
Eisenstein Series, the Trace Formula, and the

Modern Theory of Automorphic Forms*

1. Eisenstein Series and Automorphic L-functions

The modern theory of automorphic forms is a response to many different impulses and influences,

above all the work of Hecke, but also class-field theory and the study of quadratic forms, the theory

of representations of reductive groups, and of complex multiplication, but so far many of the most

powerful techniques are the issue, direct or indirect, of the introduction by Maass and then Selberg of

spectral theory into the subject.

The spectral theory has two aspects: (i) the spectral decomposition of the spaces L2(Γ\G) by

means of Eisenstein series; (ii) the trace formula, which can be viewed as a striking extension of the

Frobenius reciprocity law to pairs (Γ, G), G a continuous group and Γ a discrete subgroup.

The attempt to discover a class of Euler products attached to automorphic forms that would include

the Dirichlet series with Grössencharakter attached to real quadratic fields led Maass in 1946, under

difficult circumstances in the chaos of immediate postwar Germany, to the study of eigenfunctions of

the Laplacian

∆ = y2

(
∂2

∂x2
+

∂2

∂y2

)

on the upper half-plane, eigenfunctions that transform simply, or are even invariant, under discrete

groups, Γ, especially subgroups of the modular group [27]. Apparently he was influenced to some

extent by the work of Fueter on quaternionic function theory.

It is simplest to consider functions actually invariant under the discrete group. If it is Fuchsian and

the fundamental domain is not compact, then ∆ has a continuous spectrum, and the corresponding

eigenfunctions are given by analytic continuation of functions defined by infinite series, the Eisenstein

series. They are attached to cusps. If, for example, the cusp is at infinity so that the group

Γ∞ =
{
γ =

(
1 x
0 1

)
| γ ∈ Γ

}
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is infinite, then the attached series is

∑
γ∈Γ∞\Γ

y(s+1)/2 =
∑(

y

|cz + d|2
)(s+1)/2

. (1.1)

This series is easily seen to converge forRe s > 1 and to yield eigenfunctions of∆, but not the ones

needed for the spectral decomposition, for they correspond to parameters satisfying Re s = 0. Thus

an analytic continuation is required. It is often carried out in two steps as in [22], the functions being

first continued to the region Re s > 0, either with the help of the resolvent or the Green’s function, the

method used by Roelcke, or by a truncation process as employed by Selberg. The continuation across

Re s = 0 was first effected by Selberg by means of a further truncation and the reflection principle.

To recapitulate briefly, Maass’s work on Euler products and automorphic forms drew his attention

to a problem in spectral theory that, in turn, led to a problem in analytic continuation. The purpose

of the first part of this lecture is to recall how a much larger class of Euler products, the automorphic

L-functions, one of the central notions of the modern theory of automorphic forms, arose, a little by

accident, from the solution of the problem in analytic continuation.

Recall first that in the fifties there was a tremendous surge of interest in automorphic forms on

groups of higher dimension – due largely, I suppose, to the papers of Siegel on orthogonal groups and

the symplectic groups; so it is hardly surprising that Selberg and others attempted to extend to them his

techniques and ideas, the analytic continuation of the Eisenstein series and the trace formula. Decisive

progress, however, had to await the introduction by Gelfand in 1962 [15] of the general notion of cusp

forms that lies at the center of the spectral theory in higher dimensions.

Although it is not necessary, it is extremely convenient, if only to avoid elaborate notational

complications, to work with adelic groups. In addition, the spectral decomposition is then made with

respect to the largest possible family of operators, including the Hecke operators and the differential

operators. It entails working on the group rather than the symmetric space, but then the obvious

symmetries are recognized and the same problem not solved repeatedly.

For example, if G = GL(n) then an automorphic form is a function φ on G(Q\G(A). It is a cusp

form if, for every block decomposition of the n× n matrices and every g ∈ G(A), we have

∫
φ

((
I X
0 I

)
g

)
dx = 0.

Here X is an n1 × n2 matrix, n1 + n2 = n, with adelic entries.
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The notion of a cusp form clearly isolated, the analytic continuation of the general Eisenstein series

is effected in three steps.

A. Series in One Variable Attached to Cusp Forms. If, for example, G is SL(n) and n = n1 + n2,

then such a series is associated to a cusp form φ on

M(A) =
{
m =

(
m1 0
0 m2

)
∈ G(A)

}

and to a parameter s. Here mi is an ni × ni matrix. For simplicity, I am confining myself to functions

invariant on the right under a maximal compact subgroup K .

If

N =
{(

I X
0 I

)}

P =
{(

A X
0 B

)}

then

P = MN = NM.

Set

Fs(nmk) = φ(m)
( |det m1|n2

|det m2|n1

)s+1/2

. (1.2)

Then the Eisenstein series is

Es(g) =
∑

γ∈P (Q)\G(Q)

Fs(γg). (1.3)

Provided that φ is a cusp form, the methods used for the Eisenstein series on the upper half-plane will

deal with those that like (1.3) are associated to maximal parabolic subgroups P and thus involve only

a single parameter, although the extension should perhaps not be thought of as entirely routine.

B. Series in Several Variables Associated to Cusp Forms. They are attached to non maximal

parabolic subgroups, thus for SL(n), to partitions n = n1+n2+ · · ·+nr with more than two elements.

The group M is given by

M = {




m1

m2

. . .
mr


 |∏det mi = 1},
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and P and N are defined accordingly. The functions Fs and the series Es now depend on several

parameters s = (s1, . . . , sr),
∑

nisi = 0.

Fs(nmk) = φ(m)
r∏

i=1

|det mi|si+ρi (1.4)

where the ρi are real numbers chosen to simplify the formulas for the functional equations. To

deal with these Eisenstein series, one combines the results from A with forms of Hartog’s lemma. I

observe that Hartog’s lemma was introduced into the subject quite early, and by several mathematicians

independently (cf. Appendix I of [22]).

C. The General Eisenstein Series. Apart from a more complicated dependence on k ∈ K , these are

defined by functions like (1.4), with φ being any square-integrable automorphic form on M(A). That

φ is no longer necessarily a cusp form entails altogether new difficulties. Even for classical groups of

low dimension, the analytic continuation of these series and the spectral decomposition involve quite

different ideas than those that suffice for A or B [22].

One need not look far for fatuous and misleading comments on the techniques involved in the

three steps. They are regrettable, but fortunately need not concern us here, for it is the series of step A,

or rather the calculation of their constant term, that led to the introduction of the general automorphic

L-functions and the principle of functoriality. Thus these ideas could have appeared before the general

theory of Eisenstein series and independently of it, but the psychological inhibitions may have been

too great.

