On Principal Values on P-Adic Manifolds

R. Langlands and D. Shelstad

In the paper [L] a project for proving the existence of transfer factors for forms of SL(3), especially
for the unitary groups studied by Rogawski, was begun, and it was promised that it would be completed
by the present authors. Their paper is still in the course of being written, but the present essay can
serve as an introduction to it. It deals with SL(2) which has, of course, already been dealt with
systematically [L-L], the existence of the transfer factors being easily verified. Thus it offiers no new
results, but develops, in a simple context, some useful methods for computing the principal value

integrals introduced in [L].

We describe explicitly the Igusa fibering, form and integrand associated to orbital integrals on
forms of SL(2), taking the occasion to clarify the relation of this fibering to the Springer-Grothendieck
resolution (cf. §3). The Igusa data established, there are two problems: (i) to show that certain principal
values are zero, (ii) to compare principal values on two twisted forms of the same variety. To deal with
the first we have, in §1, computed directly some very simple principal values on P!, and shown that
principal values behave like ordinary integrals under standard geometric operations such as fibering
and blowing-up. The second problem is dealt with in a similar way, by using Igusa’s methods to

establish, in a simple case, a kind of comparison principle (Lemma 4.B).

The endoscopic groups for a form of SL(2) are either tori or SL(2). For tori the solution of the
first problem (Lemma 4.A) leads immediately to the existence of transfer factors, and the hypotheses
of [Ly, pp. 102, 149] are trivially satisfied. If G is anisotropic over F' and the endoscopic group is SL(2)
the solution of the second problem (Lemma 4.B with x = 1) and the characterization of stable orbital
integrals (cf. [V]) yields the existence of transfer factors as well as the local hypothesis of [L, p. 102].
The analogous results at archimedean places are known in general (cf. [L;, Lemma 6.17]). The global

hypothesis [L1, p. 149] follows from [L;, Lemma 7.22].

The principal values which arise for forms of SL(2) are computed without difficulty, but we
expressly avoid such calculations. The aim of the project begun in [L], and continued here, is to
develop methods for proving the existence of transfer factors which appeal only to geometric techniques
of some generality and thus have some prospect of applying to all groups. One encouraging sign is

the smoothness with which they mesh with the notion of k-orbital integral. They can be easily applied
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to the study of the germ at regular unipotent elements. A further test, perhaps not easy to carry out,

would be the semi-regular elements, already studied for GL(n) by Repka [R].

Throughout this paper F' will be a nonarchimedean local field of characteristic zero, with residue

field of ¢q elements;

.| = | - | will denote the valuation on F and t a prime element; F' will be an
algebraic closure of F.
§1. Remarks.

The following lemmas concern the simplest of the principal value integrals which arise in §1 of
[L].

Let N = N(myq,...,my,) be the box
(1.1) luj| <g¢7™  (1<j<n)

in F’*. Consider the (multi-valued) differential form

n

. du1 du
(1.2) Viey,....cn) Hu?—/\.../\—n,
i=1 U1 Unp,
where ¢y, ..., ¢, are rational numbers. Let 64, ..., 0, be quasicharacters on F'*. Writing
(1.3) 0; =0;]-["

with 6, unitary and g, a real number, we assume

Set
(1.5) heoy,...00) (U1, s un) = Hej(uj)'
j=1

(1.6) j{h(el ..... 0.)V(er,..en)l

N
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following [L, Lemma 1.3]. Thus consider for Re(s;) >0 (1 <j <n)

o du;
/H\u” Jh(@17 O )‘I/(Cl7 7(3“)‘ H / u] |u |Sg+t]+ca|u_']|
J

‘u] [<q™™
T v du —(sj+t;+cj)n
(17) = Z ej(uj)— q SIS
Jj=1ln—m; R, |’LL]|
uj|=q
L, 1 (05 (w)g ™ (esttates)ym;
:6(1__) H 1—6. ( ) (sj—i-tj—i-cj)
j=1 q
where
_ 1 if each 6; is unramified
o 0 otherwise.
The analytic continuation of this function is, thanks to (1.4), analyticat s; = ... = s,, = 0; (1.6) is the
valueat sy =... =s, = 0. Thus:

Lemma 1.A.

To define now ¢ h|v| we assume:
X

(1.8) X isan F-manifold, h is a C-valued function supported on a compact open subset of X, v is

a differential form on X; and
(1.9) the support of A is the disjoint union of neighborhoods U with the following properties:
(1.10) there are local coordinates uq, . . . , u,, on X suchthat Uis given by (1.1) forsome mq, ..., m,,
(111) on U,v = ay(,,....,) With |a| constant, and h = ~h, ... 6,) With v constant, where
C1,...,cpand 6, ... ,0, satisfy (1.4).

Then

def.
j{h\VI = qlal f R0y, 00 [V(eren) |

X U N(mlv"'7mn)
Our definition is that for the case »r = s = 1 in the proof of Proposition 1.2 in [L]. The integral is

independent of the choice for {U, u4, ..., u, } ([L, Proposition 1.2]). Note especially that the conditions

(1.9) - (2.11) are local, i.e., they are satisfied if we can find around each point in the support of h a
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neighborhood U satisfying (1.10) and (1.11). We will allow « to take values in a finite Galois extension
L of F; in that case, |a| = [NmEZa|'/[F+F],
The following remark will simplify a later argument. Given X, h and v as in (1.8), a patch U as in

(1.9), and integers M;(1 < j < r) such that M; > m;, let U = U(Mj, ..., M,) be the subset
Jujl =g (1< <) ful <g™ (r+1<5<n)
of U. Then:

Lemma 1.B.

§ h|v| exists and equals the value at sy = ... = s, =0 of
U

Moreover, if the support of h is the disjoint union of a collection S of such neighborhoods then

74 vl = 3 f bl

UESU

Proof: The first assertion follows from the definitions, and the second from the independence of § h|v/|
X

from the choice of decomposition for the support of h.

We consider an example. Let Uy,...,U, be homogeneous coordinates on P". Suppose that

n
b, ...,0, are quasicharacters on F'* such that [[ 6; = 1, and that ¢, ..., ¢, are rational numbers
j=1

n
such that ) ¢; = 0. Assume
§=0

(1.12) t; +¢; # 0if6; = 1(0 < j < n), where §; = 6] - |'s

Let v be the form on P" given on U # 0 by

c dUO dUk dUn
1.13 )k U’ AN—= AN
where - indicates deletion. Let i be the function
(1.14) h(Us, ..., Un) = [ 0;(U).
j=0

Then (1.12) ensures that  §  h|v| is well-defined.
P (F)
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Lemma 1.C.

% hlv| = 0.

