
Orbital Integrals on Forms of SL(3), II

By R.P. Langlands and D. Shelstad

0. Introduction. In the paper [6] we described in a precise fashion the notion of transfer of orbital integrals

from a reductive group over a local field to an endoscopic group. We did not, however, prove the existence of the

transfer. This remains, indeed, an unsolved problem, although in [7] we have reduced it to a local problem at the

identity.

In the present paper we solve this local problem for two special cases, the group SL(3), which is not so

interesting, and the group SU(3), and then conclude that transfer exists for any group of type A2. The methods

are those of [4], and are based on techniques of Igusa for the study of the asymptotic behavior of integrals on

p-adic manifolds. (As observed in [7], the existence of the transfer over archimedean fields is a result of earlier

work by Shelstad.)

Since the problem is solved in so few cases, some doubts about the value of the method are justified. However,

in the hands of Thomas Hales (1], [2]) it is revealing itself to be a powerful and suggestive technique, and the

simple case treated here may serve as a useful introduction to his work. Moreover, the theory of automorphic

forms on SU(3) or U(3) is well worth studying as an example and in its own right ([9]); many phenomena that

are absent for GL(2) but present in general appear first with these groups.

1. Local transfer of Shalika germs. Recall from ([7], Section 2.1) that the problem of local transfer is to

show that for any smooth, compactly supported function f on G(F ) there is a function fH of the same type on

the endoscopic group H(F ) such that

(1.1) Φst(γH , fH) =
∑
γG

∆loc(γH , γG)Φ(γG, f)

for all strongly G-regular γH near the identity in H(F ). The sum is over a set of representatives for the conjugacy

classes in the stable conjugacy class of which γH is an image.

Fix one γG with γH as an image, and let TG be the centralizer of γG, TH that of γH . Choose an admissible

embedding TH → T → TG and let γ ∈ T ⊆ G∗ be the image of γH . Recall that E(T ) is the image of H1(Tsc)

in H1(T ), and may of course be identified with E(TG). The element s of the endoscopic data defining H can be

transported to T̂ or to T̂G and devines a character, customarily denoted κ, of X∗(T ), X∗(TG), or of E(T ), E(TG).

Recall that Tate-Nakayama duality implies that E(T ) is a subquotient of X∗(T ). If δ ∈ ξ(TG), there is a g ∈ G(F̄ )

such that the cocycle {σ(g)g−1} lies in T and belongs to the class of δ. Set

γgG = g−1γGg.
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Since ∆(γH , γ
g
G) and Φ(γgG, f) depend only on δ and not on g, we write ∆(γH , γδG) and Φ(γδG, f). It is a

consequence of Section 3.4 of [6] that

∆loc(γH , γδG) = κ(δ)∆loc(γH , γG),

so that the right side of (1.1) is

∆loc(γH , γG)
∑

δ∈E(TG)

κ(δ)Φ(γδG, f).

For γH near the identity we may write γ = expX , and, for any root α, define α(γ)1/2 to be expα(X)/2.

Then

{aα = α(γ)1/2 − α(γ)−1/2}

is a set of a-data to which we may apply the construction of [6, Section 2.3] to obtain a cohomology class

λ(T ) = inv(T, γ)

in E(T ). In terms of the classes introduced in [10] it is a product

inv(T, γ) = inv(γ)inv(T ).

Observe that the choice of F -splitting implicit in Section 2.3 is made as in [10] and [6, Section 5.1].

To calculate ∆loc(γH , γ) we may use the a-data just introduced. This yields

∆II(γH , γ) = 1

and

∆I(γH , γ) = κ(inv(T, γ)).

In addition, ∆1(γH , γ) is 1 by definition, and ∆2(γH , γ) is 1 near the identity. Thus, choosing the overall constant

correctly, we have

(1.2) ∆loc(γH , γ) = κ(inv(T, γ))DG∗/H(γ),

where ([6], Section 3.6)

DG∗/H(γ) = DG∗(γ)DH(γH)−1.

If, with the notation of [6, Section 4.2] and [3], we set

inv(TG, γG) = inv(T, γ)θ(E,E′)

then the Local Hypothesis (Corollary 4.2.B of [6] yields

(1.3) ∆loc(γH , γG) = κ(inv(TG, γG))DG/H(γG).
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The usual germ expansion on G(F ) is

Φ(γG, f) ∼
∑
O

ΓO(γG)aO(f).

The germ expansion for

Φ(γH , f) =
∑
γG

∆loc(γH , γG)Φ(γG, f)

is

Φ(γH , f) ∼
∑
O

ΓκO(γH)aO(f)

with

ΓκO(γH) = κ(inv(TG, γG))DG/H(γG)
∑
δ

κ(δ)ΓO(γδG)

if γH is an image of an element of G. Otherwise ΓκO(γH) = 0. It will be referred to as the κ germ-expansion, and

the ΓκO as κ-germs, even though the true parameter is the collection of endoscopic data, the character κ changing

from Cartan subgroup to Cartan subgroup. Taking H = G∗, so that all the κ are trivial, we obtain the stable

germs Γst
O.

The existence of the local transfer for a group H and all f is clearly equivalent to the validity of the following

assertion for all O.

Assertion A. The κ-germ ΓκO is a linear combination of stable germs for H.

2. Some easy general cases. There are a few general cases for which Assertion A is either easy to verify

directly or easy to deduce from known results.

The endoscopic group H , or the data defining it, will be said to be cuspidal if the maximal split subgroup SH

of the center of H is contained in the center of G (a condition whose precise meaning should be clear enough).

Lemma 2.1. Suppose H is not cuspidal. If local transfer exists for all endoscopic groups of all Levi factors

of proper parabolic subgroups of G then it exists for H.

Proof. If an admissible embedding TH → T → TG exists then we say that TH is an image of TG. If no Cartan

subgroup of H is an image, as can very well happen if, for example, G is anisotropic, then fH = 0 will be the

transfer of all f . Thus, suppose that some Cartan subgroup T 0
H is an image of, say, T 0.

We suppose that H is not cuspidal. Then SH is transported by T 0
H → T 0 to a split group SG in G that is not

central. The centralizer M of SG is a Levi factor of a proper parabolic subgroup P over F . Any two split tori in

G over F that are conjugate in G(F̄ ) are already conjugate in G(F ). Thus if TH is an image of some TG, it is the

image of a TG contained in M .

