
Eisenstein Series*

R.P. Langlands

1. Preliminaries. In these lectures I want to discuss, with some indications of proofs, some of the

elementary facts in the theory of Eisenstein series. Although the discussion can be carried out in

more generality it is most convenient, in the context of this institute, to take for discrete group an

arithmetically defined subgroup Γ of the group G of real points of a reductive group GC defined

over Q whose connected component G0
Q has no rational character. It is also necessary to suppose

that the centralizer of a maximal Q split torus of G0
C meets every component of GC. The reduction

theory of Borel applies, with trivial modifications, to G; it will be convenient to assume that Γ has

a fundamental set with only one cusp. Fix a minimal parabolic subgroup P0
C defined over Q and a

maximal Q­split torus A0
C of P 0

C so that the standard parabolic Q­subgroups are defined. A (standard)

cuspidal (percuspidal) