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In the paper [L] a project for proving the existence of transfer factors for forms of SL(3), especially

for the unitary groups studied by Rogawski, was begun, and it was promised that it would be completed

by the present authors. Their paper is still in the course of being written, but the present essay can

serve as an introduction to it. It deals with SL(2) which has, of course, already been dealt with

systematically [L-L], the existence of the transfer factors being easily verified. Thus it offiers no new

results, but develops, in a simple context, some useful methods for computing the principal value

integrals introduced in [L].

We describe explicitly the Igusa fibering, form and integrand associated to orbital integrals on

forms of SL(2), taking the occasion to clarify the relation of this fibering to the Springer-Grothendieck

resolution (cf. §3). The Igusa data established, there are two problems: (i) to show that certain principal

values are zero, (ii) to compare principal values on two twisted forms of the same variety. To deal with

the first we have, in §1, computed directly some very simple principal values on P1, and shown that

principal values behave like ordinary integrals under standard geometric operations such as fibering

and blowing-up. The second problem is dealt with in a similar way, by using Igusa’s methods to

establish, in a simple case, a kind of comparison principle (Lemma 4.B).

The endoscopic groups for a form of SL(2) are either tori or SL(2). For tori the solution of the

first problem (Lemma 4.A) leads immediately to the existence of transfer factors, and the hypotheses

of [L1, pp. 102, 149] are trivially satisfied. If G is anisotropic over F and the endoscopic group is SL(2)

the solution of the second problem (Lemma 4.B with κ ≡ 1) and the characterization of stable orbital

integrals (cf. [V]) yields the existence of transfer factors as well as the local hypothesis of [L1, p. 102].

The analogous results at archimedean places are known in general (cf. [L1, Lemma 6.17]). The global

hypothesis [L1, p. 149] follows from [L1, Lemma 7.22].

The principal values which arise for forms of SL(2) are computed without difficulty, but we

expressly avoid such calculations. The aim of the project begun in [L], and continued here, is to

develop methods for proving the existence of transfer factors which appeal only to geometric techniques

of some generality and thus have some prospect of applying to all groups. One encouraging sign is

the smoothness with which they mesh with the notion of κ-orbital integral. They can be easily applied
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to the study of the germ at regular unipotent elements. A further test, perhaps not easy to carry out,

would be the semi-regular elements, already studied for GL(n) by Repka [R].

Throughout this paper F will be a nonarchimedean local field of characteristic zero, with residue

field of q elements; | · |F = | · | will denote the valuation on F and 	 a prime element; F̄ will be an

algebraic closure of F .

§1. Remarks.

The following lemmas concern the simplest of the principal value integrals which arise in §1 of

[L].

Let N = N(m1, . . . ,mn) be the box

(1.1) |uj | ≤ q−mj (1 ≤ j ≤ n)

in Fn. Consider the (multi-valued) differential form

(1.2) ν(c1,...,cn)

n∏
j=1

u
cj

j

du1

u1
∧ . . . ∧ dun

un
,

where c1, . . . , cn are rational numbers. Let θ1, . . . , θn be quasicharacters on F×. Writing

(1.3) θj = θj | · |tj

with θj unitary and gj a real number, we assume

(1.4) tj + cj �= 0 if θj ≡ 1 (1 ≤ j ≤ n).

Set

(1.5) h(θ1,...,θn)(u1, . . . , un) =
n∏

j=1

θj(uj).

Then (1.4) allows us to define the principal value integral

(1.6)
∮
N

h(θ1,...,θn)|ν(c1,...,cn)|
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following [L, Lemma 1.3]. Thus consider for Re(sj) � 0 (1 ≤ j ≤ n)

∫
N

n∏
j=1

|uj |sjh(θ1,...,θn)|ν(c1,...,cn)| =
n∏

j=1

∫
|uj |≤q−mj

θj(uj)|uj |sj+tj+cj
duj

|uj |

=
n∏

j=1

∞∑
n−mj


 ∫
|uj |=q−n

θj(uj)
duj

|uj |


 q−(sj+tj+cj)n(1.7)

= ε(1 − 1
q

)n
n∏

j=1

(θj(	)q−(sj+tj+cj))mj

1 − θj(	)q−(sj+tj+cj)
,

where

ε =
{

1 if each θj is unramified
0 otherwise.

The analytic continuation of this function is, thanks to (1.4), analytic at s1 = . . . = sn = 0; (1.6) is the

value at s1 = . . . = sn = 0. Thus:

Lemma 1.A.

∮
N(m1,...,mn)

h(θ1,...,θn)|ν(c1,...,cn)| = ε(1 − 1
q

)n
n∏

j=1

(θj(	)q−(tj+cj))mj

1 − θj(	)q−(tj+cj)
.

To define now
∮
X

h|ν| we assume:

(1.8) X is an F -manifold, h is a C-valued function supported on a compact open subset of X , ν is

a differential form on X ; and

(1.9) the support of h is the disjoint union of neighborhoods U with the following properties:

(1.10) there are local coordinates u1, . . . , un onX such that U is given by (1.1) for somem1, . . . ,mn,

(1.11) on U, ν = αν(c1,...,cn) with |α| constant, and h = γh(θ1,...,θn) with γ constant, where

c1, . . . , cn and θ1, . . . , θn satisfy (1.4).

Then ∮
X

h|ν| def.=
∑
U

γ|α|
∮

N(m1,...,mn)

h(θ1,...,θn)|ν(c1,...,cn)|.

Our definition is that for the case r = s = 1 in the proof of Proposition 1.2 in [L]. The integral is

independent of the choice for {U, u1, . . . , un} ([L, Proposition 1.2]). Note especially that the conditions

(1.9) – (1.11) are local, i.e., they are satisfied if we can find around each point in the support of h a
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neighborhood U satisfying (1.10) and (1.11). We will allow α to take values in a finite Galois extension

L of F ; in that case, |α| = |NmL
Fα|1/[L:F ].

The following remark will simplify a later argument. Given X,h and ν as in (1.8), a patch U as in

(1.9), and integers Mj(1 ≤ j ≤ r) such that Mj ≥ mj , let Ū = Ū(M1, . . . ,Mr) be the subset

|uj | = q−Mj (1 ≤ j ≤ r), |uj | ≤ q−mj (r + 1 ≤ j ≤ n)

of U. Then:

Lemma 1.B.∮
Ū

h|ν| exists and equals the value at s1 = . . . = sn = 0 of

γ|α|
∫
Ū

n∏
j=1

|uj |sjh(θ1,...,θn)|ν(c1,...,cn)| .

Moreover, if the support of h is the disjoint union of a collection S of such neighborhoods then

∮
X

h|ν| =
∑
Ū∈S

∮
Ū

h|ν| .

Proof: The first assertion follows from the definitions, and the second from the independence of
∮
X

h|ν|
from the choice of decomposition for the support of h.

We consider an example. Let U0, . . . , Un be homogeneous coordinates on Pn. Suppose that

θ0, . . . , θn are quasicharacters on F× such that
n∏

j=1

θj ≡ 1, and that c0, . . . , cn are rational numbers

such that
n∑

j=0

cj = 0. Assume

(1.12) tj + cj �= 0 if θj ≡ 1(0 ≤ j ≤ n), where θj = θj | · |tj .

Let ν be the form on Pn given on Uk �= 0 by

(1.13) (−1)k
n∏

j=0

U
cj

j

dU0

U0
∧ . . . ∧ d̂Uk

Uk
∧ . . . ∧ dUn

Un
,

where ̂ indicates deletion. Let h be the function

(1.14) h(U0, . . . , Un) =
n∏

j=0

θj(Uj).

Then (1.12) ensures that
∮

Pn(F )

h|ν| is well-defined.
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Lemma 1.C. ∮
Pn(F )

h|ν| = 0.

