
Algebro-geometric aspects of the

Bethe equations†

Dedicated to the memory of Feza Gürsey

Robert P. Langlands and Yvan Saint-Aubin

Although the Ansatz introduced by Bethe in 1931 ([B]) has been exploited repeatedly by physicists, who
have adapted it successfully to a variety of problems, it has never been given a careful mathematical treatment.
As a result there is often a disquieting imprecision in its formulation that discourages a resolute pursuit of its
analytical consequences; moreover, and more to the point here, its algebraic charm has been little appreciated.
Two years ago, the present authors undertook a study of the equations with standard techniques from algebraic
geometry. The enterprise, rewarding as it has been, has taken more time and energy than expected. Complete
proofs, even adequate understanding, have cost a great deal of effort and patience, and there are still gaps, but the
project is nearing completion, and in this paper we describe, albeit in a somewhat provisional form, the principal
features of the treatment. Details will appear in [BL].

There is no need here to recall the physical origins of the eigenvalue problem treated by Bethe. The
mathematical problem is that of finding the eigenvalues and eigenvectors of an operator on a space of dimension
2N . This space is

X = ⊗N
1 C

2.

We take as basis of C2 two vectors u+ and u− and as basis of X the vectors

um1,...,mr = ⊗ui, {m1, . . . ,mr} ⊂ {1, . . . , N}

where ui = u+ if i ∈ {m1, . . . ,mr} and ui = u− otherwise. Thus the index attached to an element of the basis
is a sequence of N signs. It is to be thought of as a cyclic sequence, so that each sign has two neighbors, those of
the sign at position 1 being those at positions 2 and N . A typical vector will be written

N∑
r=0

∑
am1,...,mrum1,...,mr =

∑
xr ,

the inner sum running over all sequences with r positive signs. There is a corresponding decomposition X =
⊕N

r=0Xr .
The operator H whose eigenvalues are to be calculated leaves each of the spaces Xr invariant and on Xr is

given by
Hr : xr → x′r

with
a′m1,...,mr

=
∑

(am1,...,mr − am′
1,...,m

′
r
).

The sum runs over all sequences {m′
1, . . . ,m

′
r} that can be obtained from the sequence {m1, . . . ,mr} by in-

terchanging two adjacent and opposite signs. For example, − − − − + + −− allows just two possibilities:
− − − + − + −− and − − − − + − +−. Recall that adjacency is to be interpreted in the cyclic sense. For Hr

there are
(
N
r

)
eigenvalues and eigenvectors to be found.

† First appeared in Strings and Symmetries, Proc. of Gürsey Memorial Conference, Istanbul, Springer-Verlag
(1995).
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If z = (z1, . . . , zr) with zi complex and m = (m1, . . . ,mr) we set zm =
∏

k z
mk

k . If P is a permutation of
the set {1, . . . , r} we set Pm = m′, m′

k = mP−1k. The Bethe Ansatz is to search for eigenvectors of the form

(1) am1,...,mr =
∑
P

zPmwP

The sum runs over all permutations of {1, . . . , r}. The complex number wP is obtained from a collection of
complex numbers wk,l, k 	= l, with wk,l = w−1

l,k :

wP =
∏
k>l

P−1k<P−1l

wk,l.

Bethe, less preoccupied with the algebro-geometric aspects of the equations, chose as variables fk and ϕk,l with
zk = exp ifk, wk,l = exp iϕk,l. The formula (1) for the eigenvectors is moreover not quite that of Bethe; we have
multiplied his eigenvectors by appropriate constants to obtain more symmetric formulas.

The vector (1) will be an eigenvector (or zero) if the points z and w = (wk,l) satisfy the equations

(2)
wk,l = −zkzl − 2zk + 1

zkzl − 2zl + 1
, k 	= l,

zNk =
∏
l �=k

wk,l.

If it is not zero, the associated eigenvalue is

2ε =
r∑
1

1 − cos fk =
r∑
1

1 − zk + z−1
k

2
.