A perhaps too simple formulation of the principle of functoriality is that certain natural operations

on the L-series attached to automorphic forms reflect possible operations on the forms themselves. The

usual Hecke theory, for example, associates to an automorphic form an Euler product

∏
ρ �∈S

1
(1− αpp−s)(1− βpp−s)

. (1.5)

Since it is only the unordered pair {αp, βp} that matters, we may think of it as a conjugacy class {tp}
of complex 2 × 2 matrices with these eigenvalues. A natural operation on elements of GL(2) is to let

them act on symmetric tensors of a given degree n. This transforms conjugacy classes in GL(2) into

conjugacy classes in GL(n+ 1). So we pass from

{tp} =
{(

αp 0
0 βp

)}
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to 





αn
p

αn−1
p βp

. . .
αpβ

n−1
p

βn
p







This leads us from the Euler product (1.5) to

∏
p �∈S

1
(1− αn

pp
−s)(1− αn−1

p βpp−s)(1− βn
p p

−s)
,

and the principle of functoriality predicts that there is an automorphic form on GL(n + 1) to which

this series is attached.

Before indicating how the calculation of the constant term of Eisenstein series suggested the

introduction of automorphic L-functions, I recall, for it is easy to forget, that 20 years ago it was by no

means clear how, or even whether, the Hecke theory could be extended to groups other than GL(2).

Ideas of varying quality were proposed, and it is surprising that this calculation, carried out more to pass

the time than with any precise aim, should yield not only specific series whose analytic continuation and

functional equation could be proved, but also a class of series with a natural completeness. Repeated

efforts to rework the Hecke theory had led nowhere, except perhaps to a clearer understanding of how

it functioned, which could only later be turned to profit.

There is a classical paradigm for the calculation, that giving the constant term of the series (1.1) or,

more precisely, since we have passed to the adèle group, of

Es(g) =
∑

P (Q)\G(Q)

Fs(γg),

with

Fs(g) =
∣∣a
b

∣∣s+1/2
, g =

(
1 x
0 1

)(
a 0
0 b

)
k.

Here P is the group of upper-triangular matrices in G = GL(2), and K a maximal compact subgroup

of G(A).

If N is the subgroup

N =
{(

1 x
0 1

)}
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of P , then the constant term of Es is the function

∫
N(Q)\N(A)

Es(ng)dn =
∫

Q\A
Es

((
1 x
0 1

)
g

)
dx.

To calculate it, we substitute the series expansion for Es, and combine terms appropriately to obtain

∑
γ∈P (Q)\G(Q)/N(Q)

∫
P (Q)∩γ−1N(Q)γ\N(A)

Fs(γng)dn.

The double coset space P (Q)\G(Q)/N(Q) appearing here has a simiple structure, for it consists

of only two elements with representatives

γ =
(
1 0
0 1

)
= 1, γ =

(
1 0
0 1

)
= ω.

This is special case of the Bruhat decomposition that will appear later. For γ = 1 the integral is simply

Fs(g), because ∫
N(Q)\N(A)

dn = 1.

For γ = ω the integral is a product

∏
v

∫
N(Qv)

Fs(ωnvgv)dnv, (1.6)

because

P (Q) ∩ ω−1N(Q)ω = 1.

The integrals appearing in (1.6) can be calculated place by place. Take g to be 1, so that each gv is

1. For a nonarchimedean place, we calculate Fs(wnv) easily. First of all,

ωnv =
(
0 1
1 0

)(
1 x
0 1

)
=
(
0 1
1 x

)
.

If x is integral this matrix belongs to K and

Fs(ωnv) = 1.

Otherwise (
0 1
1 x

)
=
(
1 ∗
0 1

)(
x−1 0
0 x

)( ∗ ∗
x−1 1

)
, |x| > 1.
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Thus ∫
N(Qv)

F (ωnv)dnv = 1 +
(
1− 1

p

) ∞∑
n=1

1
pns

=
1− 1

ps+1

1− 1
ps

.

Taking the product over the finite places, we obtain

ζ(s)
ζ(s+ 1)

.

The infinite place yields the usual supplementary Γ-factor.

In general one carries out the calculation in a similar fashion and, at the end, a result obtained, one

looks for a transparent way to express it. It is at this stage that the automorphic L-functions suggest

themselves. What are the ingredients of the calculation?

i) The Eisenstein series associated to a cusp form φ on a Levi subgroup M of a maximal parabolic

subgroup of G. Because φ is a cusp form the constant term will be expressed in terms of cusp forms

for the same group M . (I observe, in passing, that square-integrable forms are not closed in the same

way. This is one of the reasons that C is more difficult than A and B.) The constant term is itself a

sum of one or two terms, depending upon the nature of the Bruhat decomposition. (I observe, again in

passing, that for the classical groups the concepts of a parabolic subgroup or the Bruhat decomposition

are elementary notions of linear algebra that could profitably be included in the education of all pure

mathematicians.)

ii) Since we are working adelically, the calculation is ultimately local, and we are able to draw on

our experience with local harmonic analysis, especially Harish-Chandra’s theory of spherical functions

on real groups, and the explicit formulas that Bhanu-Murty and Gindikin-Karpelevich contributed to

it.

The calculation itself was carried out for a large number of illustrative cases in [21]. One begins

with P and writes an arbitrary element g of G(A) as g = nmk, n ∈ N(A),m ∈ M(A), k ∈ K . The

function Fs has the form

Fs(g) = χs(m)φ(m)ψ(k),

where χs is a character of M(A) that depends on the complex parameter s. The Eisenstein series is

Es(g) =
∑

P (Q)\G(Q)

Fs(γg),
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with constant term ∫
N ′(Q)\N ′(A)

Es(n′g)dn′. (1.7)

The group N ′ belongs to a parabolic subgroup P ′, that may or may not be P itself.

Since the Eisenstein series can be continued to the whole complex plane as a meromorphic function

of s, so can (1.7). The Bruhat decomposition allows us to write (1.7) as a sum of one or two terms. If

there are two, one is simply Fs(g), which is entire, so that the remaining term, the one in which we are

interested, is as well behaved as (1.7) itself. It is

∫
N ′(A)

Fs(ωn′g)dn′, (1.8)

with a suitable ω.

To calculate (1.8) as a product it is necessary to be somewhat careful in the choice of φ and ψ and,

in addition, to recall that for each g the function φg : m → φ(mg) belongs to a space V of functions

on M(Q)\M(A) transforming according to an irreducible representation σ of M(A). Thus φ may be

regarded as a function φg on G(A) with values in V and, more precisely, as an element of the space of

the induced representation

IndG
Pσs,

σs being the tensor product of σ with χs. It is extended to P (A) by making it trivial on N(A).

It turns out – as a result of formal considerations – that the operation (1.8) depends only on the

class of σ and not on its realization on a subspace of L2(G(Q)\G(A)). The only information we need

from the realization, but this is of course decisive, is that (1.8) can be analytically continued. To calculate

(1.8) as a product, we work abstractly, realizing σ as a product ⊗σv , and at the places where there is no

ramification we can take a simple model for σv to perform the calculations.