Proof for n = 1: Set θ = θ0, t = t0, c = c0, u = U0, on U1 = 1 and u = U1 on U0 = 1. Then

∮
P1(F )

h|ν| =
∮

|u|≤1

θ(u)|u|t+c du

|u| +
∮

|u|≤q−1

θ−1(u)|u|−(t+c) du

|u|

= ε(1 − 1
q

)
(

1
1 − θ(	)q−(t+c)

+
θ(	)−1qt+c

1 − θ(	)−1qt+c

)
(1.15)

= 0.

The proof for n > 1 will be by reduction to the case n = 1; it follows Lemma 1.F.

Consider X,h and ν as in (1.8) – (1.11) and a neighborhood U as in (1.9). To compute
∮
U

h|ν| we

may change coordinates and assume that m1 = . . . = mn = 1. This will be done for the next lemma.

Suppose that we blow up X at u1 = . . . = un = 0 to obtain the F -manifold X̄ and projection

π : X̄ → X . Let Ū = π−1(U), h̄ = h ◦ π and ν̄ = π∗(ν).

Lemma 1.D.

Assume that
n∑

j=1

(tj + cj) �= 0 if
n∏

j=1

θj ≡ 1. Then
∮
Ū

h̄|ν̄| exists and equals
∫
U

h|ν|.

Proof: Near u1 = . . . = un = 0, X̄ is given by uiUj = Uiuj(i, j = j, . . . , n), where U1, . . . , Un are

homogeneous coordinates on Pn−1(F ).

On Ui = 1 we have the coordinates U1, . . . , Ui−1, z = ui, Ui+1, . . . , Un. Then uj = zUj(j �= i).

Thus

ν̄ = αz(c1+...+cn)
∏
j �=i

U
cj

j

dU1

U1
∧ . . . ∧ dz

z
∧ . . .

dUn

Un

and

h̄ = γ
n∏

j=1

θj(z)
∏
j �=i

θj(Uj)

= γ|z|(t1+...+tn)
∏
j �=i

|Uj |tj

n∏
j=1

θj(z)
∏
j �=i

θj(Uj)

on this patch.

Let x ∈ U have coordinates u1, . . . , un. Set S(x) = {i : |ui| = max
1≤j≤n

|uj |}. For S ⊆ {1, 2, . . . , n},

let US = {x ∈ U : S(x) = S}. Then U is the disjoint union of the US . Let ŪS = π−1(US). Fix i ∈ S.
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Then ŪS is contained in Ui = 1; it consists of the points in Ui = 1 with |z| ≤ 1, |Uj | = 1 (j ∈ S, j �= i)

and |Uk| < 1(k /∈ S). The assumption in the statement of the lemma ensures that
∮

ŪS

h̄|ν̄| and
∮
Ū

h̄|ν̄|

are well-defined.

On the other hand,
∮
U

h|ν| is the value at s1 = . . . = sn = 0 of

∫
U

n∏
j=1

|uj |sjh|ν| =
∑
S

∫
US

n∏
j=1

|uj |sjh|ν|

=
∑
S

∫
ŪS

|z|s1+...+sn

∏
j �=i

|Uj |sj h̄|ν̄|,

where for each S ⊆ {1, 2, . . . , n} we have fixed i ∈ S. Then by Lemma 1.B,

∮
U

h|ν| =
∑
S

∮
ŪS

h̄|ν̄| =
∮
Ū

h̄|ν̄|,

and we are done.

Corollary 1.E. Under the assumption of Lemma 1.D,
∮
X̄

h̄|ν̄| is well-defined and equals
∮
X

h|ν|.

Lemma 1.F. Suppose that φ : X → X ′ is a smooth (submersive) map of F -manifolds. Suppose

that X,h and ν satisfy (1.9) – (1.11) with the further constraint on the coordinates u1, . . . , un:

(1.16) there are coordinates v1, . . . , vr on φ(U) such that uj = vj ◦ φ, j = 1, . . . , r.

Let ν′ be a differential form on X ′ given on φ(U) by

(1.17) α′
r∏

j=1

v
dj

f

dv1

v1
∧ . . . ∧ dvr

vr
,

where |α′| is constant and dj is rational, 1 ≤ j ≤ r. Then for x′ ∈ X ′(F ) the principal value

integral

H(x′) =
∮

h
|ν|

|φ∗(ν′)| ,

taken over the fiber above x′ in X, is well-defined outside a locally finite family of divisors. More-

over,
∮
X′

H|ν′| is well-defined and ∮
X

h|ν| =
∮
X′

H|ν′|.
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Proof: We may assume that the support of h is contained in a neighborhood U as in the statement of

the lemma. Let x′ ∈ φ(U) have coordinates v1, . . . , vr . The fiber integral

H(x′) = γ|α||α′ |−1
r∏

j=1

θj(uj)|uj |cj−dj

∮ n∏
j=r+1

θj(uj)|uj |cj
du1+1

|ur+1| · · ·
dun

|un|

is well-defined provided none of v1, . . . , vr vanish at x′. Then

∮
H|ν′| = γ|α|

∮ n∏
j=r+1

θj(uj)|uj |cj
dur+1

|ur+1| · · ·
dun

|un|
∮ r∏

j=1

θj(uj)|uj |cj
du1

|u1| · · ·
dur

|ur | .

is well-defined and coincides with
∮
h|ν|. Thus the lemma is proved.

Proof of Lemma 1.C:

Let p be the point in Pn(F ) where U0 = U1 = · · · = Un−1 = 0. Suppose that we blow up Pn at p to

obtain the smooth variety Q over F . The local conditions of Lemma 1.D are met since

n−1∑
j=0

(tj + cj) = −(tn + cn) and
n−1∏
j=0

θj = θ−1
n

(cf. (1.12)). Corollary 1.E then implies that
∮

Pn(F )

h|ν| =
∮

Q(F )

h̄|ν̄|. We define a smooth map φ0 :

Pn−{p} −→ Pn−1 by mapping the point with homogeneous coordinates U0, . . . , Un in Pn to the point

with homogeneous coordinates U0, . . . , Un−1 in Pn−1. There is a smooth extension φ : Q −→ Pn−1 of

φ0, with fiber P1. An easy calculation verifies that the conditions of Lemma 1.F are met and that the

integral H(x′) over the fiber above x′ ∈ Pn−1(F ) takes the form (1.15). But then H ≡ 0. We conclude

that
∮

Q(F )

h̄|ν̄| = 0, and the lemma is proved.

Finally, there are two remarks which will be useful for the proof of Lemma 4.B. We state them only

in the generality needed for that lemma.

Remark 1.G.

Let L ⊂ F̄ be a quadratic extension of F . Denote the natural action of the nontrivial element σ

of Gal(F/F) by a bar. We define a twisted form S of P1 by requiring that σ act on the homogeneous

coordinates U0, U1 by U0 −→ U1, U1 −→ U0. Then S(F ) is contained in the affine patch U1 �= 0 and

is given by uū = 1 if we require U1 = 1 and set U0 = u. The form ν on P1(L) = S(L) given by (1.13)

with c1 = c2 = 0 is preserved by the Galois action of S; |ν| = du
|u| is a Haar measure on S(F ). Thus, for
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any character θ on {u ∈ L× : uū = 1}, ∫
S(F )

θ(u) du
|u| exists as an ordinary integral and is zero unless θ

is trivial.

Remark 1.H.