It turns out that these equations evince in algebro-geometrical respects an inconvenient degeneracy. Fortu-
nately this degeneracy is absent for a more general eigenvalue problem, a simple variant of that associated in
[TF] to the six-vertex model. The equations (2) are replaced by

(3)
wk,l = −zkzl − 2∆zk + 1

zkzl − 2∆zl + 1
, k 	= l,

R(zk) =
∏
l �=k

wk,l.

∆ is a parameter whose value will at first be chosen to be generic. The functionR is a rational function of degree
N with zeros α1, . . . , αN and poles β1, . . . , βN . The αi are arbitrary but

(4) βi = 2∆ − 1/αi = A(αi).

This equation defines the fractional linear transformation A. The equations (3) can be studied for generic values
of ∆ and generic (with respect to the constraints imposed) R.

We recall that the term generic simply means that the pertinent parameters (at present ∆ and the N + 1
parameters needed to specify R, for example α1, . . . , αN and R(∞), thusN + 2 in all) are required to lie outside
a countable collection of algebraic subvarieties of dimension less than N + 2. If we can calculate eigenvectors
and eigenvalues for generic values of the parameters then, taking limits, we can calculate them for any values.
Generic values of the parameters are thus values that do not satisfy any of some countable collection of non-
trivial equations, the equations themselves to be determined (explicitly or implicitly) in the course of analyzing
the problem. For example, in the present problem the zeros and poles of R are to be distinct and the matrix of A

(5)
(

2∆ −1
1 0

)
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may not have eigenvalues that are roots of unity. Thus ∆ may not take any of the values cos(aπ/b), a/b rational,
although these are far from the sole constraints.

There are several trivial, yet basic, observations to be made about the equations (3). First of all, if Q is a
permutation and

Q(z)k = zQ−1k, Q(w)k,l = wQ−1k,Q−1l

then (Q(z), Q(w)) is a solution whenever (z, w) is. Since

∑
Q(z)PmQ(w)P = w−1

Q

∑
zPmwP ,

the associated eigenvalue is not changed and the associated eigenvector not changed in any essential way.
Moreover if Q is simply an interchange of two integers k and l then wQ = wk,l . Thus whenever two coordinates
zk and zl are equal wQ = −1; the vector defined by (1) is zero; and the solution of (3) is not admissible because it
leads to nothing. Finally, there are solutions of (3) for which z = αk or z = βk. For these solutions, some wk,l is
zero or infinity and these solutions are also not admissible because (1) is then not well defined.

A solution will therefore be called admissible if:

(1) all the coefficients zk are different;

(2) no zk is equal to zero (or infinity) or to a zero or pole of the function R and no wk,l is zero or infinite.

The admissible solutions come in sets with r! elements, any two elements in these subsets differing by a permu-
tation. Since we need

(
N
r

)
vectors we need at least N(N − 1) . . . (N − r+ 1) solutions. The principal theorem of

[BL] is easily stated.

Theorem For generic ∆ and R there are exactly N(N − 1) . . . (N − r + 1) admissible solutions (z, w) of the
equations (3). The vector (1) attached to such a solution is not zero and the collection of vectors obtained
in this way generate the space Xr.

It will become clear that it is easy to find generically at least N(N − 1) . . . (N − r + 1) admissible solutions
whose associated eigenvectors generate the full space Xr. The difficult assertion is that there are exactly this
many solutions, and we concentrate on it.

To count the number of admissible solutions we have to count the number of all solutions and then subtract
the number of inadmissible solutions. The equations (3) can be regarded as defining the fixed points of an at first
imprecisely defined algebraic correspondence. Let

X =
r∏

k=1

P
1 ×

∏
1≤k<l≤r

P
1 = Z ×W.

