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1. INTRODUCTION

The first undisguised automorphic forms met by most of us are the modular forms. A modular form of weight k
is an analytic function on the upper half-plane which satisfies

f
(
az + b
cz + d

)
= (cz + d)kf(z)

for all integral matrices (
a b
c d

)
of determinant 1. Actually there is a supplementary condition, of no importance to us, on its rate of growth as
Im(z) → ∞. Nowadays the Siegel modular forms are met soon afterwards. A Siegel modular form of weight k
is a complex analytic function on the space of complex n× n symmetric matrices with positive definite real part
which satisfies

f
(
(AZ +B)(CZ +D)−1) = det(CZ +D)kf(Z)

for all integral 2n× 2n symplectic matrices (
A B
C D

)
.

For some purposes it is best to consider not f but an associated function φf on the group G of real 2n × 2n
symplectic matrices defined by

φf (g) = det(Ci+D)−kf
(
(Ai+B)(Ci+D)−1

)
if

g =
(
A B
C D

)
.

If Γ is the group of integral matrices in G then φf is a function on Γ\G. The functions φf associated to those
f which have a finite norm in the Petersson metric can be characterized in terms of the representations of G.
Associating to each h in G the operator λ(h) on L2(Γ\G) defined by(

λ(h)φ
)
(g) = φ(gh) ,

we obtain a representation of G on L2(Γ\G). There is a representation πk of G on a Hilbert space Hk and a
distinguished subspace H0

k of Hk such that φ is a φf if and only if there is a G-invariant map of Hk to L2(Γ\G)
which takes H0

k to the space generated by φ.
This is the first hint that it might not be entirely unprofitable to study automorphic forms in the context of

the theory of group representations. The Hecke operators, which play a major role in the study of modular forms,
provide a second. To see this we have to introduce the adèle group of 2n × 2n symplectic matrices. It will be
convenient to change the notation a little. If R is a commutative ring let GR be the group of 2n× 2n symplectic
matrices with entries from R. Thus the groups Γ and G become GZ and GR. If p is a prime, finite or infinite, let
Qp be the corresponding completion of Q. The adèle ring A is the set of elements {ap} in

∏
p Qp such that ap is

integral for all but a finite number of p. The diagonal map defines an imbedding of Q in A. There is a standard
topology on GA which turns it into a locally compact group with GQ as a discrete subgroup. Let

A0 = R ×
∏

p finite

Zp .
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It is known that GA = GQGA0 . Any function φ on GZ\GR can be regarded as a function on GQ\GA if one sets
φ(g) = φ(g′2) when g = g1g2, g1 ∈ GQ, g2 ∈ GA0 , and g′2 is the projection of g2 onGR. The functions so obtained
are characterized by their right invariance under

U = 1 ×
∏

p finite

GZp .

If f is a function, with compact support, on

G0 =
{
1 ×

∏
p finite

GQp

} ∩GA ,

which is invariant on the left and right under U , and if λ(f)φ is defined by

λ(f)φ(g) =
∫
G0

φ(gh)f(h) dh ,

then λ(f)φ is invariant on the right under U if φ is. Thus the operators λ(f), the Hecke operators, act on the
functions on GZ\GR. If φ belongs to a subspace H of L2(GQ\GA) which is invariant and irreducible under
the action of GA then φ is an eigenfunction of all the Hecke operators and the corresponding eigenvalues are
determined by the equivalence class of the representation of GA on H .

The theory of modular forms and the operators λ(f) is far from complete. Indeed very little attempt has been
made, so far as I can see, to understand what the goals of the theory should be. Once it is put in the above form
it is clear that the concepts at least admit of extension to any reductive algebraic group defined over a number
field. It may be possible to give some coherency to the subject by introducing the simple principle, implicit in the
work of Harish-Chandra, that what can be done for one reductive group should be done for all.

The simplest reductive group over Q is GL(1). Since GA is abelian, the space GQ\GA is a locally compact
abelian group C , the group of idèle classes of Q. According to the Plancherel theorem for abelian groups the
characters of C can be used to decompose L2(GQ\GA) under the action of GA and the characters of C must be
regarded as the basic automorphic forms.

Since Q×
p , the multiplicative group of Qp, is contained inGA, each character χ of C defines a character χp of

Q×
p . If p does not divide fχ, the conductor of χ, χp is trivial on the units of Q×

p . It is customary to associate to χ
the L-series

L(s, χ) =
∏

p - fχ

1

1 − χp(p)
ps

and the function

ξ(s, χ) =
(
π

fχ

)−(s+α+β)/2

Γ
(
s+ α+ β

2

)
L(s, χ)

if
χ∞(x) = (sgnx)α|x|β .

The number α is 0 or 1. The function ξ(s, χ) is known to be meromorphic in the entire complex plane and to
satisfy

ξ(s, χ) = ε(χ)ξ(1 − s, χ−1)

where ε(χ) is a constant of absolute value 1.
For a general group L2(GQ\GA) decomposes not into a direct integral of one-dimensional spaces but into a

direct integral of Hilbert spaces on each of which GA acts irreducibly. Can we associate to each of these Hilbert
spaces an Euler product with the same analytic properties as the functions L(s, χ)? In these lectures I would
like to present a little evidence, far from conclusive, that the answer is “yes”. Let me observe that each power
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of a character is also a character, thus to χ is associated the whole collection {L(s, χn) | n ∈ Z}, and that Z
parametrizes not only the powers of χ but also the rational representations of GL(1).

Before beginning the substantial part of these lectures let me make, without committing myself, a further
observation. The Euler products mentioned above are defined by means of the Hecke operators. Thus they are
defined in an entirely different manner than those of Artin or Hasse-Weil. An assertion that an Euler product of
the latter type is equal to one of those associated to an automorphic form is tantamount to a reciprocity law (for
one equation in one variable in the case of the Artin L-series and for several equations in several variables in the
case of the Hasse-Weil L-series).
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2. SOME EULER PRODUCTS

Suppose g is a split semisimple Lie algebra over Q and G its adjoint group. Fix a split Cartan subalgebra h of g
and choose a Chevalley basis for g with respect to h. Let M be the lattice generated by the Chevalley basis over
Z. If p is a finite prime let GZp be the stabilizer of M ⊗ Zp in GQp . If p is the infinite prime let

GZp ⊆ GQp ≡ GR

be the maximal compact subgroup of GR corresponding to the involution associated to the Chevalley basis. Let

U =
∏
p

GZp ⊆ GA ,

be the adèle group of G. Fix a Borel subgroup B containing T , the Cartan subgroup with Lie algebra h. It is
known that

GQp = BQpGZp

for each p. For this and various other facts about reduction theory over local fields see the article by F. Bruhat
in the collection Algebraic Groups and Discontinuous Subgroups. As a consequence GA = BAU . Moreover
BA = BQBR(BA ∩ U); hence GA = BQGRU and GQ = BQGZ if GZ is the stabilizer of M . In particular any
function on GQ\GA/U is determined by its restriction to GR.

Let L be the space of all square integrable functions on GQ\GA which are invariant under right translations
by elements of U . Let P be a parabolic group containing B and let N be its unipotent radical. If φ lies in L then∫

NQ\NA

φ(ng) dn

vanishes for almost all g in GA if and only if ∫
NZ\NR

φ(ng) dn

vanishes for almost all g inGR. If these integrals vanish for almost all g for all choices of P exceptG itself we say
that φ is a cusp form. The set of cusp forms is a closed subspace L0 of L.

If p is a prime, finite or infinite, let Hp be the algebra of all compactly supported regular Borel measures on
GQp invariant under left and right translations by elements of GZp . Multiplication is given by convolution. If µ
lies in Hp, define the operator λ(µ) on L0 by

λ(µ)φ(g) =
∫

GQp

φ(gh) dµ(h) .

If µ is the measure associated with an L1 function f we shall sometimes write λ(f) instead of λ(µ). Moreover f
will be regarded as an element of Hp. If p is finite all the measures in Hp are absolutely continuous with respect
to Haar measure. There is an orthonormal basis φ1, φ2, . . . of L0 such that each φi is, for all p, an eigenfunction
of λ(µ) for all µ in Hp.

Fix one element φ of this basis. If µ belongs to Hp let λ(µ)φ = χp(µ)φ. The map µ → χp(µ) is a
homomorphism of Hp into the complex numbers. Let me remind you of the standard method of obtaining all
such homomorphisms. Let V be the unipotent radical of B. Now VQp\BQp is isomorphic to TQp . Thus any
homomorphism w of TQp/TZp into the complex numbers determines a homomorphism of BQp into the complex
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numbers which we again denote by w. If b belongs to B let ξ(b) be the determinant of the restriction of Ad(b) to
v, the Lie algebra of V . If g lies in GQp then g can be written as a product bk with b in BQp and k in GZp . Set

ψw(g) = w(b)|ξ(b)| 12 .