Again L will be a quadratic extension of F . We regard P1(L) as the F -rational points on a

twisted form R of P1 × P1 as follows: R(L) = P1(L) × P1(L) and σ acts by (p, q) −→ (q̄, p̄), so that

R(F ) = {(p, p̄) : p ∈ P1(L)}. Define a form on R(L) by ν = du∧dv
uv , where u (respectively, v) denotes

the coordinate U0 on U1 = 1 in the first (respectively, second) copy of P1(L). At a point of R(F ) on

(U1 = 1)× (U1 = 1) we have v = ū. Let h be given at such a point by θ(uū)|uū|t, where θ is a character

on F× and t is a real number such that t �= 0 if θ2 ≡ 1. Observe that, in general, h and ν do not satisfy

the conditions of (1.9) - (1.11). We may, however, blow up R at u = v = 0 to obtain a variety R̄ over F

and projection π : R̄ −→ R. Set h̄ = h ◦ π and ν̄ = π∗(ν). Let N̄ be the inverse image in R̄(F ) of the

neighborhood |u|L ≤ 1 of u = v = 0 in R(F ). Then a calculation with coordinates shows that

(1.18)
∮
N̄

h̄|ν̄| is well-defined

(here t �= 0 if θ2 ≡ 1 is needed) and

(1.19)
∮
N

h̄|ν̄| =
∮

|u|L≤1

θ ◦ Nm(u)|u|tL
dLu

|u|L ,

where the subscript L indicates that we are computing on the L-manifold |u|L ≤ 1 in P1(L). Observe

that if θ is trivial on NmL
FL

× and t = −1 then

∮
R̄(F )−N̄

h̄|ν̄| =
∮

R(F )−N

h|ν|

is well-defined and equals ∮
|u|L<1

dLu =
∮

|u|L>1

dLu

|u|2L
.

Thus, in this case, we have

(1.20)
∮

R̄(F )

h̄|ν̄| =
∮

P1(L)

dLu

|u|2L
= 0 (Lemma 1.C) .

§2. Igusa Theory.



Principal values on p-adic manifolds 9

Recall the setting of [L, §1]: Y is a smooth variety over F ;φ : Y −→ C is an Igusa fibering of

Y over a smooth curve C over F ; ω is an Igusa form on Y ; and f an Igusa integrand (the definitions

will be reviewed presently). There is a distinguished point c0 on C(F ) and φ is smooth except on the

special fiber φ−1(c0). Choose an F -coordinate λ around c0 on C ; assume λ(c0) = 0. Then Igusa’s

theory establishes the existence of an asymptotic expansion

∑
(θ,β,r)

θ(λ)|λ|β−1(− logq |λ|)r−1Fr(θ, β, f)

near λ = 0 for the integral

F (λ) =
∫

f
|ω|

|φ∗(dλ)|
over the fiber in Y (F ) above the point in C with coordinate λ. Here θ denotes a character on F×, β

a real number and r a positive integer. The coefficients Fr(θ, β, f) are the principal value integrals of

[L, Proposition 1.2]. Under an assumption we will make (2.9), only r = 1 occurs and F1(θ, β, f) is an

integral of the type considered in the last section. In this paragraph we will relax the constraints on the

form ω and integrand f . The fiber integal F (λ) may then exist only as a principal value integral, but it

will still have an asymptotic expansion. The coefficients are again given by [L, Proposition 1.2], i.e., by

(related) principal value integrals.

For the rest of this section we require the following of Y,C, φ, ω and f :

(2.1) Y is a smooth variety over F , C is a smooth curve over F with distinguished point c0 ∈
C(F ), φ : Y −→ C is an F -morphism smooth except over c0, ω is a differential form of maximal degree

on Y , f is a C-valued function supported on a compact open subset of Y (F ); and

(2.2) if y0 ∈ Y (F ) lies over the coordinate patch for λ, a fixed local F -coordinate around c0 on C ,

then there exist local F -coordinates µ1, . . . , µn around y0 on Y such that:

(2.3) if y0 ∈ φ−1(c0) then φ is given near y0 by λ = αµa1
1 . . . µan

n , where α is regular and invertible

at y0 and a1, . . . , an are nonnegative integers; if y0 /∈ φ−1(c0) and λ0 is the coordinate of φ(y0) then

µ1 = λ− λ0;

(2.4) ω is given near y0 by

W

n∏
j=1

µ
bj

j

dµ1

µ1
∧ . . . ∧ dµn

µn
,

where W is regular and invertible at y0 and b1, . . . , bn are rational numbers; if y0 /∈ φ−1(c0) then

b1 = 1;
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(2.5) f is given on points of Y (F ) near y0 by γK1(µ1) . . . Kn(µn), where γ is locally constant

around y0 and K1, . . . ,Kn are quasicharacters on F× such that:

(2.6) if µj = 0 is the branch of a divisor E in φ−1(c0) through y0 then Kj depends only on E; if

y0 /∈ φ−1(c0) then Kj ≡ 1; and

(2.7) if Kj = κj | · |tj with κj unitary and gj real then either tj + bj �= 0 or kj �≡ 1, 1 ≤ j ≤ n. For

Lemma 2.A, (2.7) need only be satisfied for y0 /∈ φ−1(c0).

Remark. These are the conditions of [L, §1] for φ : Y −→ C to be an Igusa fibering; ω is an Igusa form

if b1, . . . , bn are positive integers, i.e., ω has no singularities, and the zeros ω lie on the special fiber, i.e.,

bj = 0 unless µj = 0 is the branch of a divisor in φ−1(c0): f is an Igusa integrand if K1, . . . Kn are

unitary and Kj ≡ 1 unless µj = 0 is the branch of a divisor in φ−1(c0).

Let E be the set of all divisors in φ−1(c0) meeting the support of f . If µj = 0 is the branch of

E ∈ E through y0 then aj = a(E), the multiplicity of E in φ−1(c0). We then also set bj = b(E),Kj =

K(E), κj = κ(E) and tj = t(E), as our assumptions allow.

Let

F (λ) =
∮

f
|ω|

|φ∗(dλ)| ,

the integral being taken over the fiber in Y (F ) above the point on C(F ) with coordinate λ �= 0. Then

F (λ) is a well-defined principal value integral of the type studied in the last section. To check this we

may assume that f is supported on a neighborhood |µj | ≤ εj , 1 ≤ j ≤ n, in a coordinate patch (2.2)

around y0 /∈ φ−1(c0). We may also assume |W | and γ constant. Then

(2.8) F (λ) = γ|W |
∮

|uj |<εj

(j>1)

∏
j>1

Kj(µj)|µj |bj
dµ2

|µ2| · · ·
dµn

|µn| .

and we are done.

The data for the asymptotic expansion ofF (λ) will be a slight modification of that of [L, Proposition

1.1]. Consider pairs (θ, β), where θ is a character on F× and β is a real number. Let E(θ, β) be the set

of those E ∈ E, i.e., of those divisors E in φ−1(c0) meeting the support of f , such that k(E) = θa(E)

and

β(E)
def.=

b(E) + t(E)
a(E)

= β .
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Let e(θ, β) be the maximum number of branches of divisors in E(θ, β) meeting at a point. For the

purposes of this paper it will be sufficient to consider the case:

(2.9) e(θ, β) ≤ 1 .

Then:

Lemma 2.A.

For |λ| sufficiently small,

F (λ) =
∑
(θ,β)

θ(λ)|λ|β−1F1(θ, β, f)

where F1(θ, β, f) is the constant of [L, Proposition 1.2].

If e(θ, β) = 0 then F1(θ, β, f) = 0. Otherwise, let E be a divisor in E(θ, β). Suppose that

y0 ∈ E(F ). Choose coordinates µ1, . . . , µn as in (2.2) and assume that µ1 = 0 is a branch of E through

y0. Following [L, Proposition 1.2] we define h and ν near y0 by

h = h(µ2, . . . , µn) =
γ(0, µ2, . . . , µn)

θβ(α(0, µ2, . . . , µn))

n∏
j=2

Kj(µj)θ(µ
−aj

j )|µj |−βaj ,

where θβ = θ| · |β , and

ν = W (0, µ2, . . . , µn)
n∏

j=2

µ
bj

j

dµ2

µ2
∧ . . . ∧ dµn

µn
.

Then

(2.10) F1(θ, β, f) =
∑
E

∮
E(F )

h|ν|,

These integrals to be calculated by the methods of §1.