The coordinates are zk and wk,l with redundant coordinates wl,k = w−1
k,l . For the moment take C = X and

consider the two mappings ϕ and ψ of C into X defined (inadequately) by

(6)
ϕ(z, w) = (z′, w′), z′k = R(zk), w′

k,l = wk,l,

ψ(z, w) = (z′′, w′′), z′′k =
∏
l �=k

wk,l, w
′′
k,l = Q(zk, zl) = −F (zk, zl)/F (zl, zk),

with F (z, z′) = F∆(z, z′) = zz′ − 2∆z + 1. The equations (3) define the points p for which ϕ(p) = ψ(p).
Before discussing the failings of the definition of the correspondence (ϕ, ψ) we observe that the inadmissible

solutions can be defined as the fixed points of similar correspondences. Suppose that{A1, . . . , As, B
′
1, . . . , B

′
t, B

′′
1 , . . . , B

′′
t }

(denoted more compactly (A,B)) is a disjoint decomposition of {1, . . . , r} into non-empty subsets and that to
each l, 1 ≤ l ≤ t, there is associated a zero α(l) of R. Set i ≡ j if i and j belong to the same Al or if i ∈ B′

l ,
j ∈ B′

m, and α(l) = α(m), or finally if i ∈ B′′
l , j ∈ B′′

m, and α(l) = α(m). Define a sub-varietyXA,B ofX by the
conditions

(1) zi = zj and wi,m = wj,m if i ≡ j;
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(2) if i ≡ j then wi,j = −1;

(3) if i ∈ B′
l then zi = 0;

(4) if i ∈ B′′
l then zi = ∞;

(5) i ∈ B′
l′ and j ∈ B′′

l′′ with α(l′) = α(l′′) then wi,j = 0 and wj,i = ∞;

(6) if α′ = α(l′) 	= α(l′′) = α′′ and β′ = A(α′), β′′ = A(α′′) then

(a) wi,j = Q(α′, α′′) if i ∈ B′
l′ and j ∈ B′

l′′ ,
(b) wi,j = Q(α′, β′′) if i ∈ B′

l′ and j ∈ B′′
l′′ ,

(c) wi,j = Q(β′, α′′) if i ∈ B′′
l′ and j ∈ B′

l′′ ,
(d) wi,j = Q(β′, β′′) if i ∈ B′′

l′ and j ∈ B′′
l′′ .

If t = 0 and s = r then XA,B is X itself. It is convenient to set

B
′
α = ∪{l|α=α(l)}B′

l , B
′′
α = ∪{l|α=α(l)}B′′

l ,

and Bα = B′
α ∪ B′′

α. It is not excluded that one or the other of B′
α and B′′

α is empty but then both are.
The variety C is replaced, again for a provisional definition of the correspondence, by a sub-variety CA,B

defined by the conditions (1) (2) (5) and (6) together with the following modifications of (3) and (4):

(3) if i ∈ B′
l and α = α(l) then zi = α;

(4) if i ∈ B′′
l and α = α(l) then zi = β = A(α). It is clear how to restrict (ϕ, ψ) to CA,B to obtain (ϕA,B, ψA,B).

There is an obvious order on the decompositions {A,B}. The decomposition {Ã, B̃} is deeper than {A,B} if it
imposes more conditions. We write {Ã, B̃} ≺ {A,B}. We attach to a fixed point p = (z, w) the decomposition
{A(p), B(p)} in which each Bl is of the form B′

l = {i|zi = α}, B′′
l = {i|zi = β = A(α)}, α(l) = α, and for

which i and j are in a common Al if and only if zi = zj and zi is neither a zero nor a pole of R. It is pretty clear,
apart from the unresolved ambiguities in the correspondences, that a fixed point in X lies in XA,B if and only if
{A(p), B(p)} is deeper than {A,B}.

To each set Al or Bl = B′
l ∪ B′′

l of a decomposition we attach the weight (−1)n−1(n − 1)!, n being the
number of integers in the set. To the decomposition itself we attach the weight ω(A,B) equal to the product of
the weights of all terms in the decomposition. Thus the weight of the decomposition {1, 2} into {{1}, {2}} is 1
and of that into {{1, 2}} is −1. That of {1, 2, 3, 4, 5, 6, 7} into {{1, 2, 3}, {4, 5, 6, 7}} is −12. The following lemma
is easily verified.

Lemma For each fixed point p in X the sum
∑

(A(p),B(p))≺(A,B)

ω(A,B)

is 0 unless p is admissible, but then it is 1.

Thus if n(A,B) is the number of fixed points on XA,B it suffices to verify that

(7) N(N − 1) . . . (N − r + 1) =
∑

(A,B)

ω(A,B)n(A,B).