If m ∈M(F ) set

DG/M (m) = |det(1− ad m)
∣∣
g/m
|1/2
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and

δG/M (m) =| det m
∣∣
n
|1/2,

where n is the Lie algebra of the unipotent radical of P . It follows readily from the definitions that H is also an

endoscopic group for M . We denote transfer factors for M by the addition of the superscript M . We can easily

arrange [7]

∆(γH , γ) = ∆M (γH , γ)DG/M (γ).

Thus to prove the lemma, we need only verify the existence of a smooth compactly supported function fM

on M(F ) such that

(2.1) DG/M (γ)Φ(γ, f) = Φ(γ, fM ).

However, it is well known that for this purpose we can take

fM (m) = cδG/M (m)
∫
K

∫
N(F )

f(k−1mnk)dndk,

with a suitable constant c.

Lemma 2.2. Assertion A is valid for regular unipotent classes O and all H.

This follows readiy from Theorem 5.5.A of [6].

Lemma 2.3. Assertion A is valid for the class O = {1} and all H.

Proof. Abbreviate Γ{1} to Γ1. By results of Howe, Harish-Chandra and Rogawski, Γ1 vanishes on tori that

are not anisotropic, and is a constant cG on all anisotropic tori. Moreover cG = cG∗ for compatible choices of the

measures. Thus it is clear that if H = G∗ then

Γκ1 = Γst
1 = Γst

1∗ ,

where 1∗ denotes the identity in G∗.

If H �= G∗ the lemma takes an even stronger form.

Lemma 2.4. If H �= G∗ then Γκ1 ≡ 0.

Proof. On tori that are not anisotropic this is a consequence of (2.1). On the other hand, for an anistropic

torus T the group E(T )  E(TG) is a quotient of X∗(Tad). Since H �= G∗ the character κ is not trivial on E(TG)

and ∑
δ

κ(δ)Γ1 = 0.
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Corollary 2.5. If G is anisotropic modulo its center then local transfer exists for all H.

With these scraps of general information at our disposal, we now turn to forms of SL(3), excluding, because

of the last corollary, anisotropic groups, and thus confining ourselves to quasi-split groups, so that we may take

G = G∗. We observe, moreover, that every endoscopic group H of G arises in a natural way from some H(sc) for

Gsc, and that it follows readily from [7] that if local transfer is possible for the pair Gsc, H(sc) then it is possible

for G,H . Thus we shall eventually obtain the following statement.

Theorem. If G is of type A2 then all pairs (G,H) admit ∆-transfer.

In treating forms of SL(3), we need only consider cuspidal endoscopic groups and subregular classesO. We

now begin to examine the possible endoscopic groups.

3. Endoscopic groups. Since G is simply connected, we confine ourselves to endoscopic data (H,H, s, ξ)

(see [6], (1.2)) for whichH = LH , so that ξ is an embedding of LH in LG. The most important element among

the data is then s. If we realize Ĝ in the usual way as PGL(3,C), then we may suppose that s is diagonal and

that the diagonal matrices form part of a Γ-splitting of LH . There are then three possibilities: (i) all eigenvalues

of s are equal; (ii) two are equal to each other but not to the third, (iii) no two eigenvalues are equal.

In case (i), the group LH is LG and H = G∗ = G. In case (ii), we may suppose that it is the first and third

eigenvalues that are equal. If α̂′ = x1 − x2, α̂
′′ = x2 − x3, and α̂′′′ = x1 − x3 are the usual roots of T̂ then

σα̂′′′ = α̂′′′ for all σ ∈ Γ. Thus σα̂′ = α̂′, σα̂′′ = α̂′′ or σα̂′ = α̂′′, σα̂′′ = α̂′. The second possibility can occur for

some σ if and only if G is a unitary group, and then

s =


 1 0 0

0 −1 0
0 0 1


 .

If no two eigenvalues of s are equal then T̂ = Ĥ and H is a torus T .

When discussing a given Cartan subgroup with an image TH it is convenient to fix a diagram:

TH −→ T←− T
↑
TG

Then T̂ and T̂G may be identified with T̂, the group of diagonal matrices in PGL(3,C). The group ΓT acts on T̂.

Lemma 3.1. If H �= G∗ then the group ΓT cannot contain all reflections in the Weyl group.

Proof. SinceH �= G∗, we have α̂(s) �= 1 for at least one rootα. However, if σα is the reflection corresponding

to α then there is another root β such that β̂ − σαβ̂ = α̂. Thus β̂(s) �= σαβ̂(s) and σα cannot lie in ΓT .
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Corollary 3.2. If G is an inner form of SL(3), H �= G∗, and T is anisotropic then ΓT is the cyclic subgroup

of the Weyl group of order three and H is a torus.

Proof. ΓT must be a proper subgroup of the Weyl group whose only fixed point in X∗(T ) is 0. Thus ΓT is

cyclic of order three. Since s is projectively invariant under ΓT and not a scalar, its three eigenvalues must be of

the form λ, ξλ, ξ2λ where ξ3 = 1, ξ �= 1. Thus Ĥ is a torus, and so is H .

Since T̂ has been identified with T̂ by means of the fixed diagram, the group X∗(T ) is identified with triples

of integers (x, y, z) whose sum is zero.

Corollary 3.3. If G is SU(3), T is anisotropic, and the element s has exactly two eigenvalues equal then we

may suppose that ΓT is one of the two groups:

(x, y, z)→ ±(x, y, z);(a)

(x, y, z)→ ±(x, y, z),±(z, y, x).(b)

Proof. Choose the diagram so that (1, 0,−1) is a root that is 1 on s.

Lemma 3.4. If G is SU(3) and H = T is an anisotropic torus, then ΓT is a group of order six containing

the cyclic permutations of order three. It can also be assumed to contain

(x, y, z)→ (−z,−y,−x).

Proof. The argument of Lemma 2.1 implies that ΓT contains no reflections. Thus the intersection of ΓT with

the Weyl group is trivial or cyclic of order three. If it is trivial then ΓT must be (x, y, z)→ ±(x, y, z), because T is

anisotropic, but then all eigenvalues of sT have the same square, so that two are equal. ThenH is not a torus. Thus

ΓT is of order six and, with a suitable choice of diagram, either contains (x, y, z) → (−z,−y,−x) or the direct

product of the cyclic subgroup of order three with the group of order two generated by (x, y, z) → −(x, y, z).

There is however no sT invariant under the second group that is not scalar.

There is one more lemma to be noted. Its proof is immediate.

Lemma 3.5. If H is cuspidal but is neither G∗ nor a torus, then G is SU(3) and s is of type (ii).