Proof of Lemma 2.A:

We may assume that f is supported on a coordinate patch (2.2) around y0 ∈ φ−1(c0). Then f

and ω, and hence F (λ), come with the parameters t = (t1, . . . , tn) and b = (b1, . . . , bn). We write

F (λ) = F (λ, t, b).

If tj + bj ≥ 1 (1 ≤ j ≤ n) then arguments of [L, Propositions 1.1 and 1.2] carry through without

modification, for F (λ, t, b) is an ordinary integral. Thus the lemma is proved in this case.
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We now relax this condition on t and b. Let t′ = (t′1, . . . , t′n) ∈ Rn. It is convenient to assume that

t′

ai
=

t′j
aj

if ai, aj �= 0.

Suppose that E ∈ E has data (θ, β) with respect to (t, b), i.e., with respect to f and ω. If µj = 0 is a

branch of E through y0 then E has data θ′ = θ and

β′ =
bj + tj + t′j

aj
= β +

t′j
aj

with respect to (t + t′, b). Thus (2.9) is satisfied by (t + t′, b). If t′j � 0, 1 ≤ j ≤ n, then tj + t′j + bj ≥
1, 1 ≤ j ≤ n, and there exists ε > 0 independent of t′ such that

(2.11) F (λ, t + t′, b) =
∑

(θ′,β′)

θ′(λ)|λ|β′−1F1(θ′, β′, f)

for |λ| < ε. One verifies easily that F (λ, t, b) is the value at t′ = 0 of F (λ, t + t′, b). At t′ = 0 the right

side of (2.11) has the value ∑
(θ,β)

θ(λ)|λ|β−1F 0
1 (θ, β′, f)

where F 0
1 (θ, β′, f) is the value of F1(θ, β′, f) at t′ = 0. This is readily seen to be F1(θ, β, f), and the

lemma is proved.

The following remarks will not be needed in this paper.

Let ε > 0, I(ε) = {c ∈ C(F ) : |λ| = |λ(c)| ≤ ε} and Y (ε) be the inverse image of I(ε) in Y (F ).

The asymptotic expansion for F (λ) allows us to define the principal value integral
∮

I(ε)

F (λ)dλ as the

value of
∫

I(ε)

F (λ)|λ|sdλ at s = 0 provided F1(1, 0, f) = 0, i.e., provided there is no contribution from

the pair θ ≡ 1, β = 0 to the expansion. On the other hand our initial assumptions ensure that
∮

Y (ε)

f |ω|
is well-defined (in the sense of §1).

Lemma 2.B. Assume F1(1, 0, f) = 0. Then

∮
Y (ε)

f |ω| =
∮

I(ε)

F (λ)dλ .

Proof: We may assume that f is supported on a neighborhood in a coordinate patch (2.2) around

y0 ∈ φ−1(c0). Suppose that µ1 = 0, . . . , µr = 0 are branches of divisors in φ−1(c0), and that
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µr+1 = 0, . . . , µn = 0 are not. Then for Res � 0
∮

Y(ε)

f|λ|s|ω| is the value at sr+1 = . . . = sn = 0 of∫
Y (ε)

f |λ|s|µr+1|sr+1 . . . |µn|sn |ω|. Since λ = αµa1
1 . . . µar

r , where |α| �= 0 on the support of f , it follows

that lim
ε′→0

∮
Y (ε′)

f |λ|s|ω| = 0. Since φ is smooth away from the special fiber we have (cf. Lemma 1.F) that

for ε′ < ε and Res � 0 ∮
Y (ε)−Y (ε′)

f |λ|s|ω| =
∫

I(ε)−I(ε′)

F (λ)|λ|sdλ .

The asymptotic expansion for F (λ) implies that

lim
ε′→0

∫
I(ε′)

F (λ)|λ|sdλ = 0 for Res � 0 .

Thus ∮
Y (ε)

f |λ|s|ω| =
∫

I(ε)

F (λ)|λ|sdλ .

Since the value of the left side at s = 0 is
∮

Y (ε)

f |ω| the lemma is proved.

Lemma 2.C. If F1(θ, β, f) = 0 for all β ≤ 0 then

lim
ε→0

∮
Y (ε)

f |ω| = 0 .

Proof: Under this assumption the asymptotic expansion involves only positive exponents β. Then

lim
ε→0

∮
I(ε)

F (λ)dλ = 0. Hence, by the last lemma, limε→0

∮
Y (ε)

f |ω| = 0.

§3. Some Igusa Data.

Following [L, §§2-5] we now construct a smooth variety Y over F , an Igusa fibering φ : Y −→ C

of Y over a curve C , a differential form ω of maximal degree on Y , and an integrand fκ (notation of [L,

§2]) on Y (F ).

Fix an inner form G of SL(2) and a maximal torus T over F in G. Let c0 be a point in the center

of G. For the curve C we take T with the other central point removed.

The construction of Y starts with the variety S of stars ([L, §2]). Here S is just B × B,B denoting

the variety of Borel subgroups of G. Let B∞ ∈ B. Then S(B∞) is B − {B∞} × B − {B∞}. Let
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B0 ∈ B − {B∞}. Then S(B∞, B0) consists of the pairs (B+, B−) in S(B∞) with B+ = B0. If N(·)
indicates unipotent radical and Bg the Borel subgroup g−1Bg, g ∈ B, we have

S(B∞) = {(Bn1
0 , Bnn1

0 );n, n1 ∈ N(B∞)}

� S(B∞, B0) ×N(B∞)

� N(B∞) ×N(B∞) .

Coordinates for S(B∞) are evident, but the demands for Galois action require that a little care be taken

in the choice.

First, and for the rest of the paper, we fix data as in [L, §2]: G∗ = SL(2),B∗ is the upper triangular

subgroup ofG∗,B∗ the lower triangular subgroup, T∗ the diagonal subgroup; ψ : G −→ G∗ is an inner

twist such that ψ : T −→ G∗ is defined over F, T ∗ denotes ψ(T ), η∗ : G∗ −→ G∗ is a diagonalization

of T ∗ and, finally, η denotes η∗ ◦ ψ.

By means of ψ we identify Gwith G∗ as a group over F̄ , and hence B with B∗ and S with B∗×B∗,

where B∗ is the variety of Borel subgroups of SL(2). View B∗ as the variety P1 of lines through the

origin in A2 via

(B∗)g ↔ [0, 1] · g .

Write a for [a, 1].

Returning to B∞ and B0, now elements of B∗, we choose h ∈ G∗ such that

(3.1) (B0)h = B∗ and (B∞)h = B∗ .

Then h allows us to identify S(B∞) with S(B∗). If n = [ 1
x

0
1 ] and n1 = [ 1y

0
1 ] we have

(3.2) S(B∗) � ((B∗)n1 , (B∗)nn1) ↔ (y, x + y) ∈ P1 × P1 .

Thus h provides coordinates, informally denoted x and y, on S(B∞).

The variety S1(B∞) of [L, §3] is naturally identified with S(B∞); S1 is then obtained by gluing

together the S(B∞), B∞ ∈ B∗, according to the rules of [L, (3.7) and (3.8)]. But these are the rules for

the natural gluing of open subsets of B∗ × B∗ = P1 × P1, and so S1 = S = P1 × P1 (cf. [L, Lemma

3.10(a)]).

To describe the Galois action on S and at the same time maintain our identification of G(F̄ ) with

G∗(F̄ ) and of S with B∗×B∗ we equipG∗(F̄ ) with the Galois action σG = ψ ◦σ ◦ψ−1, σ ∈ Gal(F̄/F).
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Recall that the identification ψ : T −→ T∗ is over F . Let L ⊂ F̄ be a quadratic extension of F . Write

TL for the set of tori in G defined over F (i.e., in G∗ and preserved by σG, σ ∈ Gal(F̄/F)) which are

anisotropic over F and split over L. We allow also L = F , then meaning by TL the set of F -split tori

in G.