Long ago, in the twenties, Lefschetz ([L]) introduced a topological formula not for the number of fixed points of
a correspondence but for the number of fixed points counted with multiplicities. If all multiplicities are one, or
even if a given fixed point p has the same multiplicity for all correspondences (ϕA,B, ψA,B) of which it is a fixed
point and this multiplicity is one if the point is admissible, then it is legitimate to substitute for n(A,B) in (7)
the number λ(A,B) of fixed points counted with multiplicity. Since part of our strategy is to show that all these
multiplicities are one for generic values of the parameters, we shall use this new form of (7).

There is a disagreeable complication. The Lefschetz formula expresses the number of fixed points in terms
of topological data associated to the correspondence. These data are relatively easy to determine, at least in a
combinatorial form, from the inadequately defined correspondences with which we have dealt so far because the
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underlying topological spaces are products of the Riemann sphere with itself, so that their homology has a simple
structure. The true correspondences are obtained by blow-ups that are yet to be described. One of our principles
has been to make the count, in a manner that cannot be completely correct, with the ill-defined correspondences,
leaving the complete justification, which should pose no problems, until the more serious algebraic difficulties
are out of the way.

The homology of Z is spanned by products of an arbitrary number of the factors P1 appearing in Z . An
element of this basis is therefore given by a subset of {1, . . . , r}. An element of the analogous basis of the
homology of W is given by a collection of unordered pairs {k, l}, k 	= l. A basis for the homology of X is
obtained by taking all products of a basis element for Z with one for W . In particular, the homology groups
of X are non-zero only in even dimensions. There are maps ϕi : Hi(C) → Hi(X), and by Poincaré duality an
associated map ϕi : Hi(X) → Hi(C), as well as a map ψi : Hi(C) → Hi(X). The compositionψiϕ

i takesHi(X)
to itself and the Lefschetz formula is

(8) λ(X) =
dimX∑
i=0

Tr (ψ2iϕ
2i).

There is of course a similar formula for λ(XA,B) = λ(A,B).
The map ϕ is so simple that it is easy to determine ϕ2i. It multiplies a basis element whose Z component is

the product of s factors P1 byN s. From this it is easy to determineϕ2i. The mapψ on the other hand interchanges
the two factors Z and W . According to the formulas (6), wk,l is for fixed zl a fractional linear function of zk and
for fixed zk a fractional linear function of zl. As a consequence the class in H2(Z) associated to the index k is
mapped to the sum of the classes in H2(W ) associated to those indices {l,m} for which m = k or l = k. In the
same way zk is a linear function of wk,l for each l. As only the classes of the product X = Z ×W that appear in
the representation of their own image contribute to the trace, we obtain a combinatorial expression for this trace.
It is the sum over a collection of oriented graphs G on the set {1, . . . , r} of Nπ(G), π(G) being the number of
connected components of G.

The graphs are subject to two constraints:

(1) they are trees;

(2) there is at most one bond issuing from each point.

The meaning of these conditions is easily explained. Suppose S is a subset of R = {1, . . . , r} and T a subset of
unordered pairs {k, l}. The basis element

η =
∏
k∈S

P
1 ×

∏
{l,m}∈T

P
1

will contribute either 0 or 1 to the trace. To each basis element contributing 1 we associate a graph G. For such a
basis element the cardinality of S must be that of T . Moreover it must be possible to assign to each {l,m} ∈ T
a k in {l,m} and in S so that as zk moves so does wl,m. Thus k ∈ {l,m} and {l,m} is the bond issuing from
k. Since a given zk can not be responsible for the movement of two factors in W , we attach different vertices to
different bonds, and the equality |S| = |T | assures us that there is exactly one bond issuing from a vertex in S.
The vertices of {1, . . . , r} not in S are the final points of G and some may be isolated.

Suppose there were a cycle in G with bonds {k1, k2}, . . . , {kp, k1}. Then the number of remaining bonds is
equal to the number of remaining vertices in S and each of the remaining bonds is responsible for the movement
of one of the remaining vertices. Thus the effective movement in (zk1 , . . . , zkp) is achieved by the bonds in the
cycle. However if P = {k1, . . . , kp} and Q is its complement in R

(9)
∏
k∈P

z′′k =
∏
k∈P

∏
l∈Q

wk,l.