4. Recapitulation. Up to conjugacy there are only finitely many Cartan subgroups ofH overF . Suppose TH

is one of them, and tH its Lie algebra. As a consequence of a theorem of Harish-Chandra, there is a neighborhood

VH of 0 in tH such that for regular X ∈ VH and t ∈ F ∗, |t| < 1,

Γst
O(exp t2X) = |t|d−lΓst

O(expX),
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if O is a unipotent conjugacy class and d = dO is defined by the condition that 2d + l is the dimension of the

centralizer of any element in it. The integer l is the rank of H , and 2dI + l is the dimension of H .

A similar assertion is valid for the κ-germ. Thus if for a given unipotent class O in G(F ) there is a collection

of unipotent classes O1, . . . ,On in H(F ) and complex numbers a1, . . . , an such that for every Cartan subgroup

TH and every regular ray {tX | t ∈ F ∗} in tH we have

ΓκO(exp tX) =
n∑
i=1

aiΓst
Oi

(exp tX)

for t sufficiently small, then there is an equality of germs

ΓκO =
n∑
i=1

aiΓst
Oi

with

dOi = dO

for all i. Hence the theorem of Harish-Chandra allows us in principle to apply the methods of Igusa.

For forms of SL(3) only the subregular classes O are not dealt with by the remarks of Section 2; so we

suppose henceforth thatO is subregular. There are two lemmas to be proven. The first is simple to state.

Lemma 4.1. If H is a torus and O is subregular then

ΓκO ≡ 0.

Otherwise we may suppose that G is SU(3) and

s =


 1 0 0

0 −1 0
0 0 1


 .

Then the derived group of H is SL(2). Moreover dO = 1 ifO is subregular and dOi = 1 if and only if Oi = {1}.

Lemma 4.2. If G is SU(3), H is cuspidal but neither G∗ nor a torus, and if O is subregular then for some

a ∈ C

ΓκO = aΓst
1 .

Recall that Γst1 , a stable germ for H , has been calculated in [5]. It is 0 on Cartan subgroups whose intersection

with Hder is not anisotropic. If, however, T0 = TH ∩Hder is anisotropic then ΓT0 is a group of order two:

ΓT0 = {1, σ}.
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Take Q = QTH to be the form of P1 × P1 defined by the cocycle:

aσ : (x, y)→ (y, x).

Here x, y are inhomogeneous coordinates on P1 ×P1. Then, apart from a constant that is the same for all Cartan

subgroups, Γst
1 is the principal-value integral ([5])

(4.1) |α(X)|
∮
Q(F )

dxdy

|x− y|2

times

D−1
H (γH).

Here γG = eX and α is one of the two roots of Hder. Thus, we prefer to study

DH(γH)ΓκO(γH) = κ(inv(TG, γG))DG(γG)Σκ(δ)ΓO(γδG).

5. The method of Igusa. For a given TG the method of Igusa [4] yields (for forms of SL(3)) an asymptotic

expression for

DG(γG)Σκ(δ)ΓO(γδG) = Σκ(δ)DG(γδG)ΓO(γδG)

along rays. One begins with

Σκ(δ)DG(γδG)Φ(γδG, f),

which in the notation of [4] is F κ(γ, f), and applies Proposition 1.1 of [4].

The theorem of Harish-Chandra implies that the terms appearing in that proposition are 0 for r > 1 or β < 1.

For r = 1, β � 1 the factor Fr(θ, β, f) is a principal-value integral∮
E(θ,β)

hE |νE |

over the union E(θ, β) of the varieties E in E(θ, β). Observe that the factor Ar(M) appearing in Lemma 1.3 of

[4] has been incorporated into the function hE .

The morphism π of [4] maps E onto the closure ŌE of a unipotent orbit OE in G. Departing from the

notation of [4], we let Ê be the inverse image of OE in E. The set OE(F ) is a stable orbit Ost and thus a finite

union of conjugacy classes.

For a given β, the sum over θ

(5.1) κ(inv(T, γG))
∑
θ

θ(λ)|λ|β−1

∮
E(θ,β)

hE |νE |

is equal to

(5.2)
∑

dO=β−1

{∮
f(η)|η|

}
DHΓκO.
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It was observed to us by Thomas Hales that, when we are concerned with a particularO, we may as well suppose

that f vanishes on all unipotent orbitsO′ with dO′ � dO other thanO itself. This has two advantages at present,

when we are dealing with forms of SL(3) and a subregular O. First of all, the blow-up otherwise entailed by

Lemma 4.5 of [4] is unnecessary. Secondly, if β = dO + 1 and E ∈ C(θ, β) then, by Lemma 4.7 and 4.8 of [4],

necessarily O ⊆ OE . Hence in (5.1) the integrals may be taken over

Ê(θ, β) = ∪E∈C(θ,β)Ê.

MoreoverOE is smooth and, as we shall see, Ê(θ, β)→ OE is flat, so that (5.1) is equal to

(5.3)
∑
θ

θ(λ)|λ|κ(inv(T, γG))
∫
OE(F )

f(n)

{∫
En(θ,β)

hn|νn|
}
,

where En(θ, β) is the inverse image of n in Ê(θ, β).

To prove Lemma 4.1 it is enough to show that

(5.4)
∮
En(θ,2)

hn|νn| = 0

for the pertinent T and κ; to prove Lemma 4.2 it is enough to show that

(5.5)
∑
θ

θ(λ)|λ|κ(inv(T, γG))
∮
En(θ,2)

hn|νn| = a|α(X)|
∮
Q(F )

dxdy

|x− y|2 ,

a being a constant that depends on the endoscopic data, and perhaps on n and θ, but not on the particular T

under consideration. Moreover, γG = expλX and α is a root of Hder.

The remainder of the note is devoted to the explicit description of hn, νn, and the varieties En(θ, 2), based, of

course, on the construction of [4], and to the calculation of the principal-value integrals. Observe that if β(E) = 2

then, in the notation of [4], E is one of E′
1, E

′′
1 , or E6.

6. The fibres. If G is SL(3) then there is no supplementary blow-up, and the divisor E6 does not appear;

if G is SU(3) the divisors E′
1, E

′′
1 have no rational points and thus may be discarded. Therefore it is convenient

to treat the two cases separately, beginning with SL(3).

Associated to a subregular n over F in SL(3) are a distinguished point and a distinguished line in P2. The

point P is the range of n − 1 and the line l its null space. On the other hand, a Borel subgroup B of SL(3) is

determined by a point q on a line m in P2, and n ∈ B if and only if p ∈ m or q ∈ l. Let Mn be the join at p = l of

the variety Pl of points on l with the variety Pp of lines through p, so that Mn is the union of two projective lines

crossing normally at p = l, and parameterizes the Borel subgroups containing n.