The action of σ ∈ Gal(F̄/F) on S = B∗ × B∗ will be denoted σ(G,T ). From [L, §2 and §4] we get

(3.3) σ(G,T )((B+, B−)) = (σG(B−), σG(B+))

if T ∈ TL, L �= F , and σ is nontrivial on L, and

(3.4) σ(G,T )((B+, B−)) = (σG(B+), σG(B−))

otherwise.

The following elaborate remark will be helpful later on.

(3.5) If σG(B∗) = B∗ and σG(B∗) = B∗, as we may assume if G is split over F , then S is covered

by patches S(B∞), where σG(B∞) = B∞ and σG(B0) = B0, σ ∈ Gal(F̄/F), for some B0 �= B∞. For

example, S = S(B∗) ∪ S(B∗). Each such patch S(B∞) is preserved by Gal(F̄/F). The element h of

(3.1) can be chosen so that σG(h)h−1 is central, σ ∈ Gal(F̄/F). Then the identification of S(B∞) with

S(B∗) provided by h respects Galois action.

(3.6) Suppose thatL is a quadratic extension ofF . Assume, as we may ifT ∈ TL, that σG(B∗) = B∗

for σ nontrivial on L and σG(B∗) = B∗, σG(B∗) = B∗ otherwise. Then S is covered by coordinate

patches S(B∞) where for some B0 �= B∞, σG(B∞) = B0 for σ nontrivial on L and σG(B∞) =

B∞, σG(B0) = B0 otherwise. Again S = S(B∗) ∪ S(B∗) will do. Now, however, σ(G,T ) preserves

only S(B∞) ∩ S(B0) = S(B∞) − {(B0, B0)} if σ is nontrivial on L. The element h of (3.1) may be

chosen so that σG(h)h−1 is central, σ ∈ Gal(F̄/F). Then the identification of S(B∞) ∩ S(B0) with

S(B∗) ∩ S(B∗) provided by h respects Galois action.

Returning to the construction of Y we find it convenient to make yet another identification, that

of T and T ∗ with T∗ using the diagonalization η∗. We equip T∗(F̄ ) with the action σT = σT∗ =

η∗ ◦ σ ◦ (η∗)−1|T∗ , σ ∈ Gal(F̄/F), and regard C as a curve in T∗ preserved by this action. Note that

η∗(c0) = c0.
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A star s = (B+, B−) is regular in the sense of [L, §2] if and only if B+ �= B−. For the variety X1 of

[L, §4] we take the closure in G∗ × S of {(g, s = (B+, B−)) : g, s regular, g ∈ B+ ∩B−};X1 is defined

over F for the Galois action given by σG × σ(G,T ), σ ∈ Gal(F̄/F). There are maps defined over F :

X1
π−→G∗�φ1

T∗

where σ ∈ Gal(F̄/F) acts on G∗ by σG and on T∗ by σT . The horizontal arrow is projection on the first

component. To define φ1, note that X1 is contained in {(g, s = (B+, B−)) ∈ G∗ × S : g ∈ B+ ∩ B−}.

Thus if (g, s) ∈ X1 we may choose h ∈ G∗ such that Bh
+ = B∗. Then φ1((g, s)) is the image of

h−1gh ∈ B∗ under the projection B∗ = T∗N(B∗) −→ T∗.

The variety Y will be the intersection of φ−1
1 (C) with the closure in X1 of φ−1

1 (C − {c0}). By

restriction we have:
Y

π−→G∗�φ
C

Let M be the Springer-Grothendieck variety {(g, b) : g ∈ B} ⊂ G∗ × B∗, with the usual maps:

M
πM−→G∗

φM

�
T∗

Define ξ : Y −→ M by (g, (B+, B−)) −→ (g,B+). Then φ = φM ◦ ξ and π = πM ◦ ξ. If M ′ is M with

the fibers over the central points removed then φ−1(C − {c0}) ξ−→M ′ is an isomorphism of varieties

over F̄ . In particular, φ−1(C − {c0}) is smooth.

To examine the special fiber φ−1(c0) we introduce coordinates as in [L, §3]. Let Y ⊂ G∗×S −→ S

be projection on the second factor. Let Y (B∞) be the inverse image of S(B∞), B∞ ∈ B∗. Identify

S(B∞) with S(B∗) by means of some h as in (3.1). We may then work with the coordinates x, y of (3.2)

on S(B∗) and with Y (B∗).

Let λ be a local F -coordinate around c0 in C . Recall that C ⊂ T∗ and that σ ∈ Gal(F̄/F) acts

by σT . Assume that λ = 0 at c0. If α is the root of T∗ in B∗ then we may write 1 − α−1 as λb(λ)

near c0, with b regular and invertible near λ = 0. Suppose that (g, s) ∈ Y (B∗). As in (3.2) write s as
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((B∗)n1 , (B∗)nn1), with n =
(

1 0
x 1

)
and n1 =

(
1 0
y 1

)
. Note that x is the coordinate z(W+, α) from

[L, §3]. Write

(3.7) g = n−1
1 t

(
1 u
0 1

)
n1, with t ∈ T∗, u ∈ F̄ .

Assume x �= 0. Then g ∈ (B∗)nn1 is equivalent to

1 − α(t)−1 = xu

or, if (g, s) is near φ−1(c0) and we pull back λ to Y , to

(3.8) λb(λ) = xu .

As a consequence, u, x and y serve as coordinates on Y (B∗), and Y (B∗) is smooth. Then each

Y (B∞) is smooth, B∞ ∈ B∗. Hence Y is a smooth variety.

Near φ−1(c0) on Y (B∗), φ is given by

(3.9) λ = Axu

with A regular and invertible near λ = 0. Thus u = 0 is the branch of a divisor E1 of φ−1(c0). This

branch consists of the pairs (c0, s), s ∈ S(B∗), and so E1 must be {c0} × S = {c0} × P1 × P1;E1

maps under π : Y −→ G to {c0}. On the other hand, x = 0 is the branch {(g, (B,B)) : B �= B∗, g ∈
G, c0g unipotent}. For convenience we call g c0-unipotent if c0g is unipotent. Then π maps E2 − E1

isomorphically to the orbit of regular c0-unipotent elements in G. Note that the two divisors E1 and

E2 cover φ−1(c0), and that E2 has no F -rational points unless G is split over F .

The relation of Y to the Springer-Grothendieck variety M is now evident. Under Y
ξ−→M the

divisor E2 is mapped isomorphically to the fiber over c0; Y is obtained from M with the fiber over −c0
removed by blowing up along the subvariety {c0} × B∗ = ξ(E1) of the fiber over c0.

To verify that φ : Y −→ C is an Igusa fibering it remains only to check that one ofE1, E2 is defined

over F . For then both divisors are defined over F and we may apply (3.9) and Hilbert’s Theorem 90

(for the field of functions regular and invertible near a point) to replace around each F -rational point

y0 ∈ φ−1(c0) the coordinates u, x and y with F -coordinates µ1, µ2, µ3 such that:

(3.10) µi = 0 is a branch of Ei if y0 lies on Ei(i = 1, 2).
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(3.11) λ is given near y0 by λ = αµa1
1 µa2

2 , where α is regular and invertible at y0, and ai = 1 if y0

lies on Ei and ai = 0 otherwise (i = 1, 2).

Since E1 = {c0} × S is clearly defined over F , we are done.

The indices a(·) of §2 are:

a(E1) = a(E2) = 1 if G is split over F ,(3.12)

a(E1) = 1 otherwise.

The next step is to define an Igusa form ω. Let ωT be the (right) invariant form on T∗ equal to dλ

at c0. Let a ∈ F̄ be such that ω̄ = aωT is defined over F for the Galois action on T∗ as F -split torus.