The function ψw is well defined and any other function ψ on GQp satisfying

(1) ψ(bgk) = w(b)|ξ(b)| 12ψ(g)

for all b, g, and k is a scalar multiple of ψw . If µ lies in Hp define λ(µ)ψw by

(
λ(µ)ψw

)
(g) =

∫
GQp

ψw(gh) dµ(h) .

The function λ(µ)ψw satisfies (1) so there is a scalar χw(µ) such that

λ(µ)ψw = χw(µ)ψw .

The map µ → χw(µ) is a homomorphism of Hp into C. All homomorphisms of Hp into the complex numbers
which are continuous in the weak topology are obtained in this way. The homomorphism χw equals χw′ if and
only if there is a σ in the Weyl group such that w(t) = w′(tσ) for all t in TQp .

Suppose p is finite. If L is the lattice generated by the roots of h there is a homomorphism λ from T =
TQp/TZp , or from TQp , to cL = Hom(L, Z) such that |ξα(t)| = pλ(t)(α) if α is a root. Here ξα is the character of T
associated to α. If α is a root let Hα be, in the language of Chevalley, the copoid attached to α. Let α1, . . . , αn be
the simple roots. The matrix

(Aij) =
(

(αi, αj)
(αi, αi)

)
is the Cartan matrix of g. The matrix (

(Hαi , Hαj )
(Hαi , Hαi)

)
in the transpose of (Aij) and the Cartan matrix of another Lie algebra cg. The lattice cL′ generated by the roots of
a split Cartan subalgebra ch of cg can be identified with the lattice in hR generated byHα1 , . . . , Hαn in such a way
that the roots of ch correspond to the elementsHα. Moreover cL can be regarded as a lattice in hR. It contains cL′

and can in fact be regarded as the lattice of weights of ch so hR ⊇ cL ⊇ cL′. In the same way chR may be identified
with Hom (cL, R) so chR ⊇ L′ ⊇ L if L′ is the lattice of weights of h. Let cG be the simply connected group with
Lie algebra cg and let cT be the Cartan subgroup corresponding to ch. There is an isomorphism σ → cσ of the
Weyl group of T in G with that of cT in cG such that

cσ
(
λ(t)

)
= λ(σt), t ∈ TQp .

Ifw is a homomorphism of T into the complex numbers there is a unique point g in cTC such thatw(t) = ξλ(g) for
all t. Here λ = λ(t) and ξλ is the rational character of cT associated to λ. Thus associated to each homomorphism
of Hp into the complex numbers is an orbit of the Weyl group in cTC or, as I prefer, a semisimple conjugacy class
in cGC.

The automorphic form φ determined for each p a homomorphism χp of Hp into C. If p is a finite prime let
{gp} be the conjugacy class in cGC corresponding to χp. If π is a finite dimensional complex representation of
cGC, we can consider the Euler product

(2)
∏
p

1

det
(

1 − π(gp)
ps

) = L(s, π, φ) .
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As we shall see, this Euler product is absolutely convergent for Re (s) sufficiently large. I do not know in general
what the analytic properties of the functionL(s, π, φ) are. I will show, however, that for all but three of the simple
groups there is at least one nontrivial representation for which L(s, π, φ) is meromorphic in the whole complex
plane. For some groups there are several such representations.

Let me first introduce a Γ-factor to go with L(S, π, φ). If p is the infinite prime there is a homomorphism λ
of

T = TQp/TQp ∩GZp

into hR = Hom(L, R) such that |ξα(t)| = eλ(t)(α) if α is a root. Since L is a lattice in chR, every homomorphism
of T into C is of the form

w(t) = eλ(t)(X)

for some X in chC. Thus to every homomorphism of Hp into C there is associated an orbit of the Weyl group in
chC or a semisimple conjugacy class in cgC. If χp is the homomorphism associated to the automorphic form φ, let
{X} be the associated conjugacy class and let Γ(s, π, φ) be the inverse of

π
trace

(
s−π(X)

2

)
det
(
s− π(X)

2

)
e

γ trace

(
s−π(X)

2

)
∞∏

n=1

{
det
(
I +

s− π(X)
2n

)
e
−trace

(
s−π(X)

2n

)}

where γ is Euler’s constant. The function Γ(s, π, φ) can be expressed as a product of Γ-functions. Set

ξ(s, π, φ) = Γ(s, π, φ)L(s, π, φ).

The functional equation to expect is
ξ(s, π, φ) = ξ(1 − s, π̃, φ)

if π̃ is the representation contragredient to π.
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3. SPHERICAL FUNCTIONS

Each gp that occurs in the expression on the left of (2) can be chosen to lie in cTC. To see that the product converges
in a half-plane it would be enough to show that for all λ in cL and all p

|ξλ(gp)| ≤ λ̄(ρ)

where λ̄ is that element in the orbit of λ under the Weyl group which lies in the positive Weyl chamber and ρ
is one-half the sum of the positive roots. We can associate to each g in cTC a point µ = µ(g) in chC so that∗

ξλ(g) = pλ(µ) for all λ in cL. The point µ is not uniquely determined by g but its real part is. If µp = µ(gp) we
have to show that

Re λ(µp) ≤ λ̄(ρ) .

The class {gp} is associated to the homomorphism χp of Hp into C determined by φ. This homomorphism has
the property, not shared by all homomorphisms, that

|χp(f)| ≤ c

∫
GQp

|f(g)| dg

for all f in Hp. The factor c is a fixed constant. To prove this we must recall that φ is a cusp form and hence
bounded. If M is a bound for φ and if φ(g0) 6= 0 then

|χp(f)φ(g0)| =
∣∣∣∣ ∫
GQp

φ(g0h)f(h) dh
∣∣∣∣ ≤M

∫
GQp

|f(h)| dh

and the assertion follows.

Lemma. Suppose µ in chC is associated to the homomorphism χµ of Hp into C. If there is a constant c such
that

|χµ(f)| ≤ c

∫
GQp

|f(g)| dg

for all f , then
Re λ(µ) ≤ λ̄(ρ)

for all λ.

If w is the homomorphism defined by w(t) = pλ(t)(µ), set

ψµ(g) = ψw(g) .

By definition

χµ(f)ψµ(g) =
∫

GQp

ψµ(gh)f(h) dh .

If

φµ(g) =
∫

GZp

ψµ(kg) dk ,

∗ At the infinite prime we would take µ = X with X as above.
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then φµ(1) = 1, and φµ(k1gk2) = φµ(g) if k1 and k2 lie in GZp . Moreover it is easily verified that

χµ(f)φµ(g) =
∫

GQp

φµ(gh)f(h) dh .

If µ satisfies the assumption of the lemma, take fg to be the characteristic function of the double coset GZpgGZp .
Then χµ(fg) is equal to χµ(fg)φµ(1) = φµ(g) times the measure of (GZpgGZp). It follows immediately that
|φµ(g)| ≤ c for all g.

To prove the lemma, it will be necessary to study the asymptotic behavior of φµ for general values of µ. Let
T−

Qp
be the set of t in TQp for which −λ(t) lies in the positive Weyl chamber. Since

GQp = GZpT
−
Qp
GZp

it is sufficient to study the function φµ on T−
Qp

.
So far we are free to choose Haar measures in any manner we like. We so choose them on VQp , TQp and GZp

that the total measures of VZp , TZp and GZp are 1. Then we choose the Haar measure on GQp so that∫
GQp

f(g) dg =
∫

VQp

∫
TQp

∫
GZp

f(vtk)p−2λ(t)(ρ) dv dt dk .

Choose an f in Hp and let C be a compact set in VQp such that the support of f is contained in CTQpGZp . There
is a constant cf > 0 such that if |ξα(t)| ≤ cf for α > 0, then

tCt−1 ⊆ GZp .

Choose a t satisfying this condition. Then

χµ(f)φµ(t) =
∫

VQp

∫
TQp

φµ(tvs)f(vs)p−2λ(s)(ρ) dv ds

=
∫
C

∫
TQp

φµ(tvt−1ts)f(vs)p−2λ(s)(ρ)dv ds

=
∫
C

∫
TQp

φµ(ts)f(vs)p−2λ(s)(ρ)dv ds .