There is a set-theoretical mapping of En = En(2), the inverse image of n in Ê′
1 ∪ Ê′

2, to Mn. To a point in

En there is associated a star and the Borel subgroup B = B(W+) in this star lies in Mn. To investigate En(2)
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over the inverse image of a neighborhood of B, we choose B0 to be defined by p ∈ l and B∞ to be opposite to B.

Then the inverse image is contained in

G× S1(B∞, B0)×N∞.

We may choose Xα′ , Xα′′ so that

n = expw0[Xα′ , Xα′′ ].

Observe that w0 �= 0.

If, as in Section 4 of [4], we take x, y, V as coordinates on S1(B∞, B0) then the coordinates z′i, z
′′
i figuring

in the diagram on p. 489 of [4] can be calculated in terms of x, y, V . The results can be summarized in a similar

diagram

(6.1)

W2

W3

W0

W5

V x
1− V

W4

W1

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
............
...........
...........
...........
...........
...........
...........
...

............
...........

............
...........

............
............

...........
............

............
...........

............
............

...........
............

...........
............

............
...........

............
............

...........
............

.

(1− V )y

x
V − 1

yV x

−y

Thus there is a coordinate x, attached to each of six rays r. The extended Weyl group, viz, the Weyl group together

with outer automorphisms, acts by replacing xr by

ε(ω)xω−1
r .

An element σ of the Galois group acts by replacing xr by

ε(σT )σ(xσ−1
T r).

Here ε(ω) is the determinant of ω, and ε(σT ) the determinant of σT . Thus the varieties S ′(B∞, B0),

S1(B∞, B0), R(B∞, B0) are all defined over F .

On the open set Y 11
1 (B∞, B0) of Section 4 of [4] we have

(6.2) uU = b(λ)yV w, νU = c(λ)xV w.

If

n′ = expuXα′ exp vXα′′ expw[Xα′ , Xα′′ ]

and if

n = (n′)n∞ , n∞ ∈ N∞
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then m ∼ B′ = Bn∞
0 is the image in Mn and w = w0. The coordinates u, v serve as coordinates of n∞ or as

coordinates on Mn. We conclude from Equation 6.2 and Equation 4.6 of [4] that En → Mn is a morphism, and

that it is smooth off V = 0.

The condition V = 0 is more invariantly defined as the condition that the point in S1 is defined by a point of

type B3 (see Lemmas 3.13, 3.14 of [4]). Since the Bj are cyclically permuted by the Galois group, no such point

has coordinates in F and En → Mn is smooth at every point of En(F ). Moreover, as we shall see in the next

section, κ′
1 �= κ′

2. Consequently

(6.3)
∮
En(θ,2)

hn|νn| =
∮
Mn

{∮
Fm

km|ν′m|
}
|ν′′|.

Here ν′′ is any non-vanishing form on the base and km, ν
′
m are determined by restriction and division.

The conditions for rationality are deduced from the diagram and the equation following (3.4) of [4]. For the

F -valued points in Fm, the coordinate V is neither 0, 1, nor∞ and the map that sends a point to (−1, V, 1− V )

or simply to V identifies Fm(F ) with the P1 associated to elements of trace zero in the cyclic cubic extension K

associated to the torus T .

Passing to SU(3) we observe first that if n ∈ G(F ) is subregular then there is a unique Borel subgroup B0

over F containing it. If B∞ is defined over F and opposed to B0 then En = En(2) is contained in

G× S1(B∞, B0)×N∞.

The only pertinent divisor E is now E6; it is obtained by a blow-up along the intersection of E ′
1 and E′′

1 . Hence

it fibres over this intersection with fibre P1. The fibre En is contained in n× S1(B∞, B0)× 1 and the projection

on S1(B∞, B0) of its intersection In with E′
1 ∩ E′′

1 is (see Section 3 of [4])

S′(B∞, B0 × T0U)− 0  R(B∞, B0).

Let ρ be the element of the Galois group such that

ρT : (x, y, z)→ (−z,−y,−x)

as given by Lemma 3.4. Thus a condition for rationality is that

(6.4) ρ(V − 1) · (V − 1) = 1,

so that V − 1 = ρ(R)R−1. The map that sends a point with coordinate V to

(6.5) R(−1, V, 1− V )

identifies In(F ) with the P1 defined by elements of trace zero.
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In the case of Corollary 3.3 (a), the element ρ does not exist, and the condition for rationality to be imposed

on V is that V ∈ F . In the case of Corollary 3.3 (b), the number R can be taken to be fixed by the element σ with

σT : (x, y, z)→ −(x, y, z),

and the coordinate V lies in K0, the fixed field of σ.

It is easy to see that

(6.6)
∮
En(θ,2)

hn|νn| =
∮
ln

{∮
Fx

kx|ν′x|
}
|ν′′|,

x denoting a point of In, and Fx the fibre over x. Observe that at a point of In where V is not 0, 1, nor∞we may

use as coordinate z = x/y. The condition for rationality is somewhat elaborate to describe.

Think of the chambers, Wi, 0 � i � 5, as oriented in the counterclockwise direction for i even and in the

clockwise direction for i odd. Every element of the extended Weyl group takes W0 either to a Wi or to a −Wi,
the chamber Wi with the opposite orientation. We assign to a chamber a function ϕ(Wi) of V as follows:

ϕ(W0) = 1;ϕ(W1) =
−1
V

;ϕ(W2) = V −1(1− V )−1;

ϕ(W3) = (V − 1)2;

ϕ(W4) = −V (1 − V )−2;ϕ(W5) = V (1− V )−1;

ϕ(−Wi) = ϕ(Wi)−1.

The positive chamber is W0 = W+. The condition for rationality of a point in In with coordinate V is that

(6.7) ρ(ϕ(σTW ))ϕ(ρTW ) = ϕ(ρTσTW ) ∀ρ, σ,W.

The condition for rationality of a point on the fibre over a rational base point is that

(6.8) σ(z) = ϕ(σTW+)zεσ ∀σ.

Here εσ is 1 if σ fixes E and −1 if it does not. The field E is the quadratic field over which the hermitian form

giving the group is defined.

7. The forms. It is sufficient to calculate them where V is finite and not 0 nor 1. Beginning with the form

νn, we make use of Lemmas 2.8 and 2.12 of [4]. We may suppose that the form ∧ϕi appearing in Lemma 2.8 is

ωT ∧ du∧ dv ∧ dw. Then the form ω0 on Y 0 used to define F κ(γ, f) is the product of dλ∧ du∧ dv ∧ dw with the

restriction of ∧ωj to N∞.