Thus the product is independent of the variableswki,ki+1 and the image of the class attached to η is zero. Equation
(9), valid for any set P , is basic and will be used again, but without comment.
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The Lefschetz numbers attached to (ϕA,B , ψA,B) are calculated in a similar way with a similar result. The
vertices of the graphs are now A1, . . . , As and B1, . . . , Bt. Each vertex carries a weight, the cardinality of the
respective set; so does each graph, the product over the directed bonds of the weights of the vertices at which the
bond ends. Moreover no bond may issue from a vertexBi. Thus Bi is forbidden as the source of a bond.

Although it is possible to carry out a good part, but not all, of the combinatorial discussion without them,
it turns out that these numbers defined combinatorially can be expressed by simple algebraic formulas that,
together with their proofs, are due to Fan Chung. It is sufficient to give a formula for the number of connected
graphs of the described type. The number of forbidden vertices is then at most one. Suppose there are n vertices
with weights ω1, . . . , ωn.

Lemma(F. Chung)

(1) If there are no forbidden vertices the number of connected graphs counted with weight is (ω1+. . .+ωn)n−1.
(2) If there is one forbidden vertex of weight ω the number of connected graphs counted with weight is

ω(ω1 + . . .+ ωn)n−2.

This lemma simplifies, for example, the proof of formula (7). The remaining obstacle is the proof that the
multiplicites of the fixed point are generically one, and it is surprisingly difficult to overcome. The bulk of our
effort has had to be devoted to this.

A closer examination of the description of the effect of ψ, or more generally ψA,B, on cycles reveals the
inadequacy of the formulas (6). It is possible that F (zk, zl) and F (zl, zk) vanish simultaneously so that w′′

k,l is
not well defined, not even as infinity, or that wk,l = 0 whilewk,m = ∞ so that z′′k is not well defined. The second
possibility has to be dealt with, but its consequences are largely technical, while an adequate understanding of
the consequences of the first is central to the argument.

It is necessary to blow up C by introducing new coordinates (uk,l, ul,k) and λk,l. The first of these are
projective coordinates, so that only their ratio matters, and to fix λk,l it can be supposed that one or the other is 1.
They are subject to one basic relation and to all relations that can be deduced from it: uk,lF (zl, zk) = ul,kF (zk, zl).
Of course these new coordinates are redundant except where F (zl, zk) = F (zk, zl) = 0. Additional blow-ups
are necessary at ∆ = 0 when one of the zk is a zero or a pole of the function R(z). The blow-ups are carried out
in a systematic way, so that the result is a family of correspondences parametrized by ∆ with generically smooth
C∆, or more generally CA,B

∆ .
The fiber is not smooth at ∆ = 0. We proceed, however, by first analyzing the fixed points of the correspon-

dence at this fiber, and then studying its deformations. The first point, less evident than we at first thought, is that
in a neigborhood of ∆ = 0 and thus generically the fixed points of the modified, well-defined correspondences
(ϕA,B

∆ , ψA,B
∆ ) are isolated, although perhaps with multiplicity greater than one. This is not true at ∆ = 0 where

the variety of fixed points has a large number of components of positive dimension.
The next point is to show that appropriate fixed points at ∆ = 0 deform to give at least λ(A,B) distinct

fixed points in its neighborhood. It then follows immediately from the Lefschetz formula for (ϕA,B
∆ , ψA,B

∆ ) that
these are all the fixed points and that they have multiplicity one. The constraints imposed by (A,B) do not affect
the form of the equations. They need only be taken into account when counting the number of solutions.

At ∆ = 0
F (zk, zl) = F (zl, zk) = zkzl + 1

so that unless zkzl = −1 at a fixed point the value of wk,l there is −1. As a consequence at a fixed point p the
collection {1, . . . , r} breaks up naturally into subsets E1, F1, . . . , Em, Fm, two indices k and l lying in the same
subset if and only if zk = zl and lying in opposed subsetsEi and Fi if and only if zkzl = −1. (For a generic choice
of the function R the values of the zk at a fixed point are finite and not zero, and z2

k 	= −1.) Moreover when k
and l do not lie in opposed subsets then wk,l = −1.