P"(F)

Proof forn = 1: Set = 0y,t = tg,c = cg,u = Up,onU; = 1land u = U; on Uy = 1. Then

f hlv| = f ()2 4 74 6" (u) u] ) L2

|ul |ul
PY(F) lu|<1 |u|<g—1
1 1 O(ww) tqtte
1.15 =e(l1—=
(149) 1= (=g * e
=0.

The proof for n > 1 will be by reduction to the case n = 1; it follows Lemma 1.F.

Consider X,k and v as in (1.8) - (1.11) and a neighborhood U as in (1.9). To compute ¢ h|v| we
U

may change coordinates and assume that m; = ... = m,, = 1. This will be done for the next lemma.

Suppose that we blow up X atu; = ... = u,, = 0 to obtain the F-manifold X and projection

7:X - X. LetU=7"1U),h=horand v = 7*(v).

Lemma 1.D.

Assume that Y (t; +¢;) # 0 if [ 0; =1. Then § h|v| exists and equals [ hlv|.
: L J O

n
Jj=1 J U
Proof: Near u; = ... = u, = 0, X is given by wU; = Uju;(i,j = j,...,n), where Uy,...,U, are
homogeneous coordinates on P™ ' (F).

On U; = 1 we have the coordinates Uy, ..., U;_1,2 = w;,Uiy1,...,Uy,. Then u; = 2U;(j # i).
Thus
Uy A dz au,

LN — AL
U1 z Un

7 = aztetten) [TUe
i

and

h= ’7H9j(2)H9j(Uj)

i
= A2\ OO T, [T 65(2) [ 65(U))
j#i j=1 j#i
on this patch.
Let z € U have coordinates uy, ..., u,. Set S(x) = {i : |u;| = max luj|}. For S C {1,2,...,n},
SJjsn

let Us = {x € U: S(x) = S}. Then U is the disjoint union of the Ug. Let Us = 71 (Ug). Fixi € S.



Principal values on p-adic manifolds 6

Then Ug is contained in U; = 1; it consists of the points in U; = 1 with |z| < 1,|U;| =1 (j € S,j # 1)

and |Ux| < 1(k ¢ S). The assumption in the statement of the lemma ensures that ¢ h|v7| and § h|7|
Us U
are well-defined.

On the other hand, § h|v|isthe valueats; = ... = s, = 0 of
U

/H|u [ hjy| = Z/Hw b

SUsjl

_Z/|Z|s1+ +an|U |5 h|V|

J#i

where for each S C {1,2,...,n} we have fixed i € S. Then by Lemma 1.B,

fhrur - Zfﬁwr - fﬁw,
U S Us U

and we are done.

Corollary 1.E. Under the assumption of Lemma 1.D, ¢ h|v| is well-defined and equals § h|v|.
X X

Lemma 1.F. Suppose that ¢ : X — X' is a smooth (submersive) map of F-manifolds. Suppose
that X, h and v satisfy (1.9) — (1.11) with the further constraint on the coordinates uy,. .., up:

(1.16) there are coordinates vy, ...,v, on ¢(U) such that u; =vjo¢,j=1,...,r

Let V' be a differential form on X' given on ¢(U) by

d; dvl dvr
1.17
( ) « H f vy 'Ur7

where || is constant and d; is rational, 1 < j < r. Then for ' € X'(F) the principal value

integral

N
H(@) ?{ FElk

taken over the fiber above x' in X, is well-defined outside a locally finite family of divisors. More-

fh|y| = fH|I//|.
b's X

over, $ H|V'| is well-defined and
X/
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Proof: We may assume that the support of / is contained in a neighborhood U as in the statement of

the lemma. Let 2’ € ¢(U) have coordinates vy, ..., v,. The fiber integral

duiy1  du,

|1 |y, |

Hmwzwwwrﬂj%w»wmf%f'Hj%mm%w
i=1 '

Jj=r+1

is well-defined provided none of vy, ..., v, vanish at 2. Then

n .. dur " dun r e du1 dur
g i=alel § T ostuptul Gzt £ § TL 06wl gt -
. T n =1 r

j=r+1

is well-defined and coincides with ¢ i|v|. Thus the lemma is proved.
Proof of Lemma 1.C:

Let p be the point in P"(F') where Uy = U; = --- = U,,_1 = 0. Suppose that we blow up P" at p to

obtain the smooth variety () over F'. The local conditions of Lemma 1.D are met since

n—1 n—1
D (tj+ej)=—(tn+co)and J] 6, =6,"
§j=0 §j=0

(cf. (1.12)). Corollary 1.E then implies that ¢ hlv| = § h|p|. We define a smooth map ¢° :
P (F) Q(F)

P" — {p} — P"~ ! by mapping the point with homogeneous coordinates U, . .. , U,, in P" to the point
with homogeneous coordinates U, ..., U,,_; in P"~!. There is a smooth extension ¢ : Q — P" ! of
#°, with fiber P'. An easy calculation verifies that the conditions of Lemma 1.F are met and that the
integral H (z') over the fiber above z' € P"~!(F) takes the form (1.15). But then H = 0. We conclude

that ¢ hlv| =0, and the lemma is proved.
Q(F)
Finally, there are two remarks which will be useful for the proof of Lemma 4.B. We state them only

in the generality needed for that lemma.
Remark 1.G.

Let L C F be a quadratic extension of F. Denote the natural action of the nontrivial element o
of Gal(F/F) by a bar. We define a twisted form S of P! by requiring that o act on the homogeneous
coordinates Uy, U; by Uy — U;,U; — Up. Then S(F') is contained in the affine patch U; # 0 and
is given by u@ = 1 if we require U; = 1 and set Uy = u. The form v on P'(L) = S(L) given by (1.13)

d

with ¢; = ¢o = 0 is preserved by the Galois action of S; |v| = £+ is a Haar measure on S(F'). Thus, for

[
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any character # on {u € L* : uu = 1}, f H(u)% exists as an ordinary integral and is zero unless 6
S(F)

is trivial.

Remark 1.H.