The form on N∞ need not be investigated further. To describe the first factor in other coordinates we need

to calculate the jacobians:
∂(λ, u, v, w)
∂(u, v, V, w)

;
∂(λ, u, v, w)
∂(x, y, V, w)

;
∂(λ, u, v, w)
∂(z, y, V, w)

.
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This is a straightforward matter. If G = G∗ is so defined that we may take B∗ to be the group of upper-triangular

matrices and T ∗ to be the group of triangular matrices, then the diagram (2.0) of [4] identifies the tangent space

to the curve C with a line

F


α 0 0

0 β 0
0 0 γ


 .

We choose α, β, γ so that λ is also a natural coordinate on the line; then b = b(0) = α − β, c = c(0) =

β − γ, d = d(0) = α− γ. By assumption, none of these numbers is zero. The three determinants are the product

of a factor of the form 1 + E(λ), E(0) = 0, with

− uv(α− γ)
(α− β)(β − γ)V 2w

; AxyV 2w3; Azy3V 2w3.

Here

A = − (α− β)(β − γ)(α− γ)
((α − γ)− V (β − γ))4

= − (α− β)(β − γ)(α− γ)
U4

.

Thus the form γ′
m that appears in (6.3) may be taken to be (see Section 1 of [4])

(7.1) −(α− β)(β − γ)(α− γ)
dV

U2
= (α− β)(α − γ)

dU

U2
,

for the form ν appearing on p. 469 of [4] is the product of this with wv−1 (at the divisor u = 0) or wu−1 (at the

divisor v = 0) and the invariant form on N∞.

It is convenient to choose (α0, β0, γ0) = (α0, σ(α0), σ2(α0)) of trace zero and linearly independent of

(c,−d, b), and to set

U1 =
d− cV

γ0 + β0V
.

Then U1 takes rational values at rational points, and (7.1) becomes

(7.2) −(α− β)(β − γ)(γ − δ)(cγ0 + dβ0)
dU1

U2
1

.

On the divisor E6 the prescription of Section 1 of [4] leads to the form

(7.3) (α− β)(β − γ)(γ − α)
dV

U2
· dz
z

on the fibre, the form on the base being the product of wdw with the invariant form on N∞. Thus we have the

form (7.2) on In and the form dz/z on the fibre Fx. If the endoscopic group is a torus, we may once again use the

coordinate U1. At a rational point,

U1 ∈ E and U1 = U1(U1 − 1)−1,

the bar denoting conjugation over F .

It is also convenient to replace z by

z1 =
z

V − 1
,
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for then the condition for rationality becomes z1 ∈ E, z̄1 = z−1
1 .

8. The functions. The functions hn are essentially the functions on mκ of Section 2 of [4] and are to be

calculated as in Section 5 of that note; or rather as in Section 5.4 and Section 5.5 of [6]. Since we have multiplied

by DH(γH), the function mk(e(·)), of [4] becomes the function ∆(·) of [6]. We calculate with ∆(·), obtaining

thereby not the functions hn of (5.4) and (5.5) but the functions

κ(inv(T, γ)hn,

without for the moment the factor Ar(M). Since we are close to the identity, ∆(·) may be taken to be

(8.1) ∆I(γH , π(·))∆II (γH , π(·))∆1(γH , π(·)).

On putting the first and third factors together as in Section 5.5 of [6] we obtain the value of sT on the cocycle

(8.2) σ → ζσ =
ρ∏

1,σ

[ −aα
z(σ, α)

]αν

.

We choose, as in Section 1,

aα = α(γ)1/2 − α(γ)−1/2,

so that the second factor of (8.1) becomes 1. (Notice that the symbols α, γ have two conflicting meanings.)

We begin with SL(3), and the endoscopic groups given by anisotropic tori. Then ΓT is cyclic of order three,

and we take the generator given by

σ : (α, β, γ)→ (β, γ, α).

It is enough to calculate the cocycle (8.2) on this generator. We write σ = ω ′′ω′, and find that the roots appearing

in (8.2) are α′′ and α′′′ = α′ + α′′. The factors z(σ, α) are calculated in terms of the coordinates in (6.1). Thus

ξσ =
[−aα′′(V − 1)

x

]α̂′′ [−aα′′′

yV

]α̂′′′

.

In terms of the coordinates u, v this is

ξσ =
[−aα′′(V − 1)V wc(λ)

vU

]α̂′′ [−aα′′′wb(λ)
uU

]α̂′′′

.

Since λ is close to 0, we may replace c(λ) by c(0) = c and b(λ) by b(0) = b. Moreover, on a fibre over a point of

C close to the identity, we may replace aα′ , aα′′ , aα′′′ by λb, λc, and λd respectively, so that ζσ becomes

[−c
b

(V − 1)u
]α̂′′ ]−d

c

v

V

]α̂′′′

.
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Let K be the splitting field of T . The standard identification

(8.3) F×/NmK/FK
×  H1(T )

is obtained by choosing for a given k ∈ F ∗ a triple e, f, g in K∗ with efg = k and then taking the cocycle whose

value at σ is

(8.4)




e
σ(g)

f
σ(e)

g
σ(f)


 .

Of course, T is identified with the group of diagonal matrices of determinant 1. The contributions of u, v, w to ξσ

may be factored out as a cocycle of this type with e = v, f = uv, g = 1, for u, v, w lie in F×.

The identification (8.3) allows us to identifyκwith a character ofF×, necessarily non-trivial. The contribution

of u, ν, w to ∆(·) is then

κ(uν2) = κ(u)κ(ν)−1.

Thus κ′
1 = κ−1, κ′′

1 = κ. In particular, κ′
1 �= κ′′

1 .

The remaining contribution to ζσ is more disagreeable. Fortunately, we need not calculate it, for it is

independent of u, ν, w, as is the form (7.2). Thus the inner integral appearing in (6.3) becomes∮
Fm

km(ν′m) = cκ2(ν)

for θ = κ−1, ∮
Fm

km(ν′m) = cκ−2(u)

for θ = κ. The constant c does not depend on n. Then the integral over the base becomes, apart from this constant,

|w|
∮

P1
κ2(ν)

|dν|
|ν| = |w|

∮
P1

κ−2(u)
|du|
|u| = 0.

(These simple principal values are calculated in Lemma 1.C of [5].)

We observe in passing that when we are dealing with table orbital integrals, the cocycle is no longer pertinent

because κ = 1. Then the fibre integrals become essentially∮
P1

|dU1|
|U1|2 = 0.