The calculations reduce finally to simple summations like those for GL(2), but this requires some

understanding of the unramified representations of the local groups G(Qp) or, what amounts to the

same thing, of the structure of the local Hecke algebras. This is an elementary but somewhat elaborate

topic.

Almost everywhere the reductive group G with which we began is split, or at worst quasisplit,

and split over an unramified extension. It is only such groups that have representations that we can

call unramified. Their unramified representations can be parametrized, and an elegant form of the
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parametrization is forced upon us by the need to express the results of the calculation in transparent

form. The parameter attached to an unramified representation is a semisimple conjugacy class {t(πp)}
in a complex reductive group LG. (For G = GL(n) the group LG is again GL(n), as was implicit in

our earlier remarks; for other groups the relation between G and LG is less than direct.)

At almost all places the local factors of the constant term can be expressed in terms of the classes

{t(πp)}. There are finite-dimensional complex analytic representations r1, . . . , rn of LM and constants

a1, . . . , an such that the local factor is

n∏
i=1

det(I − ri(t(πp))p−ai(s+1))
det(I − ri(t(πp))p−ais)

.

This suggests the introduction, for any complex analytic representation r of any LG, of the Euler

product

LS(s, π, r) =
∏
p �∈S

1
det(I − r(t(πp))p−s)

. (1.9)

Here S is a finite set of places that a finer treatment would remove. Thus the constant term (1.8) is in

essence a product
n∏

i=1

LS(ais, π, ri)
LS(ais+ 1, π, ri)

.

The analytic continuation of the series (1.9) can then be obtained in sufficiently many cases to

justify their further study by choosing some group M , which becomes the group of primary interest,

and then searching for a goup G that contains a parabolic subgroup of which it is a Levi factor. A large

number of examples were given in [21].

2. The Structure of Trace Formulas and their Comparison

The L-functions attached by Hecke to modular forms in the upper half-plane are of great arithmetical

importance, and so are the general automorphic L-functions. Of course, as usual for objects attached

to reductive groups, the more familiar the groups the more important the object, so that the functions

attached to the general linear group or the symplectic group will appear more frequently and in more

critical circumstances than the others. That does not make them any easier to treat, and methods

must be found to establish in general the basic analytic properties: analytic continuation to the whole

complex plane and the functional equation.
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There are methods available that, in addition, have led to substantial progress with outstanding

arithmetical problems and have suggested new concepts and theorems in the study of harmonic

analysis or theta series. They are only partially explored, and further development promises a deeper

understanding of the theory of automorphic forms, and not a few surprises. However, they have limits

of which we are becoming ever more keenly aware and that temper our pleasure at the success of those

who have pursued them – but not our admiration. However, not every stone has been turned.

The methods fall into three classes: a more profound exploration of the expansion of Eisenstein

series at the cusps, looking beyond the constant term; the multitude of zeta integrals described by

Gelbart-Shahidi [14] that include, in particular, the Rankin-Selberg technique and that sometimes

involve theta series; and the trace formula.

The general problem of analytic continuation of automorphic L-function leads (with a little imag-

ination) quickly to the circle of questions referred to by the convenient catch phrase principle of func-

toriality, which implies the possibility of transporting automorphic representations from one group to

another. The first two methods effect the analytic continuation directly, but the use of the trace formulas

proceeds through the principle of functoriality.

In contrast to its initial purpose, which was apparently to analyze the spectrum of the Laplace-

Beltrami operator on the quotient of the upper half-plane by a Fuchsian group, the arithmetical ap-

plications of the trace formula usually involve a comparison of two or more trace formulas or of a

trace formula with a Lefschetz formula, and this leads to a multitude of questions in arithmetic and

harmonic analysis, appealing in themselves, in whose solution the trace formula, in turn, can often be

put to good effect.

One such problem, which belongs to the elements of the general theory of the trace formula and of

Eisenstein series, but which viewed historically is a deep arithmetical statement, the result of successive

efforts by several of the best mathematicians, is the conjecture of Weil that the Tamagawa number of a

simply-connected semisimple group over Q is 1.

Recall that if G is a semisimple group over Q, and G(A) the group of adelic-valued points on G,

so that G(Q) is a discrete subgroup of G(A), then the Tamagawa number is the volume of the quotient

G(Q)\G(A) with respect to a canonically defined measure. An explicit volume for

τ(G) = vol(G(Q)\G(A))
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is of immediate appeal when G(R) is compact (for example, if it is the orthogonal group of a definite

form), for it yields directly a class-number formula. This is the case to which Siegel confined himself

in his Oslo lecture of 50 years ago, when he discussed his extensions of classical formulas of Eisenstein

and Minkowski [31]. He also dealt with groups for which G(R) is not compact and was concerned,

as should be stressed, although they are not pertinent here, with more general formulas than those for

volumes of fundamental domains.

Tamagawa’s realization much later that Siegel’s formula for volumes had a strikingly simple adelic

form led Weil to his general conjecture [32], which was verified in many cases, but by no means all. The

problem was to find a general, uniform method. That we now have, and as part of the general trace

formula, although for reasons that will be explained later factors of type E8 that are not quasisplit will

have to be excluded.

Connected reductive algebraic groups over Q are broken up into families defined cohomologically,

a family consisting of all groups that can be obtained one from the other by an inner twist. For example,

all special orthogonal groups attached to forms of the same dimension and with discriminants differing

by a square lie in the same family, for if one of the groups, G, is defined by a symmetric matrix X and

the other, G′, by X ′ then there is a matrix U with coefficients from Q̄ and determinant from Q such that

X ′ = UXtU . Then

ψ : A → UAU−1

defines an isomorphism from G to G′ over Q̄ and the isomorphisms ψσ = ψ−1σ(ψ), σ ∈ Ga2(Q̄/Q)

are given by

A → VσAV
−1
σ , Vσ = U−1σ(U),

and

det Vσ = (det U)−1σ(det U) = 1,

so that σ → Vσ defines a Galois cocycle {ψ−1σ(ψ)} with values in the adjoint group of G. Thus ψ

defines G′ as an inner twisting of G.

Each inner family contains a distinguished element, determined up to isomorphism, and this is

the quasisplit element of the group. It is the group for which G(Q)\G(A) is most noncompact and

for a family containing orthogonal groups is characterized as the orthogonal group associated to a

form with isotropic subspace of largest dimension. Abstractly it is characterized by the property that
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it contains a Borel subgroup defined over Q. Since the Levi factors of a Borel subgroup are tori, the

Eisenstein series associated with it have functional equations expressed in terms ofL-functions attached

to Grössencharakter and are thus particularly easy to handle. On the other hand, a Borel subgroup

over Q is necessarily a minimal parabolic over Q, and the constant function is always a residue of

Eisenstein series associated with the minimal parabolic. Combining these two facts with the elements

of spectral theory for self-adjoint operators, one readily calculates τ(G) = vol(G(Q))\G(A) [20], [19].