Set φ̃µ(t) = φµ(t)p−λ(t)(ρ). Replacing the integral over C by an integral over VQp we see that

χµ(f)φ̃µ(t) =
∫

TQp

φ̃µ(ts)f̃(s) ds =
∫
T

φ̃µ(ts)f̃(s) ds

if f → f̃ is the Satake homomorphism of Hp into the group algebra H ′
p of T defined by

f̃(s) = p−λ(s)(ρ)

∫
VQp

f(vs) dv .
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Ifψ1 andψ2 are two functions onT and c > 0, we shall say thatψ1 'c ψ2 ifψ1(t) = ψ2(t) whenever |ξα(t)| ≤
c for all positive roots α. The set of equivalence classes forms a vector space Wc. Let W∞ be the injective limit of
the spaces Wc. If f lies in H ′

p and ψ is a function on T , then we define λ(f)ψ by

λ(f)ψ(t) =
∫
T

ψ(ts)f(s) ds .

We can also regard λ(f) as an operator onW∞. If φµ is the image of φ̃µ inW∞, then λ(f̃ )φµ = χµ(f)φµ for all f
in Hp. Since H ′

p is a finite module over the image of Hp, the space

W = {λ(f)Φµ | f ∈ H ′
p}

is a finite-dimensional subspace of W∞.
Choose t1, . . . , tn such that

|ξαi(tj)| = p−δij .

The points λ(t1), . . . , λ(tn) are a basis of cL over Z . Let δi be the characteristic function of {t̄i} and let Si and Ni

be respectively the semisimple and nilpotent parts of the restriction of λ(δi) to W . The matrices Si, Ni, where
1 ≤ i ≤ n, all commute. Choose a basis Ψ1, . . . ,Ψ1 of W with respect to which S1, . . . , Sn are in diagonal form.
Let

Siψj = pγijψj .

If ai is the smallest integer satisfying Nai+1
i = 0, then

(Si +Ni)li =
ai∑

ri=0

(
li
ri

)
Sli−ri

i N ri

i .

Let ψ1, . . . , ψl be representatives of Ψ1, . . . ,Ψl, and choose c0 > 0 such that

ψi(ttk) =
∑

j

(
sji

k + nji
k

)
ψj(t)

if |ξα(t)| ≤ c0 for α positive. Choose t0 such that |ξα(t0)| ≤ c0 if α is positive. If

Ω0 =
(
ψ1(t0), . . . , ψl(t0)

)
, Ω(t) = (ψl(t), . . . , ψl(t)

)
,

and l1 ≥ 0, . . . , ln ≥ 0 then

Ω

(
t0

n∏
k=1

tlkk

)
= Ω0

n∏
k=1

(Sk +Nk)lk

= Ω0

{ a1∑
r1=0

· · ·
ar∑

rn=0

(
l1
r1

)
· · ·
(
ln
rn

)
S−r1

1 . . . S−rn
n N r1

1 · · ·Nrn
n

} n∏
k=1

Slk
k

= Θ(l1, . . . , ln)
n∏

k=1

Slk
k

where Θ(l1, . . . , ln) is a row vector with entries which are polynomials in l1, . . . , ln. Choose µj such that
λ(ti)(µj) = γij , for 1 ≤ i ≤ n. If |ξα(t)| ≤ |ξα(t0)| for α positive, then

ψj(t) = pλ(t)(µj)θj

(
λ(t)

)
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where θj

(
λ(t)

)
is a polynomial in λ(t). Thus there is a constant c1 and polynomials

ξ1
(
λ(t)

)
, . . . , ξ1

(
λ(t)

)
such that

φ̃µ(t) 'c1

1∑
j=1

pλ(t)(µj)ξj
(
λ(t)

)
.

For our purposes it will be necessary to know the relation between µ1, . . . , µ1 and µ and to have a more or less
explicit formula for the polynomials ξj

(
λ(t)

)
. Let cΩ be the Weyl group of cT . For notational convenience let us

use the map σ → cσ to identify cΩ and Ω, the Weyl group of T . Let

A = {µ ∈ chR | σµ = tµ, σ, t ∈ Ω implies σ = t} .

Let t̄i be the image of ti in T and let
t̄
(1)
i , . . . , t̄

(bi)
i

be the distinct elements in the orbit of t̄i under Ω. Set

B = {µ ∈ chR | λ(t̄ (k)
i )(µ) = λ

(
t̄
(1)
j

)
(µ) implies i = j and k = 1} .

Define µk1 , . . . , kn by the condition that

λ(t̄ (kj)
i )(µ) = λ(t̄i)(µk1 , . . . , kn) 1 ≤ i ≤ n

and set
C = {µ ∈ chR | σµ = µk1....kn implies σt̄ (ki)

i = t̄i, 1 ≤ i ≤ n} .
The complements of A,B, and C are the union of a finite number of proper affine subspaces of chR. Thus there
is a point µ0 in A ∩ B ∩ C . Choose t0 such that

(i) λ(t0)(σµ0) = (t0)(τµ0) implies σ = τ ;
(ii) λ(t0)(cσµ0) = (t0)(µ0

k1,...,kn
) implies σt̄ (ki)

i = t̄i, 1 ≤ i ≤ n.
Let S be the collection of points µ in chC satisfying

(i) pλ(t0)(σµ) = pλ(t0)(τµ) implies σ = τ ;
(ii) pλ(t0)(σµ) = pλ(t0)(µk1,...,kn ) implies σt̄ (ki)

i = t̄i, 1 ≤ i ≤ n;

(iii) pλ(t̄
(k)
i

)(µ) = pλ(t̄
(l)
j

)(µ) implies i = j and k = l.
Then S is an open, dense, and connected subset of chC.

Suppose µ lies in S. Since the coefficients of the polynomial

pi(X) =
bj∏

j=1

(
X − δ

(
t̄
(j)
i

))
lie in the image of Hp, the equation

λ
(
pi(X)

)
Φµ =

bj∏
j=1

(
X − pλ(t

(j)
i

)(µ)
)
Φµ

is satisfied. It is satisfied not only by Φµ but by every element of W . Since pi

(
δ(t̄i)

)
= 0, the minimal polynomial

of the restriction of λ
(
δ(t̄i)

)
to W divides

bj∏
j=1

(
X − pλ(t̄

(j)
i

)(µ)
)
.
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Since this polynomial has no multiple root, Ni = 0 and

λ(δt)Ψj = pλ(t)(µj)Ψj

for all t. Here δt is the characteristic function of {t̄}. The point µj must be equivalent modulo 2πiL/ logp to an
element in the orbit, under Ω, of µ. If not, there is a t such that

pλ(t)(σµ) 6= pλ(t)(µj)

for any σ in Ω. This is impossible because the minimal polynomial of the restriction of λ(δt) is divisible by

X − pλ(t)(µj)

and divides ∏
σ

(
X − pλ(t)(σµ)

)
.

Thus there is a constant cµ and constants aσ(µ) such that

φ̃µ(t) 'cµ

∑
σ

aσ(µ)pλ(t)(σµ).

We need to prove also that the constant cµ can be chosen to be independent of µ. Since the coefficients of
pi(X) are independent of µ, there is a constant c1 such that

λ
(
pi(X)

)
φ̃µ 'c1

bi∏
j=1

(
X − pλ(t̄

(j)
i )(µ)

)
φ̃µ

for all µ. If

φ̃µ( • , k1, . . . , kn) =
n∏

i=1

{ ∏
ji 6=ki

1≤ji≤bi

 λ(δi) − pλ
(
t̄
(ji)
i

)
(µ)

pλ
(
t
(ki)
i

)
(µ) − pλ

(
t
(ji)
i

)
(µ)

} φ̃µ

then

φ̃µ =
b1∑

k1=1

· · ·
bn∑

kn=1

φ̃µ( • , k1, . . . , kn)

and, for some constant c2 which does not depend on µ,

λ(δi)φ̃µ( • , k1, . . . , kn) 'c2 p
λ(ti)(µk1 ,...,kn) φ̃µ, 1 ≤ i ≤ n.

If
p0(X) =

∏
σ

(
X − pλ(t0)(σµ)

)
there is a constant c3 such that

p0

(
λ(δt0 )

)
φ̃µ( • , k, . . . , kn) 'c3 0

and
p0

(
λ(δt0)

)
φ̃µ( • , k1, . . . , kn) 'c3 p0(pλ(t0)(µk1,...,kn ))φ̃µ( • , k1, . . . , kn) .