Thus the equations decouple and as a first approximation it is convenient to deform into a neighborhood of
∆ = 0 as though wk,l continued to be −1 when k and l are not opposed.

Let γi and δi be the values of the coordinates in Ei and Fi, of which one can be empty but not both. There
are two types to distinguish: either {γi, δi} is not a pair {α, β} for some zero and matching pole of R or it is. In
the second case neither set is empty.
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The first case is, however, the easiest to treat. If one of the two sets is empty then for all k in the other

R(zk) = (−1)r−1.

For generic R this equation has N distinct solutions (of which no two are opposed) and they deform uniquely
to a whole neighborhood of ∆ = 0. Choosing distinct z1, . . . , zr among these solutions we obtain N(N −
1) . . . (N − r + 1) admissible fixed points. (In each pair (Ei, Fi) of the associated configuration one set is then
empty and the other contains a single element.) Thus it is to be expected that all other fixed points will deform
to inadmissible fixed points. The existence of these solutions means that the existence generically of admissible
solutions sufficient to generate all eigenvectors is rather simple. The significant mathematical assertion is that
there is no redundancy. It is unlikely that this is without consequences for the set of eigenvalues, but we have not
had an opportunity to pursue the matter very far.

Continuing to suppose that γi is neither a zero nor a pole of R we suppose that neither Ei nor Fi is empty.
Let their cardinalities be µ and ν. The number ρ = R(z)R(−1/z) is independent of z at ∆ = 0 and may be
supposed generic. Multiplying the equations R(zk) =

∏
l wk,l, k ∈ E and k ∈ F , together we find that

(10) (−1)µ(r−ν)R(γi)µρν = (−1)ν(r−µ)R(γi)ν .

Since ρ is generic we conclude that µ 	= ν and that there are |µ− ν|N possibilities for γi.
At ∆ = 0 and for k ∈ Ei, l ∈ Fi it is best not to use the projective coordinates (uk,l, ul,k) but new coordinates

(tk,l, vk,l) such that
uk,l
ul,k

=
vk,l − 2ak,ltk,l
vk,l − 2tk,l

, ak,l = zk/zl.

When zk = γi and zl = βi = −1/γi then ak,l = ai = −γ2
i , and for generic parameters this is never 1 at a fixed

point. Disregarding the possibility that there may be solutions with some tk,l = 0, we take all tk,l, k ∈ Ei, l ∈ Fi
equal to 1. Then the vk,l are not independent but may be written as vk,l = rk + sl. There is an indeterminacy in
these new parameters; all the rk may be replaced by rk + t and the sl by sl − t.

Upon decoupling, the equations that refer to the coordinates in Ei and Fi are at ∆ = 0

(11)
ci =

∏
l∈Fi

rk + sl − 2ai
rk + sl − 2

, di =
∏
k∈Ei

rk + sl − 2ai
rk + sl − 2

,

ci = (−1)r−µR(γi), di = (−1)r−νR−1(δi).

The values of ci and di in (11) are generic, and in contrast to the Bethe equations themselves it is possible to show
directly that each solution of these equations is of multiplicity one, an assertion that remains meaningful even
when the equations are recoupled in a neighborhood of ∆ = 0.

The solutions of (10) are counted differently for the different correspondences (ϕA,B, ψA,B) because there
are different constraints imposed. For given (A,B) the set Ei and the set Fi must each be the union of the
Al it contains, for at present γi is neither an αk nor a βk. If Ei contains e elements of weights µ1, . . . , µe and
Fi contains f elements of weights ν1, . . . , νf then µ = µ(Ei) =

∑
µi, ν = µ(Fi) =

∑
νj and the number of

solutions of (11), counted by determining the degrees of the maps involved – not forgetting that (11) implies (10)
– is |µ− ν|µf−1νe−1N .