It is found to be 1 for simply connected semisimple groups.

The second, more difficult step is to show that if G∗ is quasisplit and G an inner form of it then

τ(G) = τ(G∗). It has been carried out by Kottwitz [17], who compares the trace formula for G, in

which τ(G) appears, with that for G∗, in which τ(G∗) appears. The L-groups of G and G∗ are the

same, and one of the simpler manifestations of the principle of functoriality will be an assertion that

the L-functions associated with G are all found among the L-functions associated with G∗. Thus for

each automorphic π of G there will be an automorphic representation π∗ of G∗ such that

L(s, π, r) = L(S, π∗, r)

for all representation of LG. One expects to prove this by a comparison of trace formulas for G and G∗,

and methods are being developed for this purpose. What Kottwitz has in effect done is to anticipate

their complete development by a judicious choice of the functions to be substituted in the formulas, so

that a great many difficult terms are removed but not the volumes of the fundamental domains.

The proof of Weil’s conjecture by Kottwitz, and of cyclic base-change by Arthur-Clozel [12], apart

from any other applications, contemplated or already accomplished, are of sufficient importance to

justify a description of the gross structural features of Arthur’s general trace formula and of the scheme

for comparison, although this entails some overlap with [11]. Moreover, a clear warning is necessary

that the relative trace formulas of Jacquet have not yet been fitted into this scheme, that a great deal

remains to be done, and that many of the techniques have been most highly developed for comparisons

that involve disconnected groups, the so-called twisted trace formulas, and these have been omitted

from this discussion.

In contrast to the trace formula of Selberg, which was, as its name implies, a formula for a trace, but

which could only be proven for groups of rank one, the formula developed by Arthur begins with an

equality between two functions that are then integrated separately over G(Q)\G1(A) and the integrals
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calculated in completely different manners. The resultant identity is the first form of the trace formula

[1], [2]. (For semisimple groups G1(A) = G(A); for reductive groups it is the kernel of a family of

homomorphisms from G(A) to R+.)

Recall that the spectral analysis of the action of G(A) by right translation on H = L2(G(Q)\
G(A)) is best accomplished with the operators

K(f) : φ →
∫

G(A)

φ(gh)f(h)dh,

where f is a smooth function of compact support on G(A), and K(f) is an integral operator with kernel

K(g, h) =
∑
G(Q)

f(g−1γh).

In addition, there is available a direct sum decomposition of H defined by the theory of Eisenstein series.

It is parametrized by pairs (M,ρ), M being a Levi factor over Q of a parabolic subgroup of G defined

over Q and ρ a cuspidal representation of M(A). The pairs are subject to a suitable equivalence relation.

Denote the set of parameters by X. The summand Hχ labelled by χ ∈ X has itself a direct-integral

structure, but for the moment only the coarse decomposition matters.

The basic equality, or identity, is between two truncations of the kernel of K . The first, a geometri-

cally defined truncation of the restriction of K to the diagonal, is integrated over G(Q\G1(A)) to yield

the coarse O-expansion

JT
geom(f) =

∑
O

JT
O(f).

The sum runs over conjugacy classes of semisimple elements in G(Q), and T is a multidimensional

parameter determining the location of the truncation. The sum converges absolutely, and each term is

a polynomial in T . The distributions JT
O have at least two disadvantages. They are not invariant under

conjugation because the truncation demands a choice of a maximal compact subgroup of G(A), and

they are not expressible as integrals over a single conjugacy class, or even a single type of conjugacy

class. For example, the term corresponding to O = {1} involves all unipotent classes, and the term

vol(G(Q)\G1(A))f(1), (2.1)

that must be isolated if the trace formula is to be applied to Weil’s conjecture, does not appear explicitly.

The second truncation is defined by first composing K with a truncation operator ΛT on functions

on G(Q)\G(A) that converts slowly increasing functions into rapidly decreasing functions and that is
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an idempotent, and then restricting the kernel of the composition K ◦ΛT to the diagonal. The operator

K◦ΛT is again an integral operator, and its kernel can be expressed as an integral of truncated Eisenstein

series. Integrating over the diagonal we obtain a sum over χ, referred to as the course χ-expansion,

JT
spec(f) =

∑
χ

JT
χ (f).

Once again the distributions JT
χ are not invariants. Moreover, although the JT

χ themselves are polyno-

mials in T , they are calculated as an integral over the parameters (partly continuous, partly discrete)

of the direct integral decomposition of Hχ of inner products of truncated Eisenstein series, and these

are not polynomials.

Thus the first form of the trace formula

∑
O

JT
O (f) =

∑
χ

JT
χ (f)

is not too useful. What Arthur does next is to transform the left and right sides of the formula into

forms that, although not final, at least appear more applicable. The appearance of the variable T on

these formulas is of no significance since the differences

JT ′
geom(f)− JT

geom(f)

and

JT ′
spec(f) = JT

spec(f)

can be expressed in terms of the geometrical and spectral sides of the trace formula for the Levi factors

of proper parabolic subgroups of G. For example, if G is anisotropic, the polynomials are in fact of

degree 0 and the dependence on T is fictitious. Arthur himself prefers to work with a carefully chosen

and fixed truncation parameter that he suppresses from the notation, and it is best to follow him so

that the coarse trace formula becomes

∑
JO(f) =

∑
Jχ(f).

Both transformations are difficult, but the geometric side is perhaps easier. Here the transformation

introduces some disagreeable new features, but it appears that there is no choice but to accommodate

ourselves to them. They are aesthetically displeasing but do not obstruct the arguments. We have to



Eisenstein series, the trace formula, and the modern theory of automorphic forms 15

choose some compact neighborhood ∆ of the identity in G(A), to which are then attached finite sets S

of places, and S appears explicitly in the new form of the geometric side, the fine O-expansion, which

is then only valid for functions that depend only on the coordinates in S and have support in ∆, being

outside of S the product of characteristic functions of the standard maximal compact subgroups.

The fine O-expansion [7] is a sum over the Levi subgroups containing a fixed Levi subgroup of

some fixed parabolic subgroup over Q.

Jgeom(f) =
∑
M

|ΩM
0 |

|ΩG
0 |

JM (f),

and JM(f) is a sum over conjugacy classes in M of terms

aM (s, γ)JM (γ, f).

The two groups, ΩM
0 ,ΩG

0 , whose order appears in the formula are Weyl groups, and aM (S, γ) is a

constant that is not determined explicitly, and for many purposes need not be, except for certain γ.