However, the formula (6.3) is no longer valid, for κ′
1 = κ′

2 = 1. Now the calculation must be made as in the

appendix. The total contribution of the term (A.3) is 0, but the total contribution of the terms (A.2) is given by an

integral of the form (A.4).

Lemma 4.1 is now proven for groups of type SL(3). We turn to SU(3) beginning with endoscopic groups

that are tori. The following lemma is easy and simplifies the calculations.
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Lemma 8.1. If G is SU(3) and H is an anisotropic torus, then the restriction map

H1(Gal(K/F ), T (K))→ H1(Gal(K/E), T (K))

is injective.

The fieldE appearing here is the quadratic extension of F associated toG. To prove the lemma, one observes

that the order of H−1(Gal(K/F ), X(T )) clearly divides three, and then appeals to Tate-Nakayama theory.

This lemma allows us to calculate the value of κ on the cocycle (8.2) as before, except that u and v are no

longer the appropriate coordinates. They are to be replaced by z1, y. Thus if σ is chosen in the same way, then

ζσ =
[−aα′′

z1y

]α̂′′ [−aα′′′

yV

]α̂′′′

.

When λ is close to 0, we may replace aα′′ by λc, aα′′′ by λd, and express λ with the help of (4.3) of [4] to obtain

(8.5) ζσ =
[−cV (V − 1)yw

U

]α̂′′ [−dz1(V − 1)yw
U

]α̂′′′

.

If ρ is such that ρT : α′, α′′, α′′′ → α′′, α′, α′′′ then the rationality conditions for y are:

σ(y) = yV ; ρ(y) = zy or ρ(yR−1) = z1yR
−1.

Since z̄1 = ρ(z1) = z−1
1 , we can find r ∈ E× such that ρ(r) = z1r. Let y = y0Rr. If K0 is the fixed field of ρ then

y0 ∈ K0 and

σ(y0) = y0rRσ(rR)−1V = y0Rσ(R)−1V.

Choose one such y0. Then all others are of the form ty0, t ∈ F . It is t rather than y that is the local coordinate

defining E6.

The contribution of t to (8.5) is of the form (8.3) with e = t−1, f = t−2, g = 1. Thus κ6 = 1 and the θ

appearing in (6.6) are of order two.

The inner integral of (6.6) is taken over the projective line with coordinate z1 and rationality condition

z̄1 = z−1
1 . The dependence of (8.5) on z1 is through z1 and r, and

σ →

 z1r

r
z−1
1 r−2




is of the form (8.4) with e = z1r, f = z1r
2, g = 1, efg = z2

1r
3.

K is the extension K = K0E of F , and there is a diagram
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K0

.................................................................................

.................................................................................

.................................................................................

.................................................................................

K

F

E

The character κ may be regarded as a non-trivial character on the group of order three,

E∗/NmK/EK
∗,

and

z1 → κ(z2
1r

3) = κ(z1)−1

as a character on

{z1 ∈ E∗ | z̄1 = z−1
1 } = E1.

Since

λ = z1y
2V (V − 1)U−1w

the procedure of Section 1 of [4] leads to an inner integral in (6.6) that is the product of a function on the base and

(8.6)
∮

P1
θ(r2z1)−1κ(z1)−1 |dz1|

|z1| .

This is the integral of θ(r2z1)κ(z1)−1 over the group E1 with respect to the Haar measure. To formulate the result

of the procedure this way it has been necessary to extend θ from F× to E×.

Observe that θ(r2z1) is independent of the choice of r, and that it is a character on E1 of order two. Thus to

show that (8.6) vanishes we need only verify that κ is not trivial on E1. By Lemma 3.4 the field E is the maximal

abelian subfield of the Galois extension K . Thus, by local classfield theory

NmK/FK
× = NmE/FE

×.

Moreover,

[E×;NmK/EK
×] = 3.

Consequently

[E1 : E1 ∩NmK/EK
×] = 3,

and κ is not trivial on E1.

It remains to treat the case that H is cuspidal but not a torus. We may suppose that ±α′′′ are the roots

that take the value 1 on s. Only anisotropic tori are to be considered. According to Corollary 3.3 there are two

possibilities. Let σ now be the element such that

σT : (x, y, z)→ −(x, y, z).

In case (b) let K0 be the fixed field of σ.
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Lemma 8.2. The restriction map

H1(Gal(K/F ), T (K))→ H1(Gal(K/K0), T (K))

is injective.

Let ρT : (x, y, z)→ −(z, y, x). Then under the restriction map

(8.7) H−1(Gal(K/F ), X∗(T ))→ H−1(Gal(K/K0), X∗(T ))

the element µ = (1,−1, 0) in X∗(T ) is sent to

µ + ρµ = (1, 0,−1).

The group on the left of (8.7) is of order two and is generated by the class of µ∗, the group on the right is of order

four and the class of (1, 0,−1) is not zero.

In case (a) the field K0 is F and H1(Gal(K/K0), T (K)) consists of all

(8.8)


 e

f
g




with e, f, g ∈ K×
0 , efg = 1, e, f, g modulo NmK/K0K

×.

Consider the number
−bw
V d/c

.

Since σ(b) = −b, σ(c) = −c, σ(d) = −d and σ(w) = −w, it belongs to K0 in case (b) and to F in case (c).

Moreover in case (b), ρ(w) = −w and

ρ

( −bw
V d/c

)
= cw

(
V

V − 1

)−1 (
−d

b

)
= (V − 1)

( −bw
V d/c

)
.

Thus in both cases we may take

R =
−bw
V d/c

.

The two rationality conditions are:

V1 = RV ∈ F ; z̄1 = z−1
1 .

The third is

σ(y) =
x

1− V
= −z1y,

and in case (b)

ρ(y) = x = zy = z1(V − 1)y.
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Thus

−σ(yR−1) = ρ(yR−1) = z1yR
−1.

Choose r �= 0 such that

σ(r) = ρ(r) = z1r

and a �= 0 such that

ρ(a) = a = −σ(a).

Then

y = atrR,

and t ∈ F is the correct local coordinate at y = 0. Notice that a/d ∈ F , indeed, that a can be taken equal to d.

Since σT has changed, the formula (8.5) for the value of the cocycle (8.2) at σ has to be modified. It becomes

ζσ =
[ −aα′

(1− V )y

]α̂′ [−aα′′′(1 − V )
V x

]α̂′′′ [
aα′′

y

]α̂′′

.