Let H ∈ Lie(T∗) be such that ω̄(H) = 1. Choose X+ ∈ Lie(N(B∗)),X− ∈ Lie(N(B∗)) and right

invariant 1-forms ω,ω+, ω− on G defined over F so that 〈ω0, ω+, ω−〉 is dual to 〈H,X+,X−〉. Then

ωG = ω0 ∧ ω+ ∧ ω− is a (right) invariant form of maximal degree on G defined over F . The form ωM

on M associated to ωG (more precisely, to ν1 = ω0, ν2 = ω+, ω1 = ω−) in [L, Lemma 2.8] is π∗
M (ωG).

We set ωY = ξ∗(ωM ) = π∗(ωG) and ω = a−1ωY .

The form ω is regular; it is nonvanishing off the special fiber. The discussion of [L, §2] implies that

locally ω = W ′ω′, where W ′ is a regular invertible function and ω′ is defined over F . This ensures that

the measure |ω| is well-defined.

Suppose that y0 ∈ Y (B∗) is near but not on φ−1(c0). We may as well take X+ =
(

0 1
0 0

)
and

X− =
(

0 0
1 0

)
. Then it may be shown that ω is given near y0 by φ∗(dλ) ∧ du ∧ dy = W (λ)d(xu) ∧

du∧dy = W (λ)u dx ∧du∧dy, where W is regular and invertible near λ = 0, with W (0) = (ab(0))−1

(cf. (3.8)). From this it follows that

(3.13) ω = W (λ)u2x
dx

x
∧ du

u
∧ dy

around a point of Y (B∗) ∩ φ−1(c0).

Note thatωmay be expressed in terms of the coordinatesµ1, µ2, µ3 of (3.10), but that the coordinates

u and x will do just as well to compute the indices b(·) of §2:

b(E1) = 2, b(E2) = 1 if G is split over F(3.14)

b(E1) = 1 otherwise.
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It remains to define the Igusa integrand. Let κ be a character on D(T ) = D(T,F ), the definition of

which will be recalled in (3.15). Recall thatT (F̄ )\A(T,F ) is the set ofF -rational points inT (F̄ )\G(F̄ ) =

(T\G)(F̄). If γ ∈ T (F ) − {c0} then π : Y −→ G induces an F -isomorphism from the fiber φ−1
γ over

γ in Y to T\G (cf. [L, Lemma 2.1]). We have therefore:

φ−1
γ (F ) −→ T (F̄ )\A(T,F ) −→ D(T,F ) = T (F̄ )\A(T,F )/G(F )(3.15)

� H1(Gal(F̄/F),T(F̄)) ,

allowing us to regard κ as a function mκ on φ−1
γ (F ). If κ is trivial then mκ ≡ 1. Suppose then that

T ∈ TL, L �= F , and κ is nontrivial. We will need an explicit formula for mκ near an F -rational point

y0 on the special fiber. Proposition 5.1 of [L] shows that mκ depends locally only on the coordinate x,

at least if G is split over F , but for the formula we will need an F -coordinate.

Suppose that S(B∞) is a coordinate patch as in (3.5). We may as well take σG = σG∗ , σ ∈
Gal(F̄/F), or G = SL(2). Identify S(B∞) with S(B∗) using h as in (3.5). Recall that this identification

respects the Galois action on S. The formulas (3.2), (3.3) and (3.4) imply that the coordinates x, y on

S(B∗) satisfy σ(y) = x+ y if σ is nontrivial on L and that σ(y) = y, σ(x+ y) = x+ y otherwise. Then

σ(x) = σ(x+ y− y) = y− (x+ y) = −x for σ nontrivial on L. Fix τ ∈ L− F such that τ2 ∈ F . Then

µ = τx is an F -coordinate (and will serve as µ2 in (3.10)). Let (g, s) ∈ φ−1
γ (F ) lie in Y (B∞), which we

have identified with Y (B∗). The coordinate µ then being F -valued, we have that

σ −→
(
µ 0
0 µ−1

)
if σ|L �≡ 1, σ −→ 1 otherwise ,

represents an element ofH1(T ) that we denote µσ . Let εσ denote the image of (g, s) under (3.15). Then

Proposition 5.2 of [L] implies that there is an element tσ of H1(T ) independent of (g, s) such that

(3.16) εσ = µσtσ

(see the Appendix to this section). Thus

mκ((g, s)) = κ(εσ) = κ(µσ)κ(tσ) = κ(µ)κ(tσ) ,

where κ now also denotes the quadratic character on F× attached to L/F .

By requiring that S(B∞) be as in (3.5) we have excluded the caseG anisotropic overF . This is of no

consequence, for then if (g, s) ∈ Y (F ) the star s = (B+, B−) must be regular (σG(B+∩B−) = B+∩B−
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implies B+ ∩B− is a torus so that B+ �= B−). From Lemma 2.10 of [L] we conclude that mκ is locally

constant on Y (F ).

Finally, fix f ∈ C∞
c (G(F )). The Igusa integrand will be:

fκ(g, s)) = mκ((g, s))(f ◦ π)(g, s)

= mκ((g, s))f(g), (g, s) ∈ Y (F ) − φ−1(c0) .

The characters κ(·) of §2 are:

(3.17)
{
κ(E1) ≡ 1 and κ(E2) = κ if G is split over F

κ(E1) ≡ 1 otherwise.

Appendix

Here we note the explicit calculation of εσ in (3.16) and another local expression for mκ which

applies to anisotropic groups as well.

For (3.16) recall that we have assumed that G is SL(2) (and ψ ≡ 1, T = T∗). We refrain from

identifying T (F̄ ) with T∗(F̄ ). Then εσ is the class of σ −→ σ(h1)h−1
1 , where h1 ∈ G(L) satisfies:

h1gh
−1
1 ∈ T,Bh1

+ = η−1(B∗) and Bh1− = η−1(B∗)

if s = (B+, B−). Write η as t −→ h2th
−1
2 , h2 ∈ G(L). For h1, we can take h−1

2 h3 if h3 ∈ G(L) satisfies:

h3gh
−1
3 ∈ T∗, Bh3

+ = B∗ and Bh3− = B∗ .

On Y (B∗) we have

g =
(

1 0
−y 1

)
t

(
1 u
0 1

) (
1 0
y 1

)
,

with t ∈ T∗ and ux = 1 − α(t)−1. It is easily checked that

h3 =
(

1 1/x
0 1

)(
1 0
y 1

)

will do;

σ(h3)h−1
3 =

(
0 −1/x
x 0

)
=

(
µ−1 0
0 µ

) (
0 −1/τ
τ 0

)
for σ nontrivial on L. Then

σ(h1)h−1
1 = σ(h−1

2 )
(
µ−1 0
0 µ

)(
0 −1/τ
τ 0

)
h2

= η−1

(
µ 0
0 µ−1

)
σ(h−1

2 )
(

0 −1/τ
τ 0

)
h2 ,
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so that (3.16) holds with τσ the class of

σ −→ σ(h−1
2 )

(
0 −1/τ
τ 0

)
h2 .

Suppose now that L is a quadratic extension of F and that

(3.18) σG =


 ad

(
0 1
ζ 0

)
◦ σG∗ if σ|L �≡ 1 ,

σG∗ otherwise ,

where ζ ∈ F×. Note that G is split over F if and only if ζ ∈ NmL
FL

×. Assume that T ∈ TL. Now

σG satisfies the conditions of (3.6). The coordinates x and y on S(B∗) satisfy σ(x + y) = ζ/y, σ(y) =

ζ/(x + y) if σ|L �≡ 1 and σ(x + y) = x + y, σ(y) = y otherwise. Then x/(x + y) = 1 − y/(x + y) is

defined over F . It serves as a coordinate around an F -rational point (g, s) of Y (B∗) near φ−1(c0). A

calculation as in the last paragraph shows that:

(3.19) mκ((g, s)) = κ(x/(x+ y)) ,

where κ now denotes the quadratic character of F× attached to L/F if κ is nontrivial, and the trivial

character otherwise.