It implicitly involves a measure and, for some groups of low dimension and presumably in general,

values of apparently unmanageable Dirichlet series. The notion of conjugacy employed is somewhat

unusual. For the semisimple part of γ it is conjugacy in M(Q); for the unipotent part it is conjugacy in∏
v∈S M(Qv) = M(QS). The function f is a product of a function fS on

∏
v∈S G(Qv) = G(QS) with

a standard characteristic function outside of S; and

JM (γ, f) = JM (γ, fS)

is a weighted orbital integral over

{g−1γng | g ∈ G(QS), n ∈ N(QS)}

if P = MN is a parabolic subgroup with Levi factor M . Thus it is a finite sum of weighted orbital

integrals.

The distributions JM are still not all invariant, but the larger M is the more invariant they are. In

particular, JG is invariant, and a sum of invariant orbital integrals, because

JG(γ, fS) =
∫

Gγ(QS)\G(QS)

fS(g−1γg)dg,



Eisenstein series, the trace formula, and the modern theory of automorphic forms 16

where Gγ is the connected centralizer of γ in G. If γ = 1 this is fS(1) = f(1). Since

aG(S, 1) = τ(G),

the fine O-expansion contains a large invariant contribution in which the term (2.1) appears explicitly.

I observe in passing that aG(S, γ) is 0 if the semisimple part of γ is not elliptic.

The distributions JM(γ),M �= G, are not so simply expressed, and in advanced applications of

the trace formula [12] they must be treated without the help of explicit formulas, to which in earlier,

simpler applications [23] recourse could be had. It is best, nonetheless, to work them out in simple

cases in order to develop a feel for them.

For G = SL(2) the only pertinent M is the group of diagonal matrices. If

g =
(
α 0
0 β

)(
1 x
0 1

)
k,

with k ∈ KS , x = (xv) ∈ QS , set

vM (g) = −
∑
v∈S

λ(xv)

with

λ(xv) =
{

1
2
ln(1 + x2

v), v infinite,
ln(max{1, |x|}), v finite.

If γ ∈ M(F ) has distinct eigenvalues a, b then JM(γ, fS) is equal to

(∏
v∈S

∣∣∣a
b

∣∣∣1/2

v

∣∣∣1− b

a

∣∣∣
v

)∫
M(QS)\G(QS)

fS(g−1γg)vM (g)dg.

A change of variables in the integral turns this into the product of

∏
v∈S

∣∣∣a
b

∣∣∣1/2

v

and

−
∑
v∈S

∫
KS

∫
QS

fS(k−1γn(x)k)λ((1− b/a)−1xv)dx dk, (2.2)

where

n(x) =
(
1 x
0 1

)
.

Since aM (S, γ) = 1 for such γ, the singular behavior of this integral as γ approaches ±1 is brought into

the trace formula. If hS : γ → Jm(γ, fS) were smooth on M(QS), the contribution JM(f) to the fine
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O-expansion would, apart from whatever the terms associated to γ = ±1 yield, be the fine O-expansion

for a function on M obtained by multiplying hS with the product of the characteristic functions of the

maximal compact subgroups outside of S. This would facilitate comparisons enormously, but hS is

not smooth. Fortunately, there is a way to circumvent the difficulties this causes, Arthur’s principle of

the cancellation of singularities, to which we shall come later.

The expression (2.2) is a sum of two other expressions,

∑
v∈S

ln
∣∣∣1− b

a

∣∣∣
v

∫
KS

∫
QS

fS(k−1γn(x)k)dx dk, (2.3)

all of whose singular behavior at ±1 arises from the factor in front of the integral, and a second

expression, which although also singular at ±1, does have limiting values at these points. They are

−
∑
v∈S

∫
KS

∫
QS

f(k−1γn(x)k) ln |x|vdx dk, γ = ±1. (2.4)

The integral appearing in (2.3) has the limit

∫
KS

∫
S

fS(k−1γn(x)h)dx dk, γ ± 1, (2.5)

which is the orbital integral of (2.4) without the weight, and is, in fact, the sum of the integrals over

the unipotent conjugacy classes of G(QS). The terms JM (γ, fS), γ ± 1, are linear combinations of (2.4)

and (2.5). The coefficient of (2.5) can be chosen freely, for the coefficients aG(S, γn(x)), x ∈ Q, can then

be modified accordingly. Arthur introduces a procedure for arriving at a definite choice that seems to

be as good as any other, but it is by no means sacred.

Some arbitrariness notwithstanding, the fine O-expansion is a definite advance over the coarse,

but is still neither invariant nor stable and thus not yet useful for comparisons. Before describing how

Arthur achieves an invariant form, we must consider the fineχ-expansion. The conversion of the coarse

χ-expansion to the fine requires a Paley-Wiener theorem for reductive groups [4] and a remarkably

astute and skillful use of ordinary Fourier analysis [5], [6].

In the fine χ-expansion the inner products of truncated Eisenstein series disappear and the factors

describing the functional equations appear. These are matrix-valued transcendental functions, but

they factor as a product of a scalar-valued transcendental function, expressible in terms of automorphic

L-functions as in Section I, and a matrix-valued rational function (in arguments s and ps).
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Taking residues of the Eisenstein series associated to the parameter χ can yield square-integrable

eigenfunctions on G(Q)\G1(A) or on intermediate Levi subgroups. This leads to a fine direct-integral

decomposition of the space Hχ.

Hχ =
∫

Π(G,χ)

dπ,

where
∏
(G,χ) is a well determined set of unitary representations. There are analogous sets

∏
(M,χ)

for all Levi subgroups, that are empty if M does not contain the Levi factor in any pair defining χ.

The fine χ-expression is a double sum [6]

Jspec(f) =
∑

χ

{∑
M

|ΩM
0 |

|ΩG
0 |
∫

Π(M,χ)

aM (π)JM(π, f)dπ

}

that is not yet known to be absolutely convergent in general. The functions aM (π) contain a local

contribution that is defined by intertwining operators and is quite subtle and a global contribution that

is expressible in terms of logarithmic derivatives of automorphic L-functions.

Such derivatives result from formal operations with collections of functions called (G,M)-families

by Arthur [3], operations that pervade his work, appearing already in the proof of the fine O-expansion.

They can be described briefly.

If M is a Levi factor of a parabolic, let P(J) be the finite set of parabolic subgroups containing M .

