for all m and all λ. Thus, |λ(tp)| ≤ 1 for all λ. Replacing λ by −λ, we see that |λ(tp)| = 1 for all λ.

Since the function defined by (C) cannot vanish for Re s > 1 when σ = ρ⊗ ρ̃, the function

∏

λ

Γ

(
2 + λ(X∞)

2

)m(λ)

must be analytic for Re s > 1. This implies that

Reλ(X∞) ≥ −1

if m(λ) > 0. The same argument as before leads to the conclusion that Reλ(X∞) = 0 for all λ.

Granted the generalizations of Ramanujan’s conjecture, one can ask about the asymptotic distri­

bution of the conjugacy classes {tp}. I can make no guesses about the answer. In general, it is not

possible to compute the eigenvalues of the Hecke operators in an elementary fashion. Thus, Question

7 cannot be expected to lead by itself to elementary reciprocity laws. However, when the groups GFp

at the infinite primes are abelian or compact, these eigenvalues should have an elementary meaning.

Thus, Question 7, together with some information on the range of the correspondences of Question 3,

may eventually lead to elementary, but extremely complicated, reciprocity laws. At the present it is

impossible even to speculate.
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