Again L will be a quadratic extension of F. We regard Pl(L) as the F-rational points on a
twisted form R of P' x P! as follows: R(L) = P'(L) x P*(L) and o acts by (p,q) — (g, ), so that
R(F) = {(p,p) : p € P(L)}. Define a formon R(L) by v = %, where u (respectively, v) denotes
the coordinate Uy on U; = 1 in the first (respectively, second) copy of P*(L). At a point of R(F) on
(Uy = 1) x (U; = 1) we have v = . Let h be given at such a point by 6(uu)|uu|', where 6 is a character
on F* and t is a real number such that ¢ # 0 if 92 = 1. Observe that, in general, h and v do not satisfy
the conditions of (1.9) - (1.11). We may, however, blow up R at « = v = 0 to obtain a variety R over F

and projection 7 : R — R. Seth = horand 7 = 7*(v). Let N be the inverse image in R(F) of the

neighborhood |u|;, < 1of u =v = 0in R(F). Then a calculation with coordinates shows that

(1.18) j{ﬁ!ﬂ\ is well-defined

N

(here t # 0if 62 = 1 is needed) and

(1.19) ]jf

where the subscript L indicates that we are computing on the L-manifold |u|;, < 1in P'(L). Observe

dLu

7] = f 6 o Nm(u)[ul}, 22"
\

>

lulr,’

u|L§1

that if # is trivial on Nm%L* and t = —1 then

}{ Rl7| = f{ Wl

R(F)—N R(F)—-N
is well-defined and equals
dLu
dru = —.
H ig [ul?
lulp <1 lulr>1
Thus, in this case, we have
= _ dLu
(1.20) hlp| = e =0 (LemmalC).
u
R(F) P(L) -

§2. lgusa Theory.
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Recall the setting of [L, §1]: Y is a smooth variety over F';¢ : Y — (C is an lgusa fibering of
Y over a smooth curve C over F'; w is an Igusa form on Y; and f an Igusa integrand (the definitions
will be reviewed presently). There is a distinguished point ¢y on C(F') and ¢ is smooth except on the
special fiber »~1(cy). Choose an F-coordinate A\ around ¢y on C; assume A(cg) = 0. Then lgusa’s

theory establishes the existence of an asymptotic expansion

Y O (— log, ANV EA0, 5, f)
(6,8,)

near A = 0 for the integral
\w!
0= [ e
over the fiber in Y (F') above the point in C' with coordinate \. Here 6 denotes a character on F*, 3
a real number and r a positive integer. The coefficients F,.(6, 3, f) are the principal value integrals of
[L, Proposition 1.2]. Under an assumption we will make (2.9), only » = 1 occurs and F; (6, 3, f) is an
integral of the type considered in the last section. In this paragraph we will relax the constraints on the
form w and integrand f. The fiber integal F'(\) may then exist only as a principal value integral, but it
will still have an asymptotic expansion. The coefficients are again given by [L, Proposition 1.2], i.e., by

(related) principal value integrals.
For the rest of this section we require the following of Y, C, ¢, w and f:

(2.1) Y is a smooth variety over F', C' is a smooth curve over F' with distinguished point ¢, €
C(F),¢: Y — Cisan F-morphism smooth except over ¢y, w is a differential form of maximal degree

onY, fisa C-valued function supported on a compact open subset of Y (F’); and

(2.2) if yo € Y (F) lies over the coordinate patch for ), a fixed local F-coordinate around ¢, on C,
then there exist local F'-coordinates u1, ..., i, around yo, on Y such that:

(2.3)ifyo € ¢~ 1(co) then ¢ is given near yo by A = auf' ... ", where a is regular and invertible
at yo and a1, . .. ,a, are nonnegative integers; if yo ¢ ¢~*(co) and )\ is the coordinate of ¢(yo) then
1= A — Ao,

(2.4) w is given near yy by

n

w ] #; bd’“ on D

i=1 Hn

where W is regular and invertible at yo and by, ...,b, are rational numbers; if 5o ¢ ¢~ 1(co) then

b1:1;
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(2.5) f is given on points of Y (F) near yy by vK1(u1) ... Kn(pn), where v is locally constant

around yo and K1, ..., K, are quasicharacters on F* such that:

(2.6) if 1; = 0 is the branch of a divisor £ in ¢ 1(co) through g, then K; depends only on E; if
Yo ¢ ¢~ (co) then K; = 1; and

(2.7) if K; = k;| - |" with ; unitary and g; real then either ¢; +b; # 0or k; # 1,1 < j < n. For
Lemma 2.A, (2.7) need only be satisfied for yo ¢ ¢~ (co).
Remark. These are the conditions of [L, §1] for ¢ : Y — C to be an Igusa fibering; w is an Igusa form
ifb1,...,0b, are positive integers, i.e., w has no singularities, and the zeros w lie on the special fiber, i.e.,
b; = 0 unless p; = 0 is the branch of a divisor in ¢~ *(co): f is an lgusa integrand if K, ... K,, are

unitary and K; = 1 unless ; = 0 is the branch of a divisor in ¢! (co).

Let & be the set of all divisors in ¢~ (cy) meeting the support of f. If 4; = 0 is the branch of
E € € through y, then a; = a(E), the multiplicity of E in ¢~ *(co). We then also set b; = b(E), K; =

K(E),k; = k(E)and t; = t(E), as our assumptions allow.

Let

_ ||
K= § Iy

the integral being taken over the fiber in Y (F") above the point on C'(F') with coordinate A # 0. Then
F()) is a well-defined principal value integral of the type studied in the last section. To check this we
may assume that f is supported on a neighborhood || < €;,1 < j < n, in a coordinate patch (2.2)

around yo ¢ ¢~ *(co). We may also assume || and  constant. Then

28) FO =W ¢ TR s 722
pal T
ujl<e; 7
(3>1)

and we are done.

The data for the asymptotic expansion of F'(\) will be a slight modification of that of [L, Proposition
1.1]. Consider pairs (¢, 3), where 6 is a character on F'* and (3 is a real number. Let &(6, 3) be the set
of those F € €, i.e., of those divisors E in ¢~ '(cy) meeting the support of £, such that k(E) = §2(¥)

and
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Let e(, 3) be the maximum number of branches of divisors in (6, 3) meeting at a point. For the

purposes of this paper it will be sufficient to consider the case:
(2.9) e(d,8)<1.

Then:

Lemma 2.A.

For |\| sufficiently small,

Ze ’)"ﬁ 1F‘l ﬂvf)
(6,8)

where Fy (0,5, f) is the constant of [L, Proposition 1.2].

If e(8,3) = 0 then F1(0,03, f) = 0. Otherwise, let E be a divisor in &(6,3). Suppose that
yo € E(F'). Choose coordinates (i1, .. ., i, as in (2.2) and assume that p; = 0 is a branch of E through

yo. Following [L, Proposition 1.2] we define h and v near g, by

n

(07,“27---7/1% —a] a
h=hipz, ... fin) = 05 (0, pa, .., pin)) H L )‘M\ﬁja

j=2
where 0 = 6| - |#, and

b, d d
v=W(O,ua,...,HUp) ,ujjﬂ/\ AL

h2 Hn

<.
[| 3
(e}

Then

(2.10) 0,8, f) = Z ]{ hlv],
E B

These integrals to be calculated by the methods of §1.