For λ close to 0, this may be replaced by

(8.9)
[
bz1V yw

U

]α̂′ [−d(1− V )yw
U

]α̂′′ [
cz1ywV (V − 1)

U

]α̂′′

.

The characters on H1(Gal(K/K0), T (K)) are given by choosing two characters η1, η2 of

K×
0 /NmK/K0K

×

and then sending the class given by e, f, g to η1(e)η2(g). It is the character κ defined by s (or its extension, in case

(b)) that is of concern. Since

s =


 1 0 0

0 −1 0
0 0 1




and the Tate-Nakayama isomorphism sends (l,m, n) to the class of (8.8) with

e = hl, f = hm, g = hn, h ∈ K×
0 , h /∈ NmK/K0K

×,

the character κ corresponds to η1 = η2 �= 1 in case (a). In case (b) the injection (8.7) is such that we must have

η1 �= η2 in order that κ not be trivial, for the class of (l,m, n) = (1, 0,−1) is in the image of (8.7).

Since the contribution of t to (8.9) is of the form (8.8) with e = t2, f = 1, g = t−2, the character κ6 = 1, and

the θ that appear in (6.6) are quadratic. The contribution of z1 is through z1 and r and is given by

e = z1r
2 = rσ(r), f = 1, g = e−1.
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Thus the inner integral of (6.6) is, as before, essentially the integral over the group E1 of the character

θ(r2z1) = θ(rσ(r)).

If this is not to be 0, then θ must be 1 or the character η associated to the quadratic extension E/F . Suppose

henceforth that this is so. Then we may replace the inner integral in (6.6) by 1.

For the integral over the base it is convenient to introduce the variable

V1 = −bw · V

V − d/c
= bcw

V

U
= RV.

According to (7.3) the pertinent form to take on the base is still (7.1). In terms of V1 it becomes w−1dV1. The

factor w−1 may be incorporated into the integral over the unipotent orbit, and therefore ignored, although it will

in fact be cancelled in the next section. Moreover,

λ = xy
V

U
w = z1(atrR)2b−1c−1V1(V − 1)

so that the function to be integrated is the product of

(8.10) θ−1(a2R2(V − 1)V1b
−1c−1)

with the value of κ on the cocycle given by

(8.11) σ →
[ −aRV1

c(1− V )

]α̂′ [−adR(1− V )V1

bcV

]α̂′′′ [
aRV1

b

]α̂′′

.

When expressing (8.11) in the form (8.8) the factors R2 and V 2
1 may be dropped, as may −a2 = aσ(a) or

−c2 = cσ(c) and −b2. This yields

e =
d

b
V −1, f =

c

b
(V − 1), g = − c

d
· V

1− V
.

Consider first the case that θ is η. Then we obtain in case (a)

(8.12)
∮

η(V1)|dV1|.

To treat the case (b), we observe that

η1η2 = η ◦NmK0/F ,

and that

η1(e)η2(g) = η1(e)η2(e) = η

(
d2

bc

)
η(NmK0/FV ),

because

bρ(b) = bc, dρ(d) = d2.
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Moreover

NmK0/F (V − 1) = (V − 1)ρ(V − 1) = 1

and

NmK0/FV = (V/(V − 1)R)2R2(V − 1) ∈ (F×)2R2(V − 1).

Thus we again obtain (8.12). It is one of the simple principal-value integrals calculated in Lemma 1.C of [5] and

equals 0. Hence we may take θ = 1.

Until now, we have been able to ignore the factor Ar(M) of Lemma 1.3 of [4] that is to be incorporated into

hE . However, to obtain the correct expression for (5.5), the integral (8.12) has to be multiplied by Ar(M). Since

a6 = 2 and the principal part of (1− t2)−1 at t = 1 is (1 − t)−1/2, the procedure of [4] yields

Ar(M) =
1
2
.

9. Final calculations.| To put the left side of (5.5) in a form that can be compared directly with the right,

we first observe that (8.12) is also 0 when η is replaced by 1. Thus we may add a constant times

1
2

∮ ∮ |dz1|
|z1| |dV1|

to our integral representation of (5.5). This yields |λ| times

(9.1) |bcd|
∮ ∮ |dz1|

|z1|
dV

|U |2 .

The |w| that appears in the change of variables has cancelled the factor |w|−1 from the previous section. The

integral is, however, to be taken over

(9.2)
{

(z1, V ) : z1 ∈ E1,
b

c
(V − 1) ∈ NmE/FE

×
}

in case (a), and over

(9.3) {(z1, V ) : z1 ∈ E1, σ(V ) = V, ρ(V − 1) = (V − 1)−1, bcd−2V ρ(V ) ∈ NmE/FE
×}

in case (b). Thus we have implicitly extended, but in a rather simple way, the notion of principal value. Since

|λd| is the factor |α(X)| occurring on the right side of (5.5) we suppress the |d| and show that what remains is a

constant times

(9.4)
∮
Q(F )

dxdy

|x− y|2 .

The symbols x, y are now free of any earlier meaning and refer solely to coordinates on Q. Choose δ ∈
E×, δ /∈ F× and set

x′ =
x− δ

x− δ̄
, y′ =

y − δ

y − δ̄
.
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Then the rationality conditions on s′, y′ are

(9.5)
σ(x′) = y

′−1, σ(y′) = x′
′−1

ρ(x′) = x
′−1, ρ(y′) = y

′−1.

In case (a), the second condition is replaced by x′, y′ ∈ E.

Choose µ ∈ E1 and consider the morphism

(9.6) z1 = µx′y′, W1 =
c

b
(V − 1) =

x′

y′
.

It is not defined at x′ = y′ = 0 or x′ = y′ = ∞. So we blow up these two points. Since they are not rational

this has no effect on (9.4). The morphism is a double covering ramified along the two curves introduced by the

blow-up. A simple calculation shows that the form

dx′dy′

(x′ − y′)2

is the pull-back of

−1
2
bc
dz1

z1

dV

U2
.

It is evident that the rationality conditions on x′, y′ imply that

z1 ∈ E, z̄1 = z−1
1 , σ(V − 1) = V − 1,

and that ρ(V − 1) = (V − 1)−1 in case (b). In case (a), V ∈ E.

In case (a)
x′

y′
= x′x̄′.

Thus we can solve (9.6) for x′, y′ if and only if the condition (9.2) is satisfied and

z1 ∈ {µx′/x̄′|x′x̄′ = W1}.

Hence if we let µ run over a set of representatives for the cosets of (E1)2 in E1, the equations (9.5) have exactly

two solutions. (Points with S1 = 0 or∞ are exceptional.) We conclude that (9.1) is equal to |2|N times (9.4) if

2N = [E1 : (E1)2].