(The case to think of is the group M of diagonal matrices in G = GL(n), then P(M) is parametrized by

the permutations of {1, . . . , n}.) Suppose that for eachP ∈ P(M)we are given a smooth function cP (λ)

on a∗M (the coordinate space Rn in the example). The collection {cP} is said to form a (G,M)-family if

whenever P and P ′ are adjacent (the corresponding permutations σ, σ′ differ by right multiplication by

the interchange of adjacent integers i, i+1), then cP and cP ′ agree on the hyperplane passing through

the wall common to the chambers associated to P and P ′ (the hyperplane λσ(i) = λσ(i+1)). To each

P ∈ P(M) there is an associated set of simple roots ∆P and their coroots. A simple but important

lemma states that the formula

cM (λ) =
∑

P∈P(M)

cP (λ)θP (λ)−1

with

θP (λ) =
∏

α∈∆P

λ(α̌)

defines a smooth function on a∗M .
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If, for example, we take G = GL(2) and M as above, then P(M) consists of two elements P and

P ′, and if we take XP ,XP ′ in aM with

XP −XP ′ = (x,−x),

then

cP (λ) = eλ(XP ), c′P (λ) = eλ(XP ′ )

is a (G,M)-family and

cM (0) = x

is essentially the length of the integral joining XP and XP ′ . The analogous construction in higher

dimensions leads to the volumes of convex sets that are ubiquitous in Arthur’s papers.

A second construction of a (G,M)-family starts from a set, {rα|α a root}, of nonzero complex-

valued functions on R. If ΣP is the set of roots in P , and P̄ the parabolic in P(M) opposite to P so that

P ∩ P̄ = M,ΣP ∩ ΣP̄ = ∅, set

rP |P ′(λ) =
∏

α∈ΣP ∩ΣP ′

rα(λ(α̌)). (2.6)

Then for each P ′ ∈ P(M), ν ∈ a∗M ,

rP (λ; v, P ′) = rP |P ′(ν)−1rP |P ′(ν + λ)

defines a (G,M)-family, and rM (0; ν, P ′) can be expressed in terms of logarithmic derivatives.

The product dP = cP dP of two (G,M)-families is again a (G,M)-family, and there are formulas

for calculating dM that can be regarded as variants either of Leibniz’s rule or of partitions of convex

sets.

It is principally these formulas that lead to the produce aM (π)JM(π, f) appearing in the fine

χ-expansion. The factors that appear in the functional equation of the Eisenstein series are intertwining

operators JP ′|P (πλ) for which formulas like (2.6) are available. They now involve operator-valued

functions, but the formalism of (G,M)-families is still applicable and a factorization

JP ′|P (πλ) = rP ′|P (πλ)RP ′|P (πλ)
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in which rP ′|P (πλ) is a complex-valued function given by automorphic L-functions and RP ′|P (πλ)

is an intertwining operator given by elementary functions, yields the factorization aM (π)JM(π, f), in

which all lack of invariance is in JM (π, f). (The notation is unfortunate. aM (π) is defined by τP ′|P (πλ)

and JM(π, f) with the help of RP ′|P (πλ).)

Arthur’s final step in his development of the trace formula is to render it invariant by a brutal

transposition of terms from the spectral side to the geometric side, a process that has little to recom-

mend it but its successes, but these are overwhelming, for with his invariant formula, cancellation of

singularities becomes a very supple tool and it becomes possible to substitute functions for which many

disagreeable terms vanish while the essential ones remain.

The source of all lack of invariance in the trace formula lies in the initial truncation; so the lack

of invariance, the difference between the values of the distribution on f and on fx, where fx(g) =

f(x−1gx), or between its value on the two convolutions

h ∗ f : g →
∫

h(gg−1
1 )f(g1)dg1

and f ∗ h, can be expressed in a universal way for all the distributions JM (γ) or JM (π) occurring in

the trace formula.

Denote any one of these distributions by JM . Then the simplest form of the universal formula is

JM (fx) =
∑

Q⊇M

J
MQ

M (fQ,x). (2.7)

The sum is over all parabolic subgroups over Q containing M ;JMQ

M is the analogue of JM appearing

in the trace formula for the Levi factor MQ of Q; and fQ,x is a function on MQ(A) given in terms of f

by a simple integral formula of the form ([3])

fQ,x(m) = δQ(m)1/2

∫
K

∫
NQ(A)

f(k−1mnk)u′
Q(k, x)dk dn.

In particular,

fG,x = f.

Strictly speaking, the trace formula may not apply to fx, because it may not be an element of the Hecke

algebra, so that (2.7) has to be rewritten in terms of convolutions to obtain a correct formula.
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When working with the trace formula, one fixes a finite set of places containing the infinite place,

and all freedom is in fS so that the achievement of invariance is really a local problem on

∏
v∈S

G(Qv) = G(QS).

Keeping this in mind, we now simplify the notation, often replacing fS by f .

To attain invariance, Arthur introduces a map f → φM (f) from functions on G(QS) to functions

on M(QS), or rather from functions on G(QS) to a class of functions on M(QS), for only the orbital

integrals of φM (f) on regular semisimple elements are specified. (In view of theorems of Harish-

Chandra and Kazhdan, this is equivalent to specifying the values on φM (f) of distributions supported

on characters in the sense of [8], Section 1.) The function φM (f) is defined by the equation

tr π(φM (f)) = JM (π, f),

π running over the irreducible tempered representations of M(QS), thus exactly those necessary for

the local harmonic analysis. Then all distributions JM , both those from the spectral and those from the

geometrical side of the trace formula, are converted into invariant distributions IM by the inductive

formula

JM (f) =
∑

L⊇M

IL
M (φL(f)),

the sum running over all Levi factors over Q containing M .

Observe that to carry out the inductive definition implicit in this formula it must be shown that the

distributions IL
M are supported on characters. Notice also that the construction simplifies distributions

from the spectral side. For example, if π is tempered then

IM (π, f) =
{

0 M �= G,
tr π(f) M = G.

However, it will tend to complicate distributions from the geometric side. Of course, for M = G the

procedure effects no change, and

IG(γ) = JG(γ), IG(π) = JG(π).

Since the distributions IM (γ), IM (π) are obtained from JM(γ), JM (π) by a uniform procedure,

they can be substituted for JM(γ), JM (π) in the trace formula to obtain an invariant trace formula.



Eisenstein series, the trace formula, and the modern theory of automorphic forms 22

Moreover, the distributions appearing in the invariant trace formula being supported on characters,

it makes sense to ask whether they simplify, or even vanish, on functions whose orbital integrals are

subject to suitable conditions. This is indeed so and yields simpler terms of the trace formula that are

very effective for specific purposes [13, 18].

It has been observed that arithmetical applications of the trace formula usually involve compar-

isons. In essence one shows that some linear combination of the geometric sides is zero, infers that

the same linear combination of the spectral sides is zero, and then from this deduces relations between

automorphic representations of the groups involved.

Since the very purpose and natue of the trace formula is to allow a term-by-term analysis of the

geometric side, the comparison can proceed only if there is some correspondence between conjugacy

classes in the groups involved. This is simplest for base change for G(n) under cyclic extensions of

the ground field, for then the norm map is a well-defined function from the conjugacy classes of one

group to those of another. For this application the concomitant problems in local harmonic analysis

(transfer of orbital integrals and fundamental lemmas) are consequently easier, and the methods for

global comparison, especially cancellation of singularities, much more advanced [12].