Proof of Lemma 2.A:

We may assume that f is supported on a coordinate patch (2.2) around 1y € ¢ !(co). Then f
and w, and hence F'()\), come with the parameters ¢t = (t1,...,t,) and b = (by,...,b,). We write
F(X) = F(\t,b).

Ift; +b; > 1 (1 < j <n)thenarguments of [L, Propositions 1.1 and 1.2] carry through without

modification, for F'(\,¢,b) is an ordinary integral. Thus the lemma is proved in this case.
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We now relax this condition on ¢ and b. Lett’ = (¢},...,t,,) € R". Itis convenient to assume that
t ot
— =1 Ifai,aj 75 0.
a; a;

Suppose that E € € has data (¢, 3) with respect to (¢,b), i.e., with respectto f and w. If u; = 0isa
branch of E through y, then E has data ¢’ = 6 and

gttt o
a; a;

with respect to (¢ +t',b). Thus (2.9) is satisfied by (¢ +t',b). Ift; > 0,1 < j < n,thent; + 1t +b; >

1,1 < j < n, and there exists ¢ > 0 independent of ¢’ such that

(2.11) FLt+t,0)= > 0N R(0,8,f)
(6",8")
for |\| < e. One verifies easily that F'(\, ¢, b) is the value at ¢ = 0 of F(\, ¢t + t/,b). Att’ = 0 the right

side of (2.11) has the value

Y ONNTTE6. 5, f)
(0.5)

where FY(0, 3, f) is the value of Fy (0,3, f) at ¢’ = 0. This is readily seen to be F (0, 3, f), and the

lemma is proved.
The following remarks will not be needed in this paper.
Lete > 0,1(e) = {c € C(F) : |A\| = |[A(¢)| < €} and Y (¢) be the inverse image of I(e€) in Y (F).

The asymptotic expansion for F'()) allows us to define the principal value integral ¢ F())dX as the
value of [ F(X)|A|*d\at s = 0 provided F(1,0, f) = 0, i.e., provided there is no i:(;trlbutlon from
the pair é(; 1, 8 = 0 to the expansion. On the other hand our initial assumptions ensure that § f|w|
is well-defined (in the sense of §1). "

Lemma 2.B. Assume F1(1,0, f) =0. Then

¢ 1ol = § FOYx

Y (e) I(e)

Proof: We may assume that f is supported on a neighborhood in a coordinate patch (2.2) around

yo € ¢ (co). Suppose that ;3 = 0,...,u,. = 0 are branches of divisors in ¢$~1(cp), and that
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pr+1 = 0,...,u, = O0are not. Then for Res > 0 ¢ f|\*|w|isthe valueat s,;1 = ... = s, = 0 of
Y(e)
I FINE a5+ oo ] * 7 |w]. Since X = apd! ... pér, where |a| # 0 on the support of f, it follows
Y (e)
that l/imO §  fIMF|w| = 0. Since ¢ is smooth away from the special fiber we have (cf. Lemma 1.F) that

Y (e)
f APl = / F(V)[A[*dA

for ¢ < eand Res > 0
Y (€)=Y () I(e)—1I(¢')

The asymptotic expansion for F'(\) implies that

lim [ F(A)[AP"dA = 0for Res > 0

I(e’)

§ el = [ Foar

Y(e) 1(e)

Thus

Since the value of the left sideat s = 0is § f|w|the lemma is proved.
Y (e)

Lemma 2.C. If F1(0,0, f) =0 for all 5 <0 then

lir% f flwl =0 .
Y (¢)
Proof: Under this assumption the asymptotic expansion involves only positive exponents 3. Then
lim § F(\)d\ = 0. Hence, by the last lemma, lim._, § flw|=0.

S0 Y(e)

§3. Some lIgusa Data.

Following [L, §§2-5] we now construct a smooth variety Y over F’, an Igusa fibering ¢ : Y — C
of Y over a curve C, a differential form w of maximal degree on Y, and an integrand f,; (notation of [L,
§2)on Y (F).

Fix an inner form G of SL(2) and a maximal torus 7" over F in G. Let ¢y be a point in the center

of G. For the curve C we take T" with the other central point removed.

The construction of Y starts with the variety .S of stars ([L, §2]). Here S'is just B x B, B denoting
the variety of Borel subgroups of G. Let B, € B. Then S(Bw) is B — {Bx} X B — {Bs}. Let
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By € B — {By}. Then S(Bx, By) consists of the pairs (B4, B_) in S(Bx) with B, = By. If N()
indicates unipotent radical and BY the Borel subgroup g~ 'Bg, g € B, we have
S(Boo) = {(By*, By )in,n1 € N(Boo)}

~ S(Boo, By) X N(Bx)

~ N(Bx) X N(Bx) -
Coordinates for S(B,,) are evident, but the demands for Galois action require that a little care be taken
in the choice.

First, and for the rest of the paper,we fix dataasin[L, §2]: G* = SL(2), B* is the upper triangular

subgroup of G*, B, the lower triangular subgroup, T* the diagonal subgroup; ) : G — G* isan inner

twist such that ¢ : T — G™* is defined over F,T™* denotes ¢)(T"),n* : G* — G* is a diagonalization
of T* and, finally, n denotes n* o .

By means of ¢» we identify G with G* as a group over F, and hence B with B* and S with B* x B*,
where B* is the variety of Borel subgroups of SL(2). View B* as the variety P! of lines through the
origin in A? via

(B)?  [0,1] g -
Write a for [a, 1].

Returning to B, and By, now elements of B*, we choose h € G* such that
(3.1) (By)" =B* and (B.,)" = B. .
Then £ allows us to identify S(B..) with S(B.). If n = [ ] and ny = [, {] we have
(3.2) S(B,) 3 ((B*)™,(B*)"™) < (y,x +y) € PL x P! .

Thus h provides coordinates, informally denoted = and y, on S(B.).

The variety 51 (B ) of [L, §3] is naturally identified with S(B.); S1 is then obtained by gluing
together the S(B ), B~ € B*, according to the rules of [L, (3.7) and (3.8)]. But these are the rules for
the natural gluing of open subsets of B* x B* = P! x P! andso S; = § = P x P! (cf. [L, Lemma

3.10(a)]).

To describe the Galois action on .S and at the same time maintain our identification of G(£") with

G*(F) and of S with B* x B* we equip G*(F) with the Galois action o = oo oy~ 1 o € Gal(F/F).
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Recall that the identification ¢ : T — T* is over F. Let L C F be a quadratic extension of F'. Write
T, for the set of tori in G defined over F (i.e., in G* and preserved by o¢,0 € Gal(F/F)) which are
anisotropic over F' and split over L. We allow also L = F', then meaning by 77, the set of F-split tori
inG.