Before commenting on the difficult case that {γi, δi} is a pair {α, β}, we examine the nature of the combi-
natorial problem that remains. The Lefschetz formula yields the number of fixed points with multiplicities as a
polynomial in N . The coefficient of a given power N s is the number of graphs of a certain type counted with
weights but with s connected components. This number is thus the sum over all decompositions of {1, . . . , r}
into s subsets of the product from 1 to s of the number, counted with weights, of connected graphs on the elements
in the corresponding subset. This structure is shared by the other number to which it is to be compared. The
set {1, . . . , r} is decomposed into the sets Di = Ei ∪ Fi and the equations, to a first approximation that then
has to be improved, decoupled. For each element of the decomposition there are equations to be solved, and the
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total number of solutions is obtained by summing over all partitions of the product of the number of solutions
attached to the elements of the partition.

For each collection of vertices D and all possible decompositions D = E ∪ F (the elements defining the
decomposition of {1, . . . , r} are now themselves decomposed) we have to count the solutions of each type
observing that if D contains forbidden vertices only solutions of the second type are possible. In all cases, it is
essential that the result is a combinatorial factor, independent of N , times N . This is so for solutions of the first
type. In all there are

(12) N
∑

E∪F=D

|µ(E) − ν(F )|µ(E)f−1µ(F )e−1

where e and f are, as before, the numbers of elements in E and F . The sum runs over disjoint partitions of D
without regard to order. It is not difficult to show that

(13)

∑
E∪F=D

(µ(E) + ν(F ))µ(E)f−1µ(F )e−1 = µ(D)d−1,

d = |D|, µ(D) =
∑
Al∈D

ωl

so that, if D contains no forbidden vertices, there are N times

(14) 2
∑

E∪F=D

min{µ(E), ν(F )}µ(E)f−1µ(F )e−1

deformations of solutions of the second type to be found. IfD contains forbidden vertices there are only solutions
of the second type and the pertinent analogue of (14) is

(15) ωµ(D)d−2 =
∑

{(µ(E) + ω′)f (µ(F ) + ω′′)e − µ(E)fµ(F )e}

if ω = ω′ + ω′′ is the weight of the forbidden vertex of D and the sum is over decompositions of the set
{A1, . . . , As} of the set of remaining vertices into two subsets E and F . Recall that the weight ω = |B| of a
forbidden vertex is the sum of ω′ = |B′| and ω′′ = |B′′|.

For pairs (Ei, Fi) of the second type the source of the factor N is clear for there are N possibilities for
α. The combinatorics are, however, less transparent because a crude count of possibilities does not distinguish
between two disjoint pairs (Ei, Fi) and (Ej , Fj) associated to the same αk and the pair (Ei ∪ Ej , Fi ∪ Fj).
Although we have yet to deal with this problem in general, it cannot be major. A second difficulty that we also
expect to overcome is more serious. The decoupled equations of the first type define at ∆ = 0 a variety of
positive dimension. Moreover, although only a finite number of points on this variety admit a deformation to
a neighborhood of ∆ = 0, there may be several such deformations, so that we have to count not the number of
such points but the number of curves (parametrized by ∆) passing through them.

We do not attempt to describe what we know at present, for our knowledge is incomplete. Yet a few words
to indicate the source of the difficulties are appropriate. At ∆ = 0 and when γi is a zero α of R and δi = A(α)
it is necessary, in order to define the correspondences completely, to blow C up further by the introduction of
projective coordinates (pk, qk), k ∈ Ei ∪ Fi, such that

zk − α = ξkpk, ∆ = ξkqk, k ∈ Ei,

z̃k − β̃ = ξkpk, ∆ = ξkqk, k ∈ Fi.

The coordinates ξk have to be introduced at the same time as the supplementary projective coordinates, and (for
convenience) in equations containing z̃k = 1/zk rather than zk.
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In a form that should be taken as a first symbolic approximation the equations for the variables attached to
Ei ∪ Fi are

(16)

A∆pk = (−1)r−µ
∏
l∈Fi

pk + pl
pk + pl − 2b

,

B∆pl = (−1)r−ν
∏
k∈Ei

pk + pl
pk + pl − 2b

.