Since µ lies in S.
φ̃µ( • , k1, . . . , kn) 'c3 0
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unless σt̄ ki

i = t̄i, 1 ≤ i ≤ n, for some σ in Ω. Then µk1,...,kn = σµ. For a given σ, let k1(σ), . . . , kn(σ) be the
indices satisfying σt̄ (ki(σ))

i = t̄i and set

φ̃µ( • , σ) = φ̃µ

(
• , k1(σ), . . . , kn(σ)

)
.

There is a constant c4 such that
φ̃µ 'c4

∑
σ

φ̃µ( • , σ)

and
φ̃µ(·, σ) 'c4 aσ(µ)pλ(t)(σµ)

for all µ in S.
The next step is to evaluate the coefficients aσ(µ). Since φσµ = φµ, the same is true of φ̃µ. If µ lies in ∩σσS

which is an open, dense, and connected set, then∑
τ

aτ (µ)pλ(t)(µ) 'c4

∑
τ

aτ (σµ)pλ(t)(τσµ).

As a consequence aτσ(µ) = aτ (σµ). Thus it is enough to evaluate a(µ) = aσ0(µ) if σ0 is the element of the
Weyl group which takes every positive root to a negative root. Since a(µ) is an analytic function, it is enough to
evaluate it when Re µ lies in the interior of the positive Weyl chamber.

Suppose λ(t) lies in the interior of the positive Weyl chamber. Since

φµ(tn) = φµ

(
(σ0t)n

)
= φ̃µ

(
(σ0t)n

)
p−nλ(t)(ρ)

the relation
φµ(tn) =

∑
σ

aσ(µ)pnλ(t)(σ−1
0 σµ−ρ)

is valid for sufficiently large n and

lim
n→∞ p−nλ(t)(µ−ρ)φµ(tn) = aσ0(µ) = a(µ)

because Re λ(t)(µ− σµ) > 0.
We shall evaluate this limit in another way and obtain a(µ). Recall that

φµ(t) =
∫

GZp

ψµ(kt) dk .

Following Harish-Chandra we study this integral by means of the following easily proved lemma.

Lemma. Suppose V is the unipotent radical of the parabolic group opposed to B. If v̄ lies in VQp , let
v̄ = v(v̄)t(v̄)k(v̄) with v(v̄) in VQp , t(v̄) in TQp , and k(v̄) in GZp . Set λ(v̄) = λ

(
t(v̄)

)
. There is a constant a

such that if ψ is any integrable function on BZp\GZp then

a

∫
GZp

ψ(k) dk =
∫

V Qp

ψ
(
k(v̄)

)
pλ(v̄)(2ρ) dv̄ .

I ask you to bear in mind for a while that a must necessarily equal∫
V Qp

pλ(v̄)(2ρ) dv̄.
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Using the lemma we see that

φµ(t) =
1
a

∫
V Qp

ψµ

(
t−1(v̄)v̄t

)
pλ(v̄)(2ρ) dv̄

=
1
a

∫
V Qp

ψµ(v̄t)p−λ(v̄)(µ−ρ) dv̄

=
pλ(t)(µ+ρ)

a

∫
VQp

ψµ(t−1v̄t)p−λ(v̄)(µ−ρ) dv̄

=
pλ(t)(µ−ρ)

a

∫
V Qp

ψµ(v̄)p−λ(tv̄t−1)(µ−ρ) dv̄

=
pλ(t)(µ−ρ)

a

∫
VQp

pλ(v̄)(µ+ρ)p−λ(tv̄t −1)(µ−ρ) dv̄ .

Thus

(3) a(µ) =
1
a

lim
n→∞

∫
V Qp

pλ(v̄)(µ+ρ)p−λ(tnv̄t−n)(µ−ρ) dv̄

if t lies in the interior of the positive Weyl chamber.

Lemma. If ν lies in the positive Weyl chamber, if λ(t) does also, and if v̄ lies in VQp then λ(v̄)(ν) ≤ 0 and
λ(v̄)(ν) ≤ λ(tv̄t−1)(ν).

If g lies in GQp and g = vsk, with v in TQp , s in TQp , and k in GZp set λ(g) = λ(s). It is known that if t
satisfies the condition of the lemma, then

λ(kt)(ν) ≤ λ(t)(ν) .

Since
λ(gt) = λ(g) + λ(kt) ,

we have
λ(g)(ν) + λ(t)(ν) ≥ λ(gt)(ν) .

Moreover
λ(t−1gt)(ν) = −λ(t)(ν) + λ(gt)(ν) ≤ λ(g)(ν) .

The second assertion of the lemma follows. If v̄ lies in V Qp , there is a t with λ(t) in the positive Weyl chamber
such that tv̄t−1 lies in GZp . Since λ(tvt−1) is then zero, the first assertion follows from the second.

If R is any open half-space in chR which is bounded by a hyperplane passing through zero and if R̄ is its
closure, let

∑
R be the set of roots lying in R, let

∑+
R be the set of positive roots lying in R̄, and let

∑−
R be the set

of negative roots lying in R. Let n̄(R) be the Lie algebra spanned by the root vectors corresponding to roots in∑−
R and let N(R) be the group with Lie algebra n̄(R). If p is any prime, finite or infinite, we consider∫

NQp (R)

ψµ(n̄) dn̄ = δR(µ) .
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It has been shown by Gindikin and Karpelevich that, when p = ∞, this integral converges if
Reµ(Hα) > 0 for every positive root α and is equal to

∏
−α∈

∑−
R

π1/2 Γ
(

µ(Hα)
2

)
Γ
(

1+µ(Hα)
2

)
IfXα are the root vectors belonging to the Chevalley basis, the Haar measure is that associated to the form which
takes the value 1 on ∧

α∈
∑−

R

Xα .

We shall imitate their proof and show that the integral converges in the same region when p is finite and is equal
to

(4)
∏

−α∈
∑−

R

1 − 1
pµ(Hα)+1

1 − 1
pµ(Hα)

.

For the moment we shall assume this and complete our evaluation of the limit (3). Choose ε > 0 such that
Re (µ) − ερ lies in the positive Weyl chamber. Then

Re {λ(v̄)(µ+ ρ) − λ(tnv̄t−n)(µ− ρ)}

is the sum of
Re {(λ(v̄) − λ(tnv̄t−n)

)
(µ− ερ) + λ(tnv̄t−n)(ρ− ερ)}

and
Re {λ(v̄)(ρ+ ερ)} .

It follows from the lemma that the first expression is less than or equal to zero. Since∫
V Qp

pRe {λ(v̄)(ρ+ερ)} dv̄

is finite, we can take the limit under the integral sign in (3) to obtain

a(µ) =
1
a

∫
V Qp

pλ(v̄)(µ+ρ) dv̄

=
1
a

∏
α>0

1 − 1
pµ(Hα)+1

1 − 1
pµ(Hα)

Thus there is a constant c such that if |ξα(t)| ≥ c for α positive then

(5) φµ(t) =
1
a

∑
σ


∏
α>0

1 − 1
pσµ(Hα)+1

1 − 1
pσµ(Hα)

 pλ(t)(σµ−ρ) .
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Let ∏
α>0

(
1 − 1

pν(Hα)+1

)
=
∑
s̄∈T

bs̄p
λ(s̄)(ν) .

Only a finite number of the coefficients are not zero. If cα is the root of ch corresponding to α the formula (5) may
be written

(6) φµ(t) =
1
a

∑
S̄

bs̄

{ ∑
σ sgnσ p(λ(t̄s̄)+cρ)(σµ)∏

cα>0

(
p

cα(µ)
2 − p−

cα(µ)
2

)}p−λ(t)ρ.

This formula is valid for all µ. The relation of this formula to the Weyl character formula need not be pointed out
to the knowledgeable reader.

I do not know if it is valid for all t. However it is valid for t = 1. To prove this we show that the right side is
1 when t = 1. First of all, it follows from the formulae for δR(µ) that

a =
∏
α>0

1 − 1
pρ(Hα)+1

1 − 1
pρ(Hα)

=
∏

cα>0

1 − 1
p

cα(ρ)+1

1 − 1
p

cα(ρ)

.