§4. Application

Continuing from the last section, we have f ∈ C∞
c (G(F )), Haar measures |ωG| on G(F ) and |ωT |

on T (F ), and a character κ on D(T ). For γ regular in T (F ), form the κ-orbital integral

Φκ(γ, f) = Φκ
T (γ, f, |ωT |, |ωG|)

=
∑
δ

κ(δ)
∫

Th(F )\G(F )

f(g−1h−1γhg)
|ωG|
|ωT |h ,

where h ∈ A(T,F ) represents δ ∈ D(T,F ), and then the normalized integral

F κ(γ, f) = |1 − α(γ−1)|Φκ(γ, f).

Recall that T has been identified with T∗ by means of η; α is the root of T∗ in B∗.

Assume that γ lies in C(F ) near c0 and has coordinate λ. The Igusa data of the last section were

chosen so that

F κ(γ, f) =
∫

φ−1
γ (F )

fκ
|ω|
|dλ| .
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Thus for |λ| sufficiently small we have that

(4.1) F κ(γ, f) = |λ|Λ1 + κ(λ)Λ2

where, in the notation of Lemma 2A,

Λ1 = F1(1, 2, f)(4.2)

and

Λ2 =
{
F1(κ, 1, f) if G is split over F
0 otherwise.

(4.3)

On the right side of (4.1) we have, as in §3, regarded κ as a character on F×, trivial if κ is trivial on

D(T ) and the character on F× attached to the quadratic splitting field L of T otherwise.

The term Λ1 is the contribution from the divisor E1 which maps to {c0} under π: Y → G, while

Λ2 is the contribution from E2; under π, E2 maps (isomorphically) to the conjugacy class of regular

c0-unipotent elements inG. Thus (4.1) assumes a familiar form, but with the coefficients now expressed

as principal value intregrals.

If T is split over F then blowing up the Springer-Grothendieck variety M to obtain Y is unneces-

sary, and as a consequence we have introduced the spurious term Λ1. It is quickly dismissed, for if T

is split over F then E1 = {c0} × S is F -isomorphic to P1 × P1 (cf. (3.4)) and by (2.10) Λ1 is given, up

to a constant, by ∮
P1(F )×P1(F )

da db

|a− b|2

where a, b each denote the coordinate U0 on U1 = 1 in P1. We apply Lemma 1.F to this integral and

the fibering φ: P1 × P1 → P1 given by projection on the first component. The fiber integral H(x′),

x′ ∈ P1(F ), is seen to be an integal over P1(F ) of the form (1.15). Thus it is zero. We conclude then

from Lemma 1.F that Λ1 = 0.

Lemma 4.A. If κ is nontrivial then Λ1 = 0.

Proof: If G is anisotropic over F then this is immediate from the definition of κ-orbital integral (see

also the remark following the proof of Lemma 4.B). Suppose then that G is split over F . We may as

well assume that G = G∗ = SL(2). Since κ is nontrivial T ∈ TL, some L �= F ; E1 is the variety

R = ResLFP1 of Remark 1.H, i.e., E1(L) = P1(L) × P1(L) and E1(F ) = {(p, p̄): p ∈ P1(L)}, where



Principal values on p-adic manifolds 23

the bar denotes the action of the nontrivial element of Gal(L/F ) (cf. (3.3), (3.4)). Then by (2.10), (3.2),

(3.5) and (3.16) λ1 is, up to a constant,

(4.4)
∮

R(F )

κ
(
b−a
τ

)
da db

|b− a|2

where a, b each denote the coordinate U0 on U1 = 1 in P1(L). The element τ of L − F was fixed for

(3.16); b−a
τ lies in F× if b = ā �= 0.

Abbreviate the point U0 = a, U1 = 1 in P1 by a, and U0 �= 0, U1 = 0 by ∞. We define a smooth

morphism φ: R − {(∞,∞)} → P1 by (a, b) → b−a
τ

and (a,∞), (∞, b) → ∞; φ0 is defined over F .

We blow up R at (∞,∞) to obtain the variety R̂ over F . The fiber over (∞,∞) in R̂ meets the proper

inverse image of the divisor a = b at a single point p0. Blow up R̂ at this point, which is F -rational, to

obtain the variety ̂̂
R over F . A calculation with coordinates shows that φ0 extends to an Igusa fibering

φ: ̂̂
R → P1 with distinguished point c0 = ∞; moreover, the fiber over ∞ is the union of three divisors,

each occurring with multiplicity one. Only one of the divisors has F -rational points. We conclude then

that on ̂̂
R(F ) the map φ is smooth.

To compute (4.4) by lifting to ̂̂
R(F ) we must check the conditions of Lemma 1.D at (∞,∞) on

R(F ) and at p0 on R̂(F ). We find that θ1 = κ, c1 = −1 and θ2 ≡ 1, c2 = 1 for a suitable choice of

local coordinates around (∞,∞) on R(F ). Thus θ1θ2 = κ and c1 + c2 = 0, and so to lift to R̂(F ) it is

crucial that κ be nontrivial. On R̂(F ) at p0 we find θ1 = κ, c1 = 0 and θ2 = κ, c2 = −1. The conditions

of Lemma 1.D are met and we may apply Corollary 1.E to rewrite (4.4) as a principal value integral I

over ̂̂
R(F ). We compute I by applying Lemma 1.F to the fibering φ. For any p ∈ P1(F ) − {0,∞} the

corresponding fiber integral is seen immediately to be a constant times
∮

P1(F )

da = 0 (cf. (1.15)). Thus

Lemma 1.F implies that I = 0, and Lemma 4.A is proved.

Suppose now that T ∈ TL, L �= F ; κ may be either character on D(T ). Recall that the maximal

torus T ∗ = ψ(T ) in G∗ is defined over F , as is the map ψ: T → T ∗. Let κ∗ be the character on

D(T ∗) associated to κ by ψ. We indicate by Λ∗
1 the contribution (4.2) for the data G∗, T ∗, κ∗ and

f∗ ∈ C∞
c (G∗(F )). It may be written as M∗

1 f
∗(c0). Similarly the contribution (4.2) for the data G, T , κ

and f can be written as M1f(c0).
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Lemma 4.B.

M1 = ε(κ,G)M∗
1

where ε(κ,G) = 1 if κ is nontrivial and

ε(1, G) =
{ 1 if G is split over F
−1 otherwise.

Proof: We may assume that G satisfies (3.18), i.e.,

σG =


 ad

(
0 1
ζ 0

)
◦ σG∗ if σ

L
�≡ 1

σG∗ otherwise,

where ζ ∈ F×; G is split over F if and only if ζ ∈ NmL
FL

×. We write M1(ζ) for the term M1. Then

from (2.10), (3.2), (3.6) and (3.19) we find that M1(ζ) is given up to a constant independent of G (i.e., of

ζ) by

(4.5)
∮

Qζ(F )

κ
(
1 − 1

b

)
da db

|b− a|2

where Qζ is the form of P1 × P1 on which 1 �= σ ∈ Gal(L/F ) acts on the homogeneous coordinates

U0, U1 (on the first copy of P1) and V0, V1 (on the second copy) by U0 → ζV1, U1 → V0, V0 → ζU1,

V1 → U0. Also a denotes U0 on U1 = 1 and b = V0 on V1 = 1.

We define now a smooth variety Y and an Igusa fibering φ: Y → A1 with distinguished point zero

on A1 such that if ζ is the coordinate on A1 then (4.5) is the fiber integral F (ζ), ζ �= 0. The asymptotic

expansion for F (ζ) at ζ = 0 will be seen to have the one term, that corresponding to θ = θLκ, where

θL is the quadratic character of F× attached to L/F , and β = 1. Then in the notation of Lemma 2.A

we have

(4.6) F (ζ) = θL(ζ)κ(ζ)F1(θLκ, 1,∗ )

for |ζ| sufficiently small, where ∗ is the Igusa integrand yet to be defined. This will prove the lemma.