The action of o € Gal(F/F) on S = B* x B* will be denoted o(a,r)- From [L, §2 and §4] we get

(3.3) o ((By,B-)) = (0g(B-),06(B4))

if7"e T, L # F,and o is nontrivial on L, and

(3.4) o, ((By,B-)) = (0c(B4+),06(B-))

otherwise.
The following elaborate remark will be helpful later on.

(3.5) If 6(B*) = B* and 0 (B.) = B., as we may assume if G is split over F', then S is covered
by patches S(B.,), where 0¢(Bo,) = Boo and og(By) = By, 0 € Gal(F/F), for some By # B... For
example, S = S(B.) U S(B*). Each such patch S(B..) is preserved by Gal(F/F). The element h of
(3.1) can be chosen so that o (h)h~! is central, o € Gal(F/F). Then the identification of S(B.,) with

S(B.) provided by h respects Galois action.

(3.6) Suppose that L is a quadratic extension of F'. Assume, aswe may if ' € T, that o5 (B*) = B,
for o nontrivial on L and o¢(B*) = B*,04(B.) = B, otherwise. Then S is covered by coordinate
patches S(By) where for some By # Bu,06(Bs) = By for o nontrivial on L and og(Bx) =
Boo,06(By) = By otherwise. Again S = S(B.) U S(B") will do. Now, however, o 1) preserves
only S(Bx) N S(By) = S(Bs) — {(Bo, By)} if o is nontrivial on L. The element h of (3.1) may be
chosen so that og(h)h~! is central, ¢ € Gal(F/F). Then the identification of S(B..) N S(By) with
S(B.) N S(B*) provided by h respects Galois action.

Returning to the construction of Y we find it convenient to make yet another identification, that
of T and T* with T* using the diagonalization n*. We equip T*(F') with the action o7 = o7+ =

1,0 € Gal(F/F), and regard C as a curve in T* preserved by this action. Note that

oo o (n)7

n*(co) = co.
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Astar s = (B, B_) isregular in the sense of [L, §2] ifand only if B, # B_. For the variety X; of
[L, §4] we take the closure in G* x S of {(g,s = (B+,B_)) : g,sregular, g € B, N B_}; X is defined

over F for the Galois action given by o x o, 1,0 € Gal(F/F). There are maps defined over F:

X, 5 G*

o1

T
where o € Gal(F/F) acts on G* by o and on T* by or. The horizontal arrow is projection on the first
component. To define ¢;, note that X; is contained in {(g,s = (B4+,B_)) € G* x S:g€ B N B_}.
Thus if (g,s) € X; we may choose h € G* such that B} = B*. Then ¢:((g,s)) is the image of
h~1gh € B* under the projection B* = T*N(B*) — T*,

The variety Y will be the intersection of ¢; ' (C) with the closure in X; of ¢;'(C — {co}). By

restriction we have:
Yy 5 G*

|o

C

Let M be the Springer-Grothendieck variety {(g,b) : g € B} C G* x B*, with the usual maps:
ML G
ou |
T*
Define¢ : Y — M by (9,(B+,B-)) — (g9,B+). Then ¢ = ¢pr o€ and m = mpy o €. If M’ is M with
the fibers over the central points removed then ¢—(C — {co}) £, M’ isan isomorphism of varieties

over F'. In particular, = (C — {co}) is smooth.

To examine the special fiber »~1(cq) we introduce coordinates asin [L, §3]. LetY € G* xS — S
be projection on the second factor. Let Y (B, ) be the inverse image of S(Bx), B € B*. Identify
S(Bso) with S(B.) by means of some h as in (3.1). We may then work with the coordinates x, y of (3.2)
on S(B.) and with Y'(B.,).

Let A be a local F-coordinate around ¢, in C. Recall that C C T* and that 0 € Gal(F/F) acts
by or. Assume that A\ = 0 at ¢y. If « is the root of T* in B* then we may write 1 — a~! as Ab(\)

near co, with b regular and invertible near A\ = 0. Suppose that (g, s) € Y (B.). Asin (3.2) write s as
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((B*)™, (B*)""t), withn = <i (1)> andny = <; (1)> Note that z is the coordinate z(W,., ) from

[L, §3]. Write
(3.7) g:nl_lt<(1) 21‘>n1 witht € T*, u e F .
Assume z # 0. Then g € (B*)™™ is equivalent to
1—a(t) ' =au
or, if (g, s) is near ¢~ (cy) and we pull back A to Y, to
(3.8) Ab(A) = zu .

As a consequence, u, x and y serve as coordinates on Y (B..), and Y (B.) is smooth. Then each

Y (Bs) is smooth, B, € B*. Hence Y is a smooth variety.

Near ¢~ (co) on Y (B,), ¢ is given by
(3.9) A= Azxu

with A regular and invertible near A = 0. Thus u = 0 is the branch of a divisor E; of ¢~!(cg). This
branch consists of the pairs (co,s),s € S(B.), and so E; must be {co} x S = {co} x P! x P1. E
maps under 7 : Y — G to {cy}. On the other hand, z = 0 is the branch {(g, (B, B)) : B # B.,g €
G, cpg unipotent}. For convenience we call g cp-unipotent if ¢og is unipotent. Then m maps E> — E;
isomorphically to the orbit of regular c¢y-unipotent elements in G. Note that the two divisors £y and

E5 cover ¢~ !(cg), and that E» has no F-rational points unless G is split over F.

The relation of Y to the Springer-Grothendieck variety M is now evident. Under Y 55 M the
divisor E5 is mapped isomorphically to the fiber over ¢y; Y is obtained from M with the fiber over —cg
removed by blowing up along the subvariety {co} x B* = £(E,) of the fiber over c.

To verify that ¢ : Y — (C'isan lgusa fibering it remains only to check that one of F;, Fs is defined
over F'. For then both divisors are defined over I’ and we may apply (3.9) and Hilbert’s Theorem 90
(for the field of functions regular and invertible near a point) to replace around each F'-rational point

Yo € ¢~ 1(co) the coordinates u, z and y with F-coordinates y1, j12, pt3 such that:

(3.10) u; = O isabranch of E; if yg lieson E;(i = 1,2).
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ai a2

(3.11) M is given near yo by A = aui" 1s?, where «a is regular and invertible at i, and a; = 1 if yg

lies on E; and a; = 0 otherwise (i = 1, 2).
Since F; = {co} x S isclearly defined over F', we are done.

The indices a(-) of §2 are:

(3.12) a(Eq) = a(Es) = 1if G is split over F' |

a(Fr) =1 otherwise.