Now bs̄ is zero unless
λ(s̄) =

∑
cα∈w

cα

where w is a subset of the positive roots of ch. Then cρ + λ(s̄) is either singular or in the orbit of cρ under cΩ.
To prove this∗ we recall that Kostant has shown in lemma 5.9 of his paper on the Borel-Weil theorem that every
element in the orbit of cρ+ λ(s̄) is of the form cρ+ λ(s̄′) with

λ(s̄′) = −
c∑

cα∈w′
α

and suppose that cρ + λ(s̄) lies in the positive Weyl chamber. If it is nonsingular, it equals cρ + λ with λ in
the positive Weyl chamber. Then λ = λ(s̄). It follows immediately that λ = λ(s̄) = 0. If b s̄ is not zero, the
corresponding term in brackets on the right side of (5) is zero when t = 1 and λ(s̄) + cρ is singular and is ±1
when t = 1 and λ(s) + cρ is in the orbit of cρ. In any case if, for brevity, we denote the right side of (6) by Θµ(t),
then Θµ(1) is independent of µ. Thus

Θµ(1) = Θρ(1) =
1
a

∑
σ

{∏
α>0

1 − 1
pσρ(Hα)+1

1 − 1
pσρ(Hα)

}
.

Suppose σ 6= 1. Then, for some simple root α0, σα0 = −β0 is negative and

σρ(Hβ0) = ρ(Hα0) = −1

and the corresponding term in the above sum is zero. Thus

Θµ(1) =
1
a

{∏
α>0

1 − 1
pρ(Hα)+1

1 − 1
pρ(Hα)

}
= 1 .

∗ [Added 1970] I now notice that I made the matter unnecessarily complicated.
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Since Θµ(t) is a linear combination of products of exponentials and polynomials in λ(t) it cannot vanish in an
open cone without vanishing identically. This the last formula shows it cannot do.

We are now in a position to show that if φµ is bounded then

Re λ(µ) ≤ λ̄(ρ)

for all λ. We may suppose that Re µ lies in the positive Weyl chamber. Then

Re λ(µ) ≤ Re λ̄(µ) ,

and we need only consider λ lying in the positive Weyl chamber. It will be simpler to consider only λ lying in
the interior of the positive Weil chamber. The assertion for points on the boundary can be obtained by a simple
limiting argument. Then if Re (σµ) 6= Re µ, for some σ in Ω, Re λ(σµ) < Re λ(µ).

Let w be the set of simple roots α for which Re cα(µ) = 0. Let
∑+

0 (w) be the set of all positive roots which
are linear combinations of the elements of w, and let

∑+(w) be the other positive roots. Let G1 be the subgroup
of G corresponding to the Lie algebra generated by the root vectors associated to the elements of

∑+(w) and
their negatives and let Ω1 ⊆ Ω be the Weyl group of G1. If σ belongs to Ω and Re σ(µ) = Re µ, then σ belongs
to Ω1. Set Θ′(t) equal to

1
a

∑
σ∈Ω1

{ ∏
α∈
∑+

(w)

1 − 1
pσν(Hα)+1

1 − 1
pσν(Hα)

}{ ∏
α∈
∑+

0
(w)

1 − 1
pσν(Hα)+1

1 − 1
pσν(Hα)

}
pλ(t)(σν−ρ) .

Since λ(t) = λ1 + λ2 with λ1 = λ(t1) for some t1 in the adjoint group of G1 and λ2(α) = 0 for α in w, we can
write Θ′(t) as the product of

1
a

{ ∏
α∈
∑+

(w)

1 − 1
pν(Hα)+1

1− 1
pν(Hα)

}

and { ∑
σ∈Ω1

( ∏
α∈
∑+

0
(w)

1 − 1
pσν(Hα)+1

1 − 1
pσν(Hα)

)
pλ1(σν−ρ)

}
pλ2(ν−ρ) .

Applying the previous discussion to G1 instead of G, we see that Θ′
ν is analytic at µ. Moreover Θ′

ν(t) does not
vanish, as a function of t, for λ(t) in an open cone. Set Θ′′

ν(t) = Θν(t) − Θ′
ν(t); Θ′′

ν (t) is also analytic at µ. As a
function of t, Θ′′

µ(t) is a linear combination of terms of the form p
(
λ(t)

)
pλ(t)(µ′−ρ) where µ′ is an element in the

orbit of µ with Re µ′ 6= Re µ and p
(
λ(t)

)
is a polynomial in λ(t). Thus, if λ(t) lies in the interior of the positive

Weyl chamber,
lim

n→∞ p−nλ(t)(µ−ρ)Θ′′
µ(tn) = 0

and
lim

n→∞ p−nλ(t)(µ−ρ)φµ(tn) = lim
n→∞ p−nλ(t)(µ−ρ)Θ′

µ(tn) .

Suppose φµ were bounded and for some λ in the positive Weyl chamber Re λ(ρ − µ) were less than zero. Then
there would exist a t such that Re λ(t)(ρ − µ) < 0 and Θ′

µ(tn) did not vanish identically. Then

lim
n→∞ p−nλ(t)(µ−ρ)Θ′

µ(tn) = 0 .
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On the other hand if t is fixed

p−nλ(t)(µ−ρ)Θ′
µ(tn) =

q∑
k=0

φk(n)nk

where φk(m) is a linear combination of exponentials eiαm with α real. We can suppose φq(n) 6≡ 0. Certainly

lim
n→∞φq(n) = 0 .

Let

φq(n) =
r∑

j=1

aje
iαjn

with α1, . . . , αr real and incongruent modulo 2π. Then

0 = lim
N→∞

1
N

N∑
n=1

φq(n)e−iαjn = aj .

This is a contradiction.
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4. THE FORMULA OF GINDIKIN AND KARPELEVICH

To complete the proof of the lemma and to prepare ourselves for the next stage of the argument, we must evaluate
the functions δR(µ) in closed form. The argument is an induction on the number of elements in

∑−
R . Since δR(µ)

is certainly 1 when
∑−

R is empty, we can start immediately with the induction step. LetC−
R andC+

R be the convex
cones with vertex at the origin generated by

∑−
R and

∑+
R respectively. Let

D+
R = {λ ∈ hR | λ(µ) ≥ 0 for all µ ∈ C+

R},
D−

R = {λ ∈ hR | λ(µ) ≥ 0 for all µ ∈ C−
R}.

If, as before, cρ = 1
2

∑
α>0

cα, then cρ lies in the interior of D+
R and, if

∑−
R is not empty, in the exterior of D−

R . If

R = {µ | λ0(µ) ≥ 0},

then λ0 lies in the intersection of D+
R with the interior of D−

R . Joining cρ to λ0, we pass through a point of the
boundary of D−

R which lies in the interior of D+
R . Since D−

R is polygonal, there is a point λ1 near this boundary
point which lies inside an n − 1 dimensional side of D−

R and in the interior of D+
R . Then

∑−
R is the set of all

negative roots satisfying λ1(α) ≥ 0. There is exactly one negative root −α0 such that λ1(−α0) = 0. Let

S = {µ | λ1(µ) > 0}.

Then
∑−

R is the union of −α0 and
∑−

S .
To establish the formula (4) we show that

δR(µ) =
1 − 1

pµ(Hα0 )+1

1 − 1
pµ(Hα0 )

δS(µ).

We shall also see that the integral defining δR(µ) converges if that defining δS(µ) does and

Reµ(Hα0) > 0.

Let N
0

be the one parameter group generated by the root vector X−α0 belonging to −α0. Let G0 be the group
corresponding to the Lie algebra spanned by Xα0 , X−α0 , and Hα0 . As usual there is a mapping of SL(2) into
G0 such that the image of (

1 0
x 1

)
is exp xX−α0 and the image of (

1 x
0 1

)
is exp xXα0 . The image of SL(2,Zp) is contained inGZp . If n̄1 = expxX−α0 , let a1 be the identity if x lies in Zp

and let a1 be the image of (
x−1 0
0 x

)
if x is not in Zp. Let n1 be the identity if x is in Zp and let n1 be the image of(

1 x−1

0 1

)
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if x is not in Zp. In all cases n̄1 lies in n1a1GZp . Thus, if n̄2 lies in NQp(S),

ψµ(n̄2n̄1) = ψµ(n̄2n1a1) = ψµ(a1)ψµ(a−1
1 n−1

1 n2n1a1) .

Consequently ∫
NQp (R)

ψµ(n̄) dn̄ =
∫

N
0
Qp

{ ∫
NQp (S)

ψµ(n̄2n̄1) dn̄2

}
dn̄1

=
∫

N
0
Qp

ψµ(a1)
{ ∫

NQp (S)

ψµ(a−1
1 n−1

1 n̄2n1a1)dn̄2

}
dn̄1 .

Let
n =

∑
λ1(α)>0

QpXα, a =
∑

λ1(α)>0
α>0

QpXα, b =
∑

λ1(α)>0
α<0

QpXα .

Here n is the direct sum of a and b. If Q is a closed half-space contained in S, let ΘQ be the set of roots contained
in Q. Let the distinct collections of roots obtained in this way be, in decreasing order, Θ0, Θ1, . . . ,Θl,Θl+1 = φ,
and set

nk =
∑

α∈Θk

QpXα .