The number b = 1 + α2 is not 0. Moreover A is the derivative of R(z) at α and B = −A/ρ. As a result of the
presence of ∆ on the left side these equations can be solved at ∆ = 0 simply be demanding that for each k in Ei

or Fi there be an l in the other set such that pk + pl = 0. To find the solutions that deform and their deformations
one looks not for numerical solutions in pm but for solutions that are Puiseux expansions in ∆, not all constant.

The strategy is to find as many solutions as demanded by the combinatorics and the Lefschetz formula, and
therefore to deduce indirectly that we have all. We have no idea whether this might be done directly; it certainly
is not promising. We also observe that it is by no means obvious that the deformations of solutions inadmissible
at ∆ = 0 should remain inadmissible. Yet this is so – or rather our analysis confirms it so far! There are now
two combinatorial elements that arise in the algebra and that must be taken into account in the combinatorial
comparison with (14) and (15). Not only must the number of solutions of various equations be found, but also,
as the first step, the possible leading exponents of the Puiseux expansions calculated. Even for very low values
of e and f the analysis is far from transparent.

The ultimate purpose of the Bethe Ansatz is useful insight into the behavior of the eigenvalues of the operator
H . To this end Bethe introduced the notion of Wellenkomplex for which the customary terminology is now the
less formal string. At ∆ = 1, the value of the parameter that Bethe treated, this notion has limitations, so that
clarifications are necessary, but near ∆ = ∞ there is a precise, general definition. Since admissible solutions
remain admissible as the parameters are deformed, the strings can be transported to 1, but their relation with
those of Bethe will not be examined here.

For large |∆|, set λ± = 1 ± √
1 − 1/∆2. The matrix

V =
(
κλ+ λ−
κ/∆ 1/∆

)

diagonalizes the matrix (5),

V −1AV = ∆
(
λ+ 0
0 λ−

)

As a consequence the Bethe equations take a simpler form when the unknowns zi are replaced by ui = V −1(zi).
Define κ so that κ2 = λ−/λ+ and so that κ behaves like 1/2∆ when ∆ → ∞.

Adapting the ideas of [B] to our purposes we fix a decomposition of {1, . . . , r} into ordered subsets S1 =
{u1,1, . . . , u1,L1}, S2, . . . of lengths L1, L2, . . ., and look for solutions that are Laurent series in κ,

ul,i = κLl+1−2ivl,i + . . . , 1 ≤ i ≤ Ll.

The zeros αi have to be so chosen that αi = εiκ, where εi is itself a power series in κwith generic initial term, and

R(z) = c
∏ z − αi

z/βi − 1
,

where c is also a power series in κ with generic initial term. Once again, if we find enough solutions of this type
generically admissible in a neighborhood of ∆ = ∞ then we have them all. It turns out that the correct number
of solutions is obtained by taking all possible decompositions, and by choosing the leading coefficients vl,i = vl
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to be independent of i, to be different if the associated strings have the same length (vl 	= vl′ if Ll = Ll′), and to
satisfy the system of equations

(17) dlv
N
l =

∏
k �=l

(
vl
vk

)X(Ll,Lk)

with

X(l,m) =
{

2l− 1, if l = m
2 min(l,m), if l 	= m.

The number dl is determined by the leading coefficients ε0i and c0 of the series for εi and c,

dl = cLl
0 (−1)N+Ll(r−Ll)

N∏
i=1

(ε0i )
Ll−1.

That there are enough solutions of (17) is a simple combinatorial problem; the implicit function theorem can then
be used to establish that the desired solutions in series exist. We observe that the notion of strings is only useful
when 2r ≤ N and that there is a duality in the equations that permits the replacement of r byN − r, adding that
our argument does not yet deal with the case 2r = N .

We have explicit and complete sets of admissible solutions near 0 and near ∞ that can be analytically
continued along paths, either closed, starting near 0 or ∞ and ending where they began, or passing from 0 to
∞. It may well be of considerable mathematical interest to examine the effect on the solutions and the partitions
into strings of different choices of path for there is very likely ramification at some non-generic points. We have,
however, only begun to experiment.
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