The next step is to define an Igusa form w. Let wy be the (right) invariant form on T* equal to d\
at ¢o. Let a € F be such that @ = awr is defined over F for the Galois action on T* as F-split torus.
Let H € Lie(T") be such that w(H) = 1. Choose X, € Lie(N(B*)),X_ € Lie(N(B.)) and right
invariant 1-forms w,w,,w_ on G defined over F so that (wp,w,w_) is dual to (H, X, X_). Then
wae = wo A wy Aw_ isa(right) invariant form of maximal degree on G defined over F'. The form wy,
on M associated to wg (more precisely, to v; = wp, vy = wy,w; = w_) in [L, Lemma 2.8] is 7}, (wg).
We set wy = ¥ (wyy) = 7" (wg) and w = a~ lwy.

The form w is regular; it is nonvanishing off the special fiber. The discussion of [L, §2] implies that
locally w = W'w’, where W' is a regular invertible function and «’ is defined over F'. This ensures that

the measure |w| is well-defined.

Suppose that yp € Y (B,) is near but not on ¢~*(cg). We may as well take X | = <8 (1)> and

X_ = <(1) 8) Then it may be shown that w is given near y by ¢*(d\) A du A dy = W(A)d(zu) A
duNdy =W (XN)u dx AduAdy, where W is regular and invertible near A = 0, with W (0) = (ab(0))~!

(cf. (3.8)). From this it follows that

dx d
(3.13) w= W()\)UQJ:% A Zu A dy

around a point of Y/ (B.) N ¢~ (co).

Note that w may be expressed in terms of the coordinates w1, 2, 113 0f (3.10), but that the coordinates

u and z will do just as well to compute the indices b(-) of §2:

(3.14) b(E1) =2, b(E2) =1ifGissplitover F'

b(E) =1 otherwise.
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It remains to define the Igusa integrand. Let  be a character on D(T") = D(T, F'), the definition of
which will be recalled in (3.15). Recall that T'(F)\2((T, F) is the set of F-rational pointsin T'(F')\G(F) =
(T\G)(F). Ify € T(F) — {co} then  : Y — G induces an F-isomorphism from the fiber ¢_* over
~vinY to T\G (cf. [L, Lemma 2.1]). We have therefore:

(3.15) ¢, (F) — T(F)\A(T,F) — D(T, F) = T(F)\W(T, F)/G(F)

~ H'(Gal(F/F), T(F)) ,

allowing us to regard « as a function m,, on gb;l(F). If  is trivial then m,, = 1. Suppose then that
T € T.,,L # F,and & is nontrivial. We will need an explicit formula for m,, near an F-rational point
1o on the special fiber. Proposition 5.1 of [L] shows that m,, depends locally only on the coordinate z,
at least if GG is split over I, but for the formula we will need an F'-coordinate.

Suppose that S(B) is a coordinate patch as in (3.5). We may as well take o¢ = og+,0 €
Gal(F/F), or G = SL(2). Identify S(B,,) with S(B.) using h as in (3.5). Recall that this identification
respects the Galois action on S. The formulas (3.2), (3.3) and (3.4) imply that the coordinates x,y on
S(B.) satisfy o(y) = x + y if o is nontrivial on L and that o(y) = y,o(x +y) = x + y otherwise. Then
o(r) =o(z+y—y) =y— (r+y) = —x for o nontrivial on L. Fix 7 € L — F such that 7> € F. Then
p = T is an F-coordinate (and will serve as i, in (3.10)). Let (g, s) € ¢5 ' (F) liein Y (B.), which we

have identified with Y (B,.). The coordinate y then being F'-valued, we have that

oc— (lé M(_)1> if |, # 1,0 — 1 otherwise ,

represents an element of H!(7T') that we denote . Let ¢, denote the image of (g, s) under (3.15). Then

Proposition 5.2 of [L] implies that there is an element t,, of H'(T') independent of (g, s) such that
(3.16) €0 = oty
(see the Appendix to this section). Thus

my((g,5)) = k(€r) = K(po)r(ts) = w(p)r(ts)

where x now also denotes the quadratic character on F* attached to L/ F'.

By requiring that S( B ) be as in (3.5) we have excluded the case GG anisotropic over F. Thisis ofno

consequence, forthenif (g, s) € Y (F)thestars = (B, B_) mustberegular (c(B+NB_-) = BLNB_
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implies B, N B_ isatorus so that By # B_). From Lemma 2.10 of [L] we conclude that m, is locally

constant on Y (F).
Finally, fix f € C°(G(F)). The Igusa integrand will be:
felg,8)) = mi((g,))(f o) (g, s)
= mx((9,5))f(9), (9,5) €Y(F) — ¢~ (co) -

The characters x(-) of §2 are:

Fi{)=1land k(E5) = if Gissplitover F
(3.17) {H( ) MEs) = & P

k(Ep) =1 otherwise.
Appendix

Here we note the explicit calculation of ¢, in (3.16) and another local expression for m, which

applies to anisotropic groups as well.

For (3.16) recall that we have assumed that G is SL(2) (and ¢ = 1,7 = T*). We refrain from
identifying T'(F") with T*(F). Then ¢, is the class of o — o(hy)h; ', where h; € G(L) satisfies:

hight' € T, B =5~'(B*) and B" =~ !(B.)
ifs = (By,B_). Writeyast — hathy ', ho € G(L). For hy, we can take h, "hs if hs € G(L) satisfies:

hsghy' € T*,B"* =B*and B"* =B, .

o= (4 1) GG,

witht € T* and uz = 1 — a(t)~ L. It is easily checked that

=5 1) (5 1)
o<h3>h51=<2 _%/QC):(H; /3)(0 _B/T>

for o nontrivial on L. Then

On Y (B.) we have

will do;
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so that (3.16) holds with 7, the class of

o — o(hy") <0 _B/T> hs .

T

Suppose now that L is a quadratic extension of F' and that

0 1 .
(318) o = ad (C 0) 0oGg* IfU’L 7_é L,
oG otherwise ,

where ( € F'*. Note that G is split over F'if and only if ¢ € leLmLX. Assume that T' € T7,. Now
o satisfies the conditions of (3.6). The coordinates 2 and y on S(B,) satisfy o(z + y) = (/y,o(y) =
(/(x+y)ifolp #land o(z +y) = = + y,0(y) = y otherwise. Thenz/(z +y) =1 —y/(z +y) is
defined over F. It serves as a coordinate around an F-rational point (g, s) of Y'(B,) near ¢—'(co). A

calculation as in the last paragraph shows that:

(3.19) m((g,5)) = w(z/(z +y))

where x now denotes the quadratic character of F'* attached to L/F if « is nontrivial, and the trivial

character otherwise.