For other problems the correspondence is not given by a function, and the notions of stabilization

and endoscopy necessary to circumvent the attendant difficulties are perhaps the most startling that

the trace formula has suggested to harmonic analysis, although not yet nearly so well understood as

some others, such as Harish-Chandra’s Selberg principle, Arthur’s Paley-Wiener theorem, or formulas

for characters as weighted orbital integrals.

Suppose G∗ is quasisplit and ψ : G → G∗ is an inner twist so that ψ−1σ(ψ) is an inner automor-

phism of G for all σ ∈ Ga2(Q̄ | Q). Thus if γ is an element of G(Q), ψ(γ) is an element of G∗(Q̄). It

is a theorem of Steinberg and Kottwitz that the conjugacy class of ψ(γ) in G∗(Q̄) always meets G∗(Q),

and this allows us to define a correspondance between conjugacy classes in G(Q) and G∗(Q); but to

obtain a function one has to introduce the notion of stable conjugacy classes in G(Q), which is for

simply-connected, semisimple groups just conjugacy in G(Q̄), but which is slightly more delicate for

other groups [16]. The notion is also defined over local fields. Thus for a term-by-term comparison of

the trace formulas of G and G∗, one needs a trace formula in which the geometric side is expressed

as a sum over stable conjugacy classes and in which the distributions are stably invariant. Primitive
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forms of such a stable trace formula are available in general. In a very few special cases it is completely

developed [25], [29].

It is the primitive form that leads to the proof of Weil’s conjecture, but in order to illustrate

cancellation of singularities we proceed with more general considerations. Stabilization and stably-

invariant harmonic analysis lead to the introduction of endoscopic groups of G. These are quasisplit

reductive groups H such that the L-group LH is imbedded in LG. Among them is the group G∗ with

LG∗ = LG. There is a map from regular semisimple conjugacy classes of G(Q) to stable semisimple

conjugacy classes of H(Q) and a notion of transfer f → fH from functions on G(A) to functions

on H(A) [26]. The function fH is not well defined; only its stably invariant orbital integrals are. In

addition to each elliptic endoscopic group there is attached [17] a cohomological invariant ı(G,H).

If

Igeom
M (f) =

∑
γ

IM (γ, f)

and if Ispec
M (f) is defined in a similar fashion, then the invariant trace formula is an equality

∑
M

Igeom
M (f) =

∑
M

Ispec
M (f).

Recall that the sum is over the Levi factors containing a fixed minimal one. The stably-invariant trace

formula will be a similar identity, but it is best to take the sum over the Levi factors M∗ of G∗ containing

a fixed minimal one, noting that to every M there is associated a unique M∗. Thus the identity will

take the form ∑
M∗

SIgeom
M∗ (f) =

∑
M∗

SIspec
M∗ (f), (2.8)

in which all distributions appearing are stably invariant so that their value on a function f is determined

by the stable orbital integrals of f on semisimple elements.

One can associate to each Levi factor MH of H a Levi factor M∗ of G∗. We write MH → M∗.

When fH can be defined for all H , we define SIgeom
M∗

SIgeom
M∗ = Igeom

M∗ (f)−
∑′

M

ı(G,H)
∑

MH→M∗
SIMH

(fH) (2.9)

and, in a similar fashion, SIspec
M∗ (f). The prime indicates that the sum is over all elliptic endoscopic

groups, with the exception of G∗. Such a definition at least guarantees the validity of (2.8).
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It is the distribution SIspec
G∗ that carries the interesting information about automorphic forms, and

one would like to show that

SIspec
G∗ (f) = SIspec

G∗ (f∗), f∗ = fG∗
, (2.10)

from which it follows, in particular, that SIspec
G∗ is stable, for f∗ is specified by the stable orbital integrals

of f . Observe that SIG∗ denotes two distributions, one on G and one on G∗, distinguished only by

their arguments.

As a first application of these ideas, one can, following Kottwitz, prove for G simply-connected

and semisimple the existence of pairs f, f∗ such that f∗ = fG∗
and such that both fH and f∗H can be

taken to be zero for H �= G∗. In addition

Igeom
M∗ (f) = Ispec

M∗ (f) = 0, M∗ �= G∗,

Igeom
M∗ (f∗) = Ispec

M∗ (f∗) = 0, M∗ �= G∗.

For this pair, we thus obtain the identity

SIgeom
G∗ (f)− SIgeom

G∗ (f∗) = SIspec
G∗ (f)− SIspec

G∗ (f∗). (2.11)

The right side is an infinite linear combination of irreducible traces. That fH and f∗H can be taken

to be zero for H �= G∗ implies strong relations among the orbital integrals, and if Hasse’s principle

is valid for G as well as Weil’s conjecture for groups of lower dimension, then the left side of (2.11)

reduces to

τ(G)f(1)− τ(G∗)f∗(1) = (τ(G)− τ(G∗)).

This can be equal to a sum of traces only if it is zero, so Weil’s conjecture follows inductively.

Hasse’s principle intervenes because it is, more generally, necessary to the calculations that allow

one to show that when fH exists for all H then the contribution of the regular semisimple conjugacy

classes to the right side of (2.9) is stable. One might hope that if the Hasse principle is so strongly

enmeshed in these calculations it could be possible to use the trace formula to prove it. So far as I know,

this has not been attempted.

Further general development of the stable trace formula awaits the proof of the existence, both

locally and globally, of the transferred functions fH . One can hope that once this is done the methods

developed by Arthur will overcome the other obstacles.
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The results of Arthur-Clozel suggest that not only will (2.10) be valid but, more generally

SIgeom
M∗ (f) = SIgeom

M∗ (f∗) (2.12)

SIspec
M∗ (f) = SIspec

M∗ (f∗) (2.13)

and that, moreover, it will be possible to express the two sides of (2.12) and (2.13) as sums of more

primitive stably invariant distributions. On the geometric side will appear, in particular, stably invariant

orbital integrals and on the spectral side, among others, characters of temperedL-packets. The identities

(2.12) and (2.13), of which (2.10) is the most interesting, realize a final form of the trace formula, the

stably invariant trace formula, that can presumably be applied without further transformation.

A proof along the lines of [12] would of course involve an elaborate induction, upwards on the

dimension of G and downwards on that of M . The definition of f∗ and the manipulation of [17] and

[24] then show that the difference

SIgeom
G∗ (f)− SIgeom

G∗ (f∗) (2.14)

is the sum of very few terms, those corresponding to unipotent elements. Thus if it could be shown

that it was a discrete sum of characters, then a little harmonic analysis on one of the noncompact factors

G(Qv) should show that it is zero.