The conditions on V in (9.3) are:

σ(V ) = F ; W1 = cV ρ(cV )−1; cd−1V ∈ NmK/K0K
×.

If

cd−1V = tσ(t), t ∈ K×
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and if we set

x′ = utρ(t)−1, y′ = σ(x′)−1,

then the second set of conditions in (9.5) amounts to

ρ(u) = u−1,

and the equations (9.6) become

z1 = µuσ(u)−1tσρ(t)ρ(t)−1σ(t)−1; σ(u) = u−1.

If we again let µ run over a set of representatives for the cosets of (E1)2 in E1 this equation has a solution unique

in µ and in u up to a sign for a given z1 ∈ E1.

Conversely, if we can solve the equations (9.6) subject to (9.5) then µ is uniquely determined and

W1 = eρ(e)−1σ(e)σρ(e)−1.

It follows that V ∈ K0 and that (V − 1)ρ(V − 1) = 1, so that

W1 = cV ρ(cV )−1

and cV e−1σ(e)−1 is fixed by ρ. Since it is also fixed by σ, it lies in NmK/K0K
×
0 and so does cV . We conclude

once again that (9.1) is equal to |2|N times (9.4).

Appendix I. Although it would be out of place to elaborate on the formal properties of the principal values

of [4], there is one calculation that will be useful. Before describing it, we observe that in the definition of A(x)

in Section 1 of [4], the coefficients cj should be divided by (j − 1)!

Suppose that in a coordinate patch U defined by

|µi| � q−m, 0 � i � r,

we have:

λ = αµa00 µ1µ2; ω = Wµb0−1
0 µ1µ2 ∧ dµi; f = λκ0(µ0)κ(µ1µ2).

Suppose also that b0 �= 2a0 or that κa0 �= κ0. We take Dr = Dr(κ, 2) and calculate

(A.1)
∮
D1∩U

h1|ν1|,

in the sense of Section 1 of [4], using the notation of [5] for a principal value.

It is the sum of two terms. The first is obtained by setting

ω′ = W (µ0, 0, 0, µ3, · · ·)α−βµb0−2a0−1
0 dµ0 ∧ dµ3 ∧ · · ·

f ′ = (lnq|αµa00 |)(λκ0(µ0)κ−a0(µ0)κ−1(α))
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and taking

(A.2)
(

1− 1
q

) ∫
D2∩U

f ′|ω′|.

The second is obtained by setting:

λ′′ = µ1µ2;

ω′′ = µ1µ2dµ1 ∧ dµ2;

f ′′ =
∫

λ|W ||α|−2|µ0|b0−2a0−1κ0(µ0)κ−a0(µ0)κ−1(α) × |dµ0 ∧ dµ3 · · · |;

and then taking

(A.3)
∮
D′′

1 ∩U ′′
h′′

1 |ν′′1 |,

the data for this integral being defined by λ′′, ω′′, f ′′.

This is of course an easy calculation, for in the present circumstances the only cj that is not 0 is c2 and c2 = 1.

Then

A1(y) = 1− y

and the decomposition of (A.1) into the sum of (A.2) and (A.3) is given by

1−m−M1 −M2 − a0m(µ0)

= (−m− a0m(µ0)) + (1−M1 −M2).

In the text, the integral to which the term (A.2) leads is

(A.4)
∮
P 1

ln|x− ξ| dx|x|2 ,

in which ξ lies in a cubic extension of F . If, for example, the extension if ramified then, with no loss of generality,

we may suppose that the order of ξ is r + n with r equal to 1/3 or 2/3. Then the integral is calculated to be

−rq−n−1 +
q−n

q − 1
=

q−n

q − 1

(
(1 − r) +

r

q

)
.

In the context of Section 8, this is to be compared with Section 10 of [8].

Finally we note two more corrections to [4]. The exponent n′ should be removed from the middle term of

(3.4) and “non-zero” in Lemma 3.13 (ii) should be “zero”.

Appendix II. Although not necessary for proving the existence of the transfer it is sometimes useful [9] to

know the value of the constant appearing in Lemma 4.2. Of course, the constant only has a meaning after the

measure defining the integral over the class O has been fixed.
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If, to be explicit, we take G to be the group attached to the hermitian matrix


 0 0 1

0 1 0
1 0 0




and the quadratic extension E, then every subregular conjugacy class over F has a representative of the form

n(w) =


 1 0 w

0 1 0
0 0 1


 , w ∈ E×

with w + w̄ = 0, the bar denoting conjugation of E over F . It is easy to see that n(w) and n(aw), a ∈ F ∗, are

conjugate over F if and only if a ∈ NmE/FE
×.

We take N∞ to be the group of lower-triangular unipotent matrices in G. Then

(n∞, n(w))→ n−1
∞ n(w)n∞, n∞ ∈ N∞(F ), w ∈ E×, w + w̄ = 0,

yields a parameterization of a dense open subset of the manifold of F -valued points on the variety of subregular

unipotent elements. If, as in Section 7, we take the measure dn∞ on N∞(F ) to be that associated to ∧ωj , then

∫
f(n−1

∞ n(w)n∞)|w|dwdn∞

defines a G-invariant integration on the manifold of subregular unipotent elements over F and thus on each

G-orbit in it. We take

aO(f) =
∫
O
f(n−1

∞ n(w)n∞)|w||dw||dn∞|.

It is best to observe that the absolute value on E is to be taken to be an extension of the normalized absolute value

on F .

The form νn, n = n(w), appearing in (5.5) is then that given by (7.3). Thus, according to the discussion at

the end of Section 7, the end of Section 8, and Section 9, the constant a appearing in (5.5) and therefore in Lemma

4.2 is |2|N .

Lemma. For any local field of characteristic zero, |2|N = 1.

Since

N =
1
2
· [E1 : (E1)2]

the lemma is clear for a field with odd residual characteristic, for then N = 1. If the residual characteristic is

even, let 2r be the number of elements in the residue field, and let 2 = ω̃k where ω̃ is a uniformizing parameter.

Let Ej , j � 2, be

{1 + aω̃j−1|a integral}.
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Since (1 + aω̃j)2 = 1 + 2aω̃j + a2ω̃2j , the index

[Ej : Ej+1(Ej ∩ (E1)2)]

is equal to 1 for j odd and different from 2k + 1 and for all j greater than 2k + 1. If j is even and j � 2k it is 2r,

and it is 2 for j = 2k + 1. The lemma follows.
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