54. Application

Continuing from the last section, we have f € C2°(G(F')), Haar measures |wg| on G(F') and |wr|

on T'(F),and a character x on D(T'). For ~ regular in T'(F'), form the x-orbital integral

(v, f) = @1 (v, [, lwr |, |wal)

=3 () / f(g~ " h " yhg)
J TH(F\G(F)

lwa
|wp [P

where h € A(T, F) represents 6 € D(T, F'), and then the normalized integral

F"@(,}/y f) = |1 - a(’y_l)‘q)ﬁ(’% f)

Recall that 7" has been identified with T* by means of 1; « is the root of T* in B*.

Assume that v lies in C(F) near ¢y and has coordinate A. The Igusa data of the last section were

chosen so that
|w|

FX(y, f) = / Fir
o5 (F)
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Thus for |A| sufficiently small we have that
(4.1) F* (v, f) = [A[A1 + k(M) Az
where, in the notation of Lemma 2A,

(4.2) Ay =Fi(1,2, f)
and

(4.3) Ay = {F1(f€, 1, f) if Gissplitover F

0 otherwise.
On the right side of (4.1) we have, as in §3, regarded « as a character on F*, trivial if  is trivial on

D(T) and the character on F'* attached to the quadratic splitting field L of T otherwise.

The term A; is the contribution from the divisor £; which maps to {¢o} under 7: Y — G, while
Ao is the contribution from Es; under 7, E5 maps (isomorphically) to the conjugacy class of regular
co-unipotent elements in G. Thus (4.1) assumes a familiar form, but with the coefficients now expressed

as principal value intregrals.

If T is split over F' then blowing up the Springer-Grothendieck variety M to obtain Y is unneces-
sary, and as a consequence we have introduced the spurious term A;. It is quickly dismissed, for if T’

is split over F' then E; = {cy} x S is F-isomorphic to P* x P! (cf. (3.4)) and by (2.10) A, is given, up

j'{ da db
o —b?

PY(F)xP'(F)

to a constant, by

where a, b each denote the coordinate Uy on U; = 1 in P*. We apply Lemma 1.F to this integral and
the fibering ¢: P' x P — P! given by projection on the first component. The fiber integral H(z’),
z’ € PY(F), is seen to be an integal over P*(F) of the form (1.15). Thus it is zero. We conclude then

from Lemma 1.F that A; = 0.
Lemma 4.A. If k is nontrivial then Ay = 0.

Proof: If GG is anisotropic over F' then this is immediate from the definition of x-orbital integral (see
also the remark following the proof of Lemma 4.B). Suppose then that G is split over F. We may as
well assume that G = G* = SL(2). Since « is nontrivial T € Ty, some L # F; E; is the variety
R = ReskP! of Remark 1.H, i.e., B (L) = PY(L) x P'(L) and E;(F) = {(p,p): p € P*(L)}, where
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the bar denotes the action of the nontrivial element of Gal(L/F) (cf. (3.3), (3.4)). Then by (2.10), (3.2),

(3.5) and (3.16) \; is, up to a constant,

(4.4) 7{ K (%a) da db

where a, b each denote the coordinate Uy on U; = 1 in P*(L). The element 7 of L — F was fixed for
(3.16); =2 liesin F* if b = a # 0.

Abbreviate the point Uy = a, U; = 1in P! by a, and Uy # 0, U; = 0 by co. We define a smooth
morphism ¢: R — {(c0,00)} — P! by (a,b) — =4 and (a, 00), (00,b) — oo; ¢ is defined over F.
We blow up R at (oo, 00) to obtain the variety R over F. The fiber over (00, 00) in R meets the proper
inverse image of the divisor a = b at a single point py. Blow up R at this point, which is F-rational, to
obtain the variety ]% over F. A calculation with coordinates shows that ¢° extends to an lgusa fibering
¢: 1% — P! with distinguished point ¢, = oo; moreover, the fiber over co is the union of three divisors,
each occurring with multiplicity one. Only one of the divisors has F'-rational points. We conclude then

that on E(F) the map ¢ is smooth.

To compute (4.4) by lifting to E(F) we must check the conditions of Lemma 1.D at (oo, 00) on
R(F) and at pg on ﬁ(F). We find that 8, = k, ¢c; = —1 and 0, = 1, ¢, = 1 for a suitable choice of
local coordinates around (oo, 00) on R(F'). Thus 6,02 = x and ¢; + c2 = 0, and so to lift to E(F) itis
crucial that x be nontrivial. On ﬁ(F) atpo we find 6, = k, ¢y = 0and 6, = k, co = —1. The conditions
of Lemma 1.D are met and we may apply Corollary 1.E to rewrite (4.4) as a principal value integral 1
over ]%(F). We compute I by applying Lemma 1.F to the fibering ¢. For any p € P*(F) — {0, 00} the

corresponding fiber integral is seen immediately to be a constant times ¢ da = 0 (cf. (1.15)). Thus
PY(F)
Lemma 1.F implies that I = 0, and Lemma 4.A is proved.

Suppose now that 7' € T, L # F; k may be either character on D(7"). Recall that the maximal
torus 7* = ¢(7T) in G* is defined over F, as is the map ¢: T — T*. Let x* be the character on
D(T™*) associated to ~ by ¢. We indicate by A the contribution (4.2) for the data G*, T, x* and
f* e CX(G*(F)). It may be written as M f*(co). Similarly the contribution (4.2) for the data G, T',

and f can be written as M; f(co).
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Lemma 4.B.

M, = e(k,G)M{
where £(k,G) =1 if k is nontrivial and

(1,Q) = { 1 if G is ‘splzt over F'
—1 otherwise.

Proof: We may assume that G satisfies (3.18), i.e.,

0 1 .
oo = ad(C 0)000* |fa|L§é1
oG+ otherwise,

where ¢ € F*; G is split over F if and only if ¢ € Nm%L*. We write M, (¢) for the term M. Then
from (2.10), (3.2), (3.6) and (3.19) we find that M; (¢) is given up to a constant independent of G (i.e., of

¢) by

(4.5) % K (1 — %) da db

b —al?
Qc¢(F)

where Q. is the form of P! x P! on which 1 # o € Gal(L/F) acts on the homogeneous coordinates
Us, Uy (on the first copy of P') and Vp, V; (on the second copy) by Uy — ¢Vi, Uy — Vi, Vo — (UL,
Vi — Uy. AlsoadenotesUponU; =1landb=VyonV; = 1.

We define now a smooth variety Y and an Igusa fibering ¢: Y — A! with distinguished point zero
on A’ such that if ¢ is the coordinate on A' then (4.5) is the fiber integral F(¢), ¢ # 0. The asymptotic
expansion for F'(¢) at ¢ = 0 will be seen to have the one term, that corresponding to 6§ = 6, x, where
61, is the quadratic character of F* attached to L/F, and $ = 1. Then in the notation of Lemma 2.A

we have

(4.6) F(Q) = 0L(O)r() 0Lk, 1,7)

for |C| sufficiently small, where * is the Igusa integrand yet to be defined. This will prove the lemma.