According to (2.8) the difference (2.14) can be expressed in terms of the differences

SIspec
M∗ (f)− SIspec

M∗ (f∗) (2.15)

and

SIgeom
M∗ (f)− SIgeom

M∗ (f∗), M∗ �= G∗. (2.16)

Now IG(γ, f) is equal to JG(γ, f) by its very definition. However, for M �= G there is an inexplicit

element introduced in the passage from JM(γ, f) to IM (γ, f), namely, φL(f), so that the only handle

on the distributions IM (γ) is their formal properties of splitting and descent.

In the case of base change, which one will take as a model for the development of the stable trace

formula, one uses these properties and a progressively less restrictive choice of functions f and f∗ to

show that all differences (2.14), (2.15), and (2.16) are zero.

One begins with a class of functions for which (2.14) and all but one of (2.16), that corresponding to

the M∗ at which we have arrived by the downward induction, are zero. More precisely, it is analogues
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of these differences that appear, but rather than continuously qualifying my remarks with references

to base change, I prefer to speak of the deduction of the stably invariant trace formula as being already

achieved, with no intention of slighting the difficulties that are still to be overcome. Now SIgeomM∗ (f)

or SIgeom
M∗ (f∗) when expanded as a sum over stable conjugacy class of M∗ presumably resemble

very closely the expansion of the stable trace formula for some function on M∗(A), but because of

singularities like those we have seen in (2.2) cannot be equal to such an expansion. However, one can

expect that the singularities cancel when the difference is taken, so that there is a function ε on M∗(A)

to which the trace formula can be applied such that

SIgeom
M∗ (f)− SIgeom

M∗ (f∗) = SIgeom
M∗ (ε).

Finally, one uses (2.8) for M∗ rather than G and for ε rather than f to replace SIgeomM∗ (ε) by a

spectral-theoretic expansion, probably just SIspec
M∗ (ε), the other terms very likely vanishing. This gives

∑
M∗

SIspec
M∗ (f)−

∑
M∗

SIspec
M∗ (f∗) = SIspec

M∗ (ε).

This spectral equality involves measures of Lebesque type of various dimensions, and they must vanish

separately. In particular, the term corresponding to the measure of lowest dimension, the split rank of

the center of G, is just

SIgeom
G∗ (f)− SIspec

G∗ (f∗);

so this difference must be zero.

Once this difference is shown to be zero for the restricted class of functions, it can be shown that it

is zero for an even larger class, for which one deduces the vanishing of (2.14) and (2.16). To deal with

completely general f and f∗ it is necessary to work one’s way down through the M∗ to the minimal

Levi factor, verifying at each stage that the vanishing of (2.16) for that M∗ and the restricted class of

functions implies its vanishing in general. The vanishing of (2.14), in general, is only obtained at the last

stage, at which one also has the vanishing of (2.15) for M∗ = G∗ and general f and f∗. For M∗ �= G∗,

the vanishing of (2.15) is proved with the help of local results linking the distributions IM∗(γ) and

IM∗(π) and a supplementary induction.

All of this looks to be elaborate and extremely difficult, as indeed it is; so it is very helpful

to understand it for simple examples, where the convoluted inductive arguments and much of the
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technique are unnecessary and the constructions more explicit. The group U(3) of [29] is perhaps the

best choice, but even G = SL(2) yields considerable insight.

Here G = G∗, and the only Levi factor besides G itself that need be considered is the group M

of diagonal matrices. It is Abelian so that Φ = ΦM (f) can be defined more directly than usual as the

Fourier transform of

π → JM (π, f),

π a character of M(QS). However, this is not too direct, and a real understanding of ΦM requires an

examination of the normalized intertwining operators RP ′|P (πλ), but that would entail an elementary

but extended digression.

Since

IM (γ, f) = JM (γ, f)− Φ(γ),

the singularities of IM (f) are those of JM (γ, f). Since G = G∗ we may write M rather than M∗ in the

definitions of the stable trace formula. Moreover, the elliptic endoscopic groups other than G itself are

all anisotropic tori, so that (2.9) reduces to

SIgeom
M (f) = Igeom

M (f)

and

SIgeom
M (f) =

∑
γ∈M(Q)

IM (γ, f).

Since

γ → IM (γ, f)

is not smooth, the right side is not the trace of a smooth function on M(A), but the difference

∑
γ∈M(Q)

IM (γ, f)−
∑

γ∈M(Q)

IM (γ, f∗)

is, because

γ → IM (γ, f)− IM (γ, f∗)

is smooth. Of course this is trivial if we take f∗ = f , but the point is that we need not so so.

The first sign that it is smooth is that the difference of (2.3) for f and (2.3) for f∗ is 0 because the

integrals appearing there are stable, and thus equal, so that the difference is zero, and the singular factor
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in front innocuous. The difference between (2.2) and (2.3) involves the factor
∏

v∈S |a/b|1/2
v , which we

may ignore, and a sum over v, each term of the sum being smooth away from ±1 but not necessarily

at ±1. For example, for v nonarchimedean the corresponding term is the sum of

−
∫

KS

∫
QS

fS(k−1γn(x)k)ln|x|vdx dk

and

−
∫

KS

∫
|x|v≤|1−b/a|v

fS(k−1γn(x)k)ln|x|vdx dk.

The first expression is smooth, and the singularity of the second is that of the product of

−
∫
|xv|≤|1−b/a|v

(ln
∣∣∣1− b

a

∣∣∣
v
− ln|xv|)dxv

and ∫
KS

∫
QS

f(k−1γn(x)k)dx dk, S′ = S − {v}. (2.17)

Since (2.17) is a stable orbital integral, this singularity is cancelled by the corresponding one for f∗.

The contributions to the singularity from the Archimedean place also cancel, but the proof is more

elaborate.
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[24] Langlands, R.P. Les débuts d’une formule des traces stable, Publ. Math. de l’Univ. de Paris VII.
13 (1983).

[25] Langlands, R.P. and Labesse, J.-P. L-indistinguishability for SL(2), Can. Jour. Math. 31 (1979).

[26] Langlands, R.P. and Shelstad, D. On the definition of transfer factors, Math. Ann., 278 (1987).

[27] Maass, H. Uber eine neue Art von nichtanalytischen automorphen Formen, Math. Ann. 121
(1949).

[28] Roelcke, W. Analytische Fortsetzung der Eisensteinreihen zu den parabolischen Spitzen von
Grenzkreisgruppen erster Art, Math. Ann. 132 (1956).

[29] Rogawski, J. Automorphic representations of unitary groups in three variables, Ann. of Math.
Studies, to appear.

[30] Selberg, A. Harmonic analysis and discontinuous groups in weakly symmetric Riemannian
spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956).

[31] Siegel, C.L. Analytische Theorie der quadratischen Formen, Com. Rend. du Cong. Inter. des
Math., Oslo (1937).

[32] Weil, A. Adeles and Algebraic Groups. Birkhäuser (1982).