The relations [n, nk] ⊆ nk+1 and nk = a∩ nk + b∩ nk are clear; in particular, n is nilpotent. The following rather
complicated lemma is an easy consequence of the Campbell-Hausdorff formula.

Lemma. Suppose n is a Lie algebra of nilpotent transformations of a vector space V over a field k of char-
acteristic zero and N is the associated group of linear transformations. Suppose

n = n0 % n1 % . . . % nl+1 = {0}

is a decreasing sequence of ideals in n and [n, nk] ⊆ nk+1. Suppose that a and b are two subspaces of n and

nk = nk ∩ a ⊕ nk ∩ b

for each k. Set ak = nk ∩ a, bk = nk ∩ b, and choose ãi, b̃i such that

ak =
l∑

i=k

⊕ ãi and bk =
l∑

i=k

⊕ b̃i .

Then every element of N can be written uniquely as

n = expX0 expX1 . . . expX1 expY1 . . . expY0

with Xi in ãi, Yi in b̃i. If X → Xa is an automorphism of n leaving each nk invariant let Xk+Yk → X ′
k+Y ′

k

be the induced transformation on
nk/nk+1 ' ãk ⊕ b̃k.

If
na = expX ′′

0 . . . expX ′′
1 expY ′′

1 . . . expY ′′
0 ,

then
X ′′

k = X ′
k + f(X0, . . . , Xk−1, Y0, . . . , Yk−1),

Y ′′
k = Y ′

k + g(X0, . . . , Xk−1, Y0, . . . , Yk−1)
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with some polynomial functions f and g.

In the case of concern to us, both a and b are subalgebras of n. The group corresponding to b is NQp(S).
There is a subgroup N(S) of G such that the group corresponding to a is NQp(S). Moreover N(S) is contained
in V the unipotent radical of B. As a particular consequence of the lemma

N = NQp(S)NQp(S).

If n̄2 lies in NQp(S) then a−1
1 n−1

1 n̄2n1a1 lies in N . Project it ontoNQp(S) to obtain n̄′
2. It is an easy consequence

of the lemma that the map n̄2 → n̄′
2 is a one-to-one mapping of NQp(S) onto itself and that

dn̄2 =
∏

λ1(α)<0
α>0

|ξα(a1)|−1dn̄′
2.

Now ψµ(a1) = pλ(a1)(µ+p) and

ρ−
∑

λ1(α)<0
α>0

α =
1
2

(
α0 +

∑
λ1(α)>0

α>0

α−
∑

λ1(α)<0
α>0

α

)
=

1
2

(
α0 +

∑
λ1(α)>0

α

)
.

Since ∑
λ1(α)>0

λ(a1)(α) = 0,

we have ∫
NQp (R)

ψµ(n̄) dn̄ =
{ ∫

N
0
Qp

pλ(ai)(µ+
α0
2 ) dn̄1

}{ ∫
NQp (S)

ψµ(n̄2) dn̄2

}
.

The first integral is equal to ∫
Zp

1 +
∫

x∈Qp
|x|>1

|x|−µ(Hα0 )−1 dx,

which is

1 +
(

1 − 1
p

) ∞∑
n=1

pn

pn(µ(Hα0)+1)
= 1 +

 1 − 1
p

pµ(Hα0 )

 1

1 − 1
pµ(Hα0 )

=
1 − 1

pµ(Hα0 )+1

1 − 1
pµ(Hα0 )

if Reµ(Hα0) > 0.
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5. A REVIEW OF EISENSTEIN SERIES

Let ∆ be the set of simple roots of h. If α0 belongs to ∆, there is a parabolic group P = P (α0) of rank one which
contains B associated to α0. Let N be the unipotent radical of P . Then P is the semidirect product of N and a
reductive group M . It is convenient to suppose that M contains T . LetA be the center of M and let 0G = A\M .
There is a map from P to 0G. Furthermore, 0G is the adjoint group of a split Lie algebra of rank one less than G.
Its Dynkin diagram is obtained by deleting α0 from the Dynkin diagram of G.

Lemma. Each of the maps
PQp → 0GQp , PZp → 0GZp , PA → 0GA

is surjective.

It is enough to verify this for the first two maps. Let 0T be the image of T in 0G. Using the Bruhat
decomposition one readily shows that the map PQp → 0GQp is surjective if the map TQp → 0TQp is surjective.
If 0t lies in 0TQp then ξβ(0t) is given for β in ∆ − {α}. There is certainly a t in TQp such that ξβ(t) = ξβ(0t) for
these β; t is mapped to 0t.

Suppose u in 0GZp is the image of p = vtk with v in VQp , t in TQp , k in GZp . For the purposes of the lemma
we may suppose that k = 1. If α is a root of 0G, then |ξα(t)| = 1. Let t0 be such that ξα(t0) = |ξα(t)| for each
root α; t0 must lie in the center of M . Replacing t by t0t, we may suppose that t lies in GZp or, even better, that t
is 1 and p = v. If p is infinite, v must lie in NQp and if p is finite v must be congruent modulo NQp to an element
of GZp . (See C. Chevalley, Séminaire Bourbaki, Exposé 219.)

If p belongs to P let χ(p) be the determinant of the restriction of Ad p to the Lie algebra of N . Every element
of GA is a product g = buwith b in BA and u in U ; set ξs(g) = ξs(b) =

∏
p |χ(bp)|s+ 1

2 . The product is taken over
all primes including the infinite one. The function ξs is well defined and is a function on PQ\GA. Let φ be one of
the basis elements for the cusp forms on 0GQ\0GA. Of course φ is supposed to be invariant on the right under
0U . Also φ may be lifted to a function on NAPQ\PA. If g = bu, set

F (g, s, φ) = ξs(g)φ(b) .

This function is well defined. The sum

E(g, s, φ) =
∑

γ∈PQ\GQ

F (γg, s, φ)

is called an Eisenstein series. It converges absolutely for Re s > 1
2 but the function on the left is actually a

meromorphic function of s for all g. By the way, if g belongs to GR,

E(g, s, φ) =
∑

γ∈PZ\GZ

F (γg, s, φ) .

Suppose P ′ = P (α′
0) is another parabolic group of rank one, and N ′ is its unipotent radical. Then∫

N ′
Q
\N ′

A

E(ng, s, φ) dn

is for each g a meromorphic function of s. If Re s > 1
2 , it is equal to∫

N ′
Q
\N ′

A

∑
PQ\GQ

F (γng, sφ) dn ,
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which equals ∫
N ′

Q
\N ′

A

∑
NQ\GQ/N ′

Q

∑
γ−1PQγ∩N ′

Q
\N ′

Q

F (γδng, s, φ) dn

or ∑
PQ\GQ/N ′

Q

∫
γ−1PQγ∩N ′

Q
\NA

F (γng, s, φ) dn.

Because of the Bruhat decomposition we can suppose that each γ is of the form γ = wγ′ withw in the intersection
of GZ and the normalizer of T and γ′ in P ′

Qp
. Then a typical term equals*∫

w−1 PQw∩N ′
Q
\N ′

A

F (wng, s, φ) dn.

There is an order on the roots of 0G such that the positive roots are those of the formwαwhere α is a positive
root of G. Multiplying w on the left by an element in the normalizer of T in GZ ∩M , we may suppose this is the
order induced from the original order on the roots of h. Let 0

∑
+ be the roots of 0G of the form wα where α is a

positive root of G which is not a root of 0G′ and let 0
∑

0 be the roots of 0G of the form wα where α is a positive
root of G which is a root of 0G′. If α belongs to 0

∑
+ and β belongs to 0

∑
+ or to 0

∑
0 and α+ β is a root, then

α+β belongs to 0
∑

+; on the other hand, if α and β both belong to 0
∑

0 and α+β is a root, thenα+β belongs to
0
∑

0. As a consequence, the group N ′′ whose Lie algebra is the span of {Xα|α ∈ 0
∑

+} is the unipotent radical
of a parabolic subgroup of 0G. Since w−1N ′′w is contained in N ′ and

w−1PQw ∩ w−1N ′′
Qw = w−1N ′′

Qw,

our integral equals ∫
(w−1PQw∩N ′

Q
)w−1N ′′

A
w\N ′

A

{ ∫
N ′′

Q
\N ′′

A

F (n1wng, s, φ)dn1

}
dn .