We start with a variety Y; C (Pl)4 x Al. let a, b, ay, b; each denote the coordinate Uy on U; = 1
in P!, and ¢ be the coordinate on A*. On (U; = 1)* x A', Y7 is given by ab; = a1b = (. Letd/, V', a/,
b} each denote Uy on Uy = 1. On (Ug = 1) x (U; = 1)3 x Al Y; isgiven by a1b = ¢ and by = a’(; on
(Up = 1)2 x (U; = 1) x Al by by = /¢, a; = V¢, and so on. We define Y; over F by twisting the
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natural F-structure by o(a) = ay, o(b) = by, o(a’) = df, o(b') = b}, o being the nontrivial element of
Gal(L/F).

The variety Y; is smooth except at the point y; given by a = a; = b = b; = 0. Let ¢, be the
projection of Y;  (P*)* x A’ onto A'; ¢1: Y1 — {1} — A" is an Igusa fibering with distinguished
point zero.

For ¢ # 0 the projection of Y; onto the product of the first and second copies of P! yields an

F-isomorphism of the fiber ¢; ' (¢) with Q.. Let Y{ = Y; — ¢;'(0). We define a form w; on Y{ by

d(zl/)\iiz/)\QdC and an integrand f; = s (1 — %) on Y{(F). The fiber integral
|w
(«7) oni
¢1 ' (O(F)
is (4.5).

We now attend to the fiber in Y; — {y1} over ¢ = 0. It is the union of divisors EY, ..., E}. Their

branches on (U, = 1)* x Ah) N (Y; — {y1}) are:
(E) b=0,b1=0 (EY) a=0,a1=0
(EY) a=0,b=0 (E}) a1 =0,b =0.
Note that £, E} have no F-rational points; Ef, E, are each defined over F.

The point y; on Y; is F-rational. Blow up Y7 at this point to obtain the variety Y over F' and
projection m: Y — Y. Set¢) = ¢ o, w = 7*(wy) and fy = fiom. ThenY,C = A', ¢y = 0, ¢, w and
fv satisfy the conditions of (2.1)—(2.7) (i.e., are “generalized” Igusa data), as well as (2.9). The proof is
routine. We will include as much of it as will be needed to write down the asymptotic expansion for

the fiber integral which, by construction, coincides with the integral (4.7).

The fiber ¢! (0) is the union of five divisors Ey, F1, ..., E4, where E; is the proper inverse image
of B/ (i =1,...,4). Letu; = a,ug =b,uz = ay,ug = by;letUy = A, Uy = B, Us = Ay, Uy = By
be homogeneous coordinates on P?. Then Y is given near 7 (y1) by wU; = w;U; (i,5 = 1,...,7).
The divisor Ey is givenby a = b = a; = by = 0 and AB; = BA; (homogeneous coordinates); on
EyNnE;{wehave B=0,B; =0;on EgN Ey, A=0and A; = 0, and so on. The divisors Ey, F; and

F), are each defined over F', while F5 and E4 have no F-rational points and so may be ignored for the
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asymptotic expansion. Also F; N Ey isempty and E; N E; (¢ = 1,2, and j = 3,4) consists of a single

=
€eﬁ

The variety Ej is a form of P! x P!, the natural projections being given by (A, B, A4;,B,) — 3=

point on Ey which is not F'-rational.

%, % = % (where we allow the value oo and ignore quotients of the form %). For these to be defined
1

over F, the first P! has to be provided with its natural F-structure and the second with the structure
of Remark 1.G. The variety E; is the blow-up R of the twisted form R of P! x P! described in Remark
1.H (cf. also (4.4)). To see this, we note that the projection of Y; C (Pl)4 x A' onto the product of
the first and third copies of P! yields an F-isomorphism of E/ with R — {ro}, where r¢ is given by
a = a; = 0. Then E; is the blow-up R of R at ry, and Ey N E; is the inverse image of ry in R. The

divisor F5 is described similarly.

Suppose that yg € Ey(F) and that A # 0 at yp. We may assume A = 1. Thent = aq, Ay, B
serve as coordinates on Y near yo; a1 = tA; and b = tB. For 1 # o € Gal(L/F') we have o(B) = B,
A10(A;) = 1and o(t) = tA;. To obtain F-coordinates we may take B, r and s with t = sty, ty # 0,
o(ty)/to = Ajand tg = 1+ 7r,where 7 € L — Fand 72 € F. Also, t = 0 is a branch of Ey, A; # 0
since Aj0(A;) = 1,and B = 0 is a branch of E;. Finally, ( = a;b = t>A; B,

~dandbndC . di ANdBAdA,
- (b—a? (B—1)?

and fy = k(1 —1/B) = k(B)k(B — 1). We conclude that

B(Eo) = Zgz; — % =1, k(Ep) = L.
Similarly,
B(E1) ==-=2k(E1) =k
and
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This implies that (2.9) is satisfied (i.e., e(6, 3) < 1 for all (6, 3)) since E; and E5 do not intersect.

The asymptotic expansion for the fiber integral, i.e., for the integral (4.5), is then
(4.8) D 0QF0,1, fy) + SR Fi(k, 2, fy) + ¢ Fu(1,2, fy)
0
if x is nontrivial, or

(4.9) D 0RO, 1, fy) + ¢ F (L2, fy)

[4

if ~ is trivial. The summation is over characters # of F* for which 62 = 1.

Theintegrals Fi (k, 2, fy )and Fi (1,2, fy ) of (4.8) and the two integrals contributing to 73 (1, 2, fy)
in (4.9) (cf. (2.10)) are each of the form (1.20) and hence vanish.

Since ¢ = s(t3A1 B) and t3A; B = too(t) B the formula (2.10) yields

kK(B)k(B—1) 1 dA;

(4.10) B0, 1 fy) = j{ 0(B) |B—1% §(A;) \AlldB’

Eo(F)

where §(A;) = (tgo(to)). Recall that A; ranges over {z: € L*: Nm&%z = 1}. The character 4 is trivial

ifand only if 0 = k or 8 = k0. In the case 0 Z1,
/diAl =0 (cf. Remark 1.G)
0(A1)] A1
and so (4.10) vanishes. In the case 6 = «,
B-1 B
?{ M dB = ?{ ~(B) dB =0 (Lemmal.C)

B —1J? |BJ?
P (F) P(F)

and again (4.10) is zero. Thus only 8 = 6y, may give a nonzero contribution. The expansions (4.8) and

(4.9) therefore take the form (4.6), and Lemma 4.B is proved.

Lemma4.B and Lemma 4.A in the case G split over F'imply Lemma 4.A for G anisotropic over F'.
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