We start with a variety Y1 ⊂ (P1)4 × A1. let a, b, a1, b1 each denote the coordinate U0 on U1 = 1

in P1, and ζ be the coordinate on A1. On (U1 = 1)4 × A1, Y1 is given by ab1 = a1b = ζ . Let a′, b′, a′1,

b′1 each denote U1 on U0 = 1. On (U0 = 1) × (U1 = 1)3 × A1, Y1 is given by a1b = ζ and b1 = a′ζ ; on

(U0 = 1)2 × (U1 = 1)2 × A1 by b1 = a′ζ , a1 = b′ζ , and so on. We define Y1 over F by twisting the
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natural F -structure by σ(a) = a1, σ(b) = b1, σ(a′) = a′1, σ(b′) = b′1, σ being the nontrivial element of

Gal(L/F ).

The variety Y1 is smooth except at the point y1 given by a = a1 = b = b1 = 0. Let φ1 be the

projection of Y1 ⊂ (P1)4 × A1 onto A1; φ1: Y1 − {y1} → A1 is an Igusa fibering with distinguished

point zero.

For ζ �= 0 the projection of Y1 onto the product of the first and second copies of P1 yields an

F -isomorphism of the fiber φ−1
1 (ζ) with Qζ . Let Y ′

1 = Y1 − φ−1
1 (0). We define a form ω1 on Y ′

1 by

da∧db∧dζ
(b−a)2

and an integrand f1 = κ
(
1 − a

b

)
on Y ′

1(F ). The fiber integral

(4.7)
∮

φ−1
1 (ζ)(F )

f1
|ω1|
|dζ|

is (4.5).

We now attend to the fiber in Y1 − {y1} over ζ = 0. It is the union of divisors E′
1, . . . , E

′
4. Their

branches on ((U1 = 1)4 × A1) ∩ (Y1 − {y1}) are:

(E′
1) b = 0, b1 = 0

(E′
3) a = 0, b = 0

(E′
2) a = 0, a1 = 0

(E′
4) a1 = 0, b1 = 0.

Note that E′
1, E′

4 have no F -rational points; E′
1, E′

2 are each defined over F .

The point y1 on Y1 is F -rational. Blow up Y1 at this point to obtain the variety Y over F and

projection π: Y → Y1. Set φ = φ1 ◦ π, ω = π∗(ω1) and fY = f1 ◦ π. Then Y,C = A1, c0 = 0, φ, ω and

fY satisfy the conditions of (2.1)–(2.7) (i.e., are “generalized” Igusa data), as well as (2.9). The proof is

routine. We will include as much of it as will be needed to write down the asymptotic expansion for

the fiber integral which, by construction, coincides with the integral (4.7).

The fiber φ−1(0) is the union of five divisors E0, E1, . . . , E4, where Ei is the proper inverse image

of E′
i (i = 1, . . . , 4). Let u1 = a, u2 = b, u3 = a1, u4 = b1; let U1 = A, U2 = B, U3 = A1, U4 = B1

be homogeneous coordinates on P3. Then Y is given near π−1(y1) by uiUj = ujUi (i, j = 1, . . . , r).

The divisor E0 is given by a = b = a1 = b1 = 0 and AB1 = BA1 (homogeneous coordinates); on

E0 ∩ E1 we have B = 0, B1 = 0; on E0 ∩ E2, A = 0 and A1 = 0, and so on. The divisors E0, E1 and

E2 are each defined over F , while E3 and E4 have no F -rational points and so may be ignored for the
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asymptotic expansion. Also E1 ∩ E2 is empty and Ei ∩ Ej (i = 1, 2, and j = 3, 4) consists of a single

point on E0 which is not F -rational.
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The variety E0 is a form of P1 × P1, the natural projections being given by (A,B,A1, B1) → B
A

=
B1
A1
, A1

A = B1
B (where we allow the value ∞ and ignore quotients of the form 0

0 ). For these to be defined

over F , the first P1 has to be provided with its natural F -structure and the second with the structure

of Remark 1.G. The variety E1 is the blow-up R̄ of the twisted form R of P1 ×P1 described in Remark

1.H (cf. also (4.4)). To see this, we note that the projection of Y1 ⊂ (P1)4 × A1 onto the product of

the first and third copies of P1 yields an F -isomorphism of E′
1 with R − {r0}, where r0 is given by

a = a1 = 0. Then E1 is the blow-up R̄ of R at r0, and E0 ∩ E1 is the inverse image of r0 in R̄. The

divisor E2 is described similarly.

Suppose that y0 ∈ E0(F ) and that A �= 0 at y0. We may assume A = 1. Then t = a1, A1, B

serve as coordinates on Y near y0; a1 = tA1 and b = tB. For 1 �= σ ∈ Gal(L/F ) we have σ(B) = B,

A1σ(A1) = 1 and σ(t) = tA1. To obtain F -coordinates we may take B, r and s with t = st0, t0 �= 0,

σ(t0)/t0 = A1 and t0 = 1 + τr, where τ ∈ L− F and τ2 ∈ F . Also, t = 0 is a branch of E0, A1 �= 0

since A1σ(A1) = 1, and B = 0 is a branch of E1. Finally, ζ = a1b = t2A1B,

ω =
da ∧ db ∧ dζ

(b− a)2
= tB

dt ∧ dB ∧ dA1

(B − 1)2

and fY = κ(1 − 1/B) = κ(B)κ(B − 1). We conclude that

β(E0) =
b(E0)
a(E0)

=
2
2

= 1, κ(E0) ≡ 1.

Similarly,

β(E1) =
2
1

= 2, κ(E1) = κ

and

β(E2) =
2
1

= 2, κ(E2) ≡ 1.
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This implies that (2.9) is satisfied (i.e., e(θ, β) ≤ 1 for all (θ, β)) since E1 and E2 do not intersect.

The asymptotic expansion for the fiber integral, i.e., for the integral (4.5), is then

(4.8)
∑
θ

θ(ζ)F1(θ, 1, fY ) + |ζ|κ(ζ)F1(κ, 2, fY ) + |ζ|F1(1, 2, fY )

if κ is nontrivial, or

(4.9)
∑
θ

θ(ζ)F1(θ, 1, fY ) + |ζ|F1(1, 2, fY )

if κ is trivial. The summation is over characters θ of F× for which θ2 = 1.

The integralsF1(κ, 2, fY ) andF1(1, 2, fY ) of (4.8) and the two integrals contributing toF1(1, 2, fY )

in (4.9) (cf. (2.10)) are each of the form (1.20) and hence vanish.

Since ζ = s2(t20A1B) and t20A1B = t0σ(t0)B the formula (2.10) yields

(4.10) F1(θ, 1, fY ) =
∮

E0(F )

κ(B)
θ(B)

κ(B − 1)
|B − 1|2

1
θ̂(A1)

dA1

|A1| dB,

where θ̂(A1) = θ(t0σ(t0)). Recall that A1 ranges over {x ∈ L×: NmL
Fx = 1}. The character θ̂ is trivial

if and only if θ ≡ κ or θ ≡ κθL. In the case θ̂ �≡ 1,∫
dA1

θ̂(A1)|A1|
= 0 (cf. Remark 1.G)

and so (4.10) vanishes. In the case θ ≡ κ,∮
P1(F )

κ(B − 1)
|B − 1|2 dB =

∮
P1(F )

κ(B)
|B|2 dB = 0 (Lemma 1.C)

and again (4.10) is zero. Thus only θ ≡ κθL may give a nonzero contribution. The expansions (4.8) and

(4.9) therefore take the form (4.6), and Lemma 4.B is proved.

Lemma 4.B and Lemma 4.A in the case G split over F imply Lemma 4.A for G anisotropic over F .
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