If wng = bk with b in BA and k in U , the inner integral equals

ξs(b)
∫

N ′′
Q
\N ′′

A

φ(n1b) dn1

which is zero if N ′′ 6= {1} because φ is a cusp form. Thus the integral vanishes identically unless every positive
root of 0G is of the formwαwhereα is a root of 0G′. Then, if α is a positive root of 0G′,wα is a linear combination
of roots of 0G and thus a root of 0G. As a consequence, wM ′w−1 = M . For these terms we can take γ ′ = 1.
If P = P ′, then w = 1 is one possibility and the resulting integral is F (g, s, φ), which is for each g an entire
function of s. The only other possibility is that wP ′w−1 is the parabolic group opposed to P . This is the case we
are interested in. Then w−1PQw ∩N ′

Q = {1} and∫
N ′

A

F (wng, s, φ) dn

is for each g a meromorphic function of s in the whole complex plane.

* [Added 1970] This statement is, I now notice, an oversimplification. There should be a factor in front which
depends on γ and g should be replaced by γ′g.
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We have demanded that w lie in GZ. We can also demand that it lie in GZ∞ ; this will make it easier to
evaluate the integral for then w lies in U and

F (wng, s, φ) = F (wngw−1, s, φ) .

It is enough to evaluate the integral for g = m′ in M ′
A. Set m = wm′w−1; m lies in MA. A simple change of

variable shows that the integral equals∏
p
|χ(mp)|−1

∫
N ′

A

F (mwnw−1, s, φ) dn .

The product is taken over all primes including the one at infinity. If N is the unipotent radical of the group
opposed to P , this may also be written as

(7)
∏

p
|χ(mp)|−1

∫
NA

F (mn̄, s, φ) dn̄.

The map T → 0T determines a map hR → 0hR. Since we have more or less consistently viewed chR and
c(0h)R as the duals of hR and 0hR, we can agree that this determines a map c(0h)C into chC. If χp is for each p the
homomorphism of the Hecke algebra into the complex numbers determined by φ, let 0µp be one of the elements
in c(0h)C associated to χp. Its image in chC will again be denoted by 0µp. If ν is the sum of those roots whose
root vectors belong to the Lie algebra of N , we set µp(s) = 0µp + sν. Denote this set of roots by

∑
. If

M(s) =

{ ∏
α∈
∑ π1/2 Γ

(
µ∞(s)(Hα)

2

)
Γ
(

µ∞(s)(Hα)+1
2

) } ∏
p finite

{ ∏
α∈
∑

1 − 1
pµp(s)(Hα)+1

1 − 1
pµp(s)(Hα)

}
,

the integral in the expression (7) is equal to

M(s)F (m, s, φ) .

This is not too difficult to prove. Observe first that if Sk is the set consisting of the finite prime and the first
k finite primes the integral in (7) is equal to

lim
k→∞

∫
∏

p∈Sk
NQp

F (mn̄, s, φ) dn̄ .

So to prove our assertion all we need to do is show that, if h lies in
∏

q 6=p

GQq ∩GA and m lies in MQp then

∫
NQp

F (hmn̄, s, φ) dn̄ =
{ ∏

α∈
∑ π1/2 Γ

(
µp(s)(Hα)

2

)
Γ
(

µp(s)(Hα)+1
2

) }
F (hm, s, φ)

if p is the infinite prime and

∫
NQp

F (hmn̄, s, φ) dn̄ =
{ ∏

π∈
∑

1 − 1
pµp(s)(Hα)+1

1 − 1
pµp(s)(Hα)

}
F (hm, s, φ)
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if p is a finite prime.
Fix a prime, finite or infinite; fix h in ∏

q 6=p

GQq ∩GA

and consider the function F (hg, s, φ), g in GQp .
If h = bu, b in BA, u in U , if b̄ is the projection of b on MA, and if g = n(g)m(g)k(g) with n(g) in NQp , m(g)

in MQp , and k(g) in GZp then it equals
ξs(h)ξs

(
m(g)

)
φ
(
b̄m(g)

)
.

If m belongs to MQp , set ψ(m) = φ(b̄m). If it is convenient, we can regard ψ(m) as a function on 0GQp . We are
reduced to evaluating

(8)
∫

NQp

ξs
(
mm(n̄)

)
ψ
(
mm(n̄)

)
dn̄

if ψ is a function on 0GQp invariant under right translations by elements of 0GZp which is an eigenfunction of the
operators λ(f) for f in 0Hp associated to the homomorphism χp of 0Hp into C determined by 0µp. Of course we
assume that the integral converges absolutely. Recall that

λ(f)ψ(g) =
∫

0GQp

ψ(gh)f(h) dh

if g belongs to 0GQp .
Let M = MQp and let

K = GZp ∩ PQp/GZp ∩NQp .

Define a measure µ on M/K by setting µ(E) equal to the measure of

{n̄ ∈ NQp | m(n̄)E} .

Suppose k lies in K and n̄ in N equals n(n̄)m(n̄)k(n̄); let k be the coset of k̄. Since

k̄n̄k̄−1 =
(
k̄n(n̄)k̄−1

)(
k̄m(n̄)k̄−1

)(
k̄k(n̄)k̄−1

)
,

the sets {n̄|m(n̄) ∈ kE} and {k̄n̄k̄−1|m(n̄) ∈ E} are the same and µ is left-invariant under K . Define a measure
on M , again called µ, which is invariant under left and right translations by elements of K by setting

µ(E) =
∫

M/K

{∫
K

χE(mk) dk
}
dµ(m)

if χE is the characteristic function of E.
The integral (8) is equal to ∫

M

ξs(mm1)ψ(mm1) dµ(m1) .

If F is a subset of 0GQp = AQp MQp and E is the inverse image of F in MQp , set

νs(F ) =
∫
E

ξs(m1) dµ(m1) .
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Since, as we observed earlier,K maps onto 0GZp , νs is invariant on the left and the right under 0GZp . The integral
(8) equals

ξs(m)
∫

0GQp

ψ(m̄h) dνs(h)

if m̄ is the image of m in 0GQp .
Let F1 ⊆ F2 ⊆ . . . be an increasing sequence of compact sets (we assume that 0GZpFi

0GZp = Fi) whose
union exhausts 0GQp and define the measure νn

s by νn
s (F ) = νs(F ∩ Fn). Since νn

s belongs to Hp∫
0GQp

ψ(m̄h) dνs(h) = lim
n→∞

∫
0GQp

ψ(m̄h) dνn
s (h) = ψ(m̄) lim

n→∞χp(νn
s )

and the integral (8) equals
ξs(m)ψ(m) lim

n→∞χp(νn
s ) .

To evaluate the limit, take ψ to be the function ψ0µp
of Section 3; then

ξs
(
m(g)

)
ψ0µp

(
m(g)

)
= ψµp(s)(g)

and

lim
n→∞χp(νn

s ) =
∫

NQp

ψµp(s)(n̄) dn̄.

The integral on the right can be evaluated by the formula of Gindikin and Karpelevich if Re s is sufficiently large.
Retracing our steps, we see that the integral in (7) is indeed equal to M(s)F (m, s, φ) and conclude that M(s) is
a meromorphic function in the whole complex plane.

J. Tits pointed out a way of expressing M(s) which is more convenient for our purposes. We observed that
there was a map of c(0h)C into chC. It is easy to see that it is induced by an imbedding of c(0g) in cg. Since c(0G)
is simply connected, there is an associated map of c(0G) into cG. Let cn be the Lie algebra spanned by the root
vectors belonging to positive roots of cG which are not roots of c(0G). These are the roots cα corresponding to
roots in

∑
. Let Hcα be the copoid attached to cα and set

H0 =
∑

α∈
∑Hcα .

Let n1, . . . , nr be the eigenspaces of ad (H0) in cn. Let ai be the eigenvalue of ad (H0) corresponding to ni. Each
of the subspaces ni is invariant under c(0G); let πi be the representation of c(0G) on ni. If π̃i is the representation
contragredient to πi, then M(s) can be written as

r∏
i=1

ξ(ais, π̃i, φ)
ξ(ais+ 1, π̃i, φ)

.
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6. EXAMPLES

If r is 1, then

M(s) =
ξ(a1s, π̃1, φ)

ξ(a1s+ 1, π̃1, φ)

is meromorphic in the whole plane and

ξ(s, π̃1, φ) = M

(
s

a1

)
ξ(s+ 1, π̃1, φ) .

Since we already know that ξ(s, π̃1, φ) is analytic in a half-plane, we can conclude that it is meromorphic in the
whole plane.

If r = 2 and ξ(s, π̃1, φ) is known to be meromorphic in the whole plane, the same argument shows that
ξ(s, π̃2, φ) is meromorphic in the whole plane. Thus every time we can adjoin a point to the Dynkin diagram of
0G to obtain the Dynkin diagram of a group of rank 1 greater, we can expect to find a representation π of c(0G) for
which ξ(s, π, φ) is meromorphic in the whole plane. Before listing the possibilities, there is one further remark I
should make.

If we define the function ξ ′s in the same manner as ξs, the expression (7) is easily seen to equal

M(s)ξ′−s(m
′)φ(vm′w−1) = M(s)ξ′−s(m

′)φ′(m′) .

Recall that m = vm′w−1. Of course φ′ is a function on A′
A M

′
A and thus a function on 0G′

A. It satisfies the same
conditions as φ. Associated to it is a function

M ′(s) =
r′∏

i=1

ξ(a′is, π̃i, φ
′)

ξ(a′is+ 1, π̃′
i, φ

′)
.

But m′ → wm′w−1 defines an isomorphism of M ′ with M and an isomorphism of 0G′ with 0G. Thus φ and φ′

are essentially the same. Moreover c(0G′) and c(0G) are isomorphic, such that a representation of c(0G′) may be
regarded as a representation of c(0G). Recalling that the elements of the adjoint group of cG are orthogonal with
respect to the Killing form and that the Killing form turns Ad w(cn′) into the dual of cn, one sees readily that
r = r′, that, with a suitable order, a′i = ai, and that π′

i is the contragredient of πi. Thus

M ′(s) =
r∏

i=1

ξ(ais, πi, φ)
ξ(ais+ 1, πi, φ)

.

It is known thatM(s)M ′(−s) = 1. This is implied by, but does not imply, the relation ξ(s, πi, φ) = ξ(1−s, π̃i, φ).
In the examples we shall give the Dynkin diagram of G with the points belonging to the Dynkin diagram of

0G labeled. We give the number r, the numbers ai, and the highest weight λi of the representations πi as a linear
combination of the fundamental weights δj . In the examples considered, πi is always irreducible. Do not forget
that πi is not a representation of 0G but a representation of c(0G).

(i)
1
o

1
o

α1

1
o

α2

. . .
1
o

αn−1

1
o

αn

r = 1 a1 = n+ 2 λ1 = δn

(ii)
1
o

α1

1
o

α2

. . .
1
o

αn−1

1
o

αn

1
o

r = 1 a1 = n+ 2 λ1 = δ1
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(iii)
1
o

α1

1
o

α2

. . .
1
o

αm−1

1
o

1
o

αm

. . .
1
o

αn

r = 1 a1 = n+ 2 λ1 = δ1 + δn

(iv)
2
o

α1

2
o

α2

. . .
2
o

αn−1

2
o

αn

1
o

r = 1 a1 = 2(n+ 1) λ1 = 2δ1

(v)
1
o

2
o

α1

2
o

α2

. . .
2
o

αn−1

2
o

αn

r = 1 a1 = 2(n+ 1) λ1 = 2δn

(vi)
1
o

α1

1
o

α2

. . .
1
o

αn−1

1
o

αn

2
o

r = 2 a1 = 2(n+ 2) λ1 = δ2

a2 = n+ 2 λ2 = δ1

(vii)
2
o

1
o

α1

1
o

α2

. . .
1
o

αn−1

1
o

αn

r = 2 a1 = 2(n+ 2) λ1 = δn−1

a2 = n+ 2 λ2 = δn

(viii)
1
o

α1

1
o

α2

. . .
1
o

αn−2

1
o

αn−1

r = 1 a1 = 2n λ1 = δ2

.........................................................

...............
...............

...............
..............

1
o

1
o
αn

(ix)
1
o

α1

1
o

α2

. . .
1
o

αn−2

1
o

αn−1

r = 1 a1 = 2n λ1 = δ1

.........................................................

...............
...............

...............
..............

1
o

1
o
αn

(x)
1
o

α1

1
o

α2

1
o∣∣1
o

α3

1
o

α4

1
o

α5

r = 2 a1 = 11 λ1 = δ3

a2 = 22 λ2 = 0
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(xi)
1
o

α1

1
o

α2

1
o

α3

1
o∣∣1
o

α4

1
o

α5

1
o

α6

r = 2 a1 = 14 λ1 = δ3

a2 = 28 λ2 = δ6

(xii)
1
o

α1

1
o

α2

1
o∣∣1
o

α3

1
o

α4

1
o

α5

1
o

α6

r = 2 a1 = 14 λ1 = δ4

a2 = 28 λ2 = δ1

(xiii)
1
o

α1

1
o

α2

1
o

α3

1
o

α4

1
o∣∣1
o

α5

1
o

α6

1
o

α7

r = 3 a1 = 51 λ1 = δ1

a2 = 34 λ2 = δ6

a3 = 17 λ3 = δ3

(xiv)
1
o

α1

1
o

α2

1
o∣∣
o

α3

1
o

α4

1
o

α5

1
o

α6

1
o

α7

r = 3 a1 = 51 λ1 = δ1

a2 = 34 λ2 = δ2

a3 = 17 λ3 = δ5

(xv)
3
o

α1

1
o

r = 2 a1 = 10 λ1 = 0
a2 = 5 λ2 = 3δ1

This example is particularly striking.

(xvi)
3
o

1
o

α1

r = 3 a1 = 3 λ1 = δ1

a2 = 6 λ2 = 0
a3 = 9 λ3 = δ1
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(xvii)
2
o

2
o

α1

. . .
2
o

α2

· · ·
2
o

αn−1

1
o

αn

r = 2 a1 = 2n+ 1 λ1 = δ1

a2 = 4n+ 2 λ2 = 0

(xviii)
1
o

1
o

α3

2
o

α2

2
o

α1

r = 2 a1 = 22 λ1 = 0
a2 = 11 λ2 = δ3

(xix)
1
o

1
o

α2

2
o

α1

r = 1 a1 = 4 λ1 = δ2

(xx)
1
o

1
o

α1

· · ·
1
o

αn−2

1
o

αn−1

2
o

αn

r = 1 a1 = 2(n+ 1) λ1 = δ1

(xxi)
1
o

α1

2
o

α2

2
o

r = 2 a1 = 5 λ1 = δ2

a2 = 10 λ2 = 0

(xxii)
1
o

α1

1
o

α2

2
o

α3

2
o

r = 2 a1 = 16 λ1 = δ1

a2 = 8 λ2 = δ3

(xxiii)
1
o

α1

1
o

α2

. . .
1
o

αn−2

1
o

αn−2

r = 1 a1 = 2n λ1 = δ1

.........................................................

...............
...............

...............
..............

1
o
αn

1
o
αn

(xxiv)
1
o

α1

1
o

α2

1
oα5∣∣1
o

α3

1
o

α4

1
o

r = 1 a1 = 12 λ1 = δ5
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(xxv)
1
o

α1

1
o

α2

1
oα4∣∣1
o

α3

1
o

α5

1
o

r = 1 a1 = 12 λ1 = δ4

(xxvi)
1
o

α1

1
o

α2

1
o

α3

1
oα6∣∣1
o

α4

1
o

α5

1
o

r = 2 a1 = 34 λ1 = 0
a2 = 17 λ2 = δ5

(xxvii)
1
o

α1

1
o

α2

1
o

α3

1
oα5∣∣1
o

α4

1
o

α6

1
o

r = 2 a1 = 34 λ1 = 0
a2 = 17 λ2 = δ6

(xxviii)
1
o

α1

1
o

α2

1
o

α3

1
o

α4

1
oα7∣∣1
o

α5

1
o

α6

1
o

r = 2 a1 = 46 λ1 = δ1

a2 = 23 λ2 = δ7

(xxix)
1
o

α1

1
o

α2

1
o

α3

1
o

α4

1
oα6∣∣1
o

α5

1
o

α7

1
o

r = 2 a1 = 46 λ1 = δ1

a2 = 23 λ2 = δ6

(xxx)
1
o

1
o

α1

1
o

α2

1
oα6∣∣1
o

α3

1
o

α4

1
o

α5

r = 1 a1 = 18 λ1 = δ5

(xxxi)
1
o

1
o

α5

1
o

α4

1
oα6∣∣1
o

α3

1
o

α2

1
o

α1

r = 1 a1 = 18 λ1 = δ1
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(xxxii)
1
o

1
o

α1

1
o

α2

1
o

α3

1
oα7∣∣1
o

α4

1
o

α5

1
o

α6

r = 2 a1 = 29 λ1 = δ1

a2 = 58 λ2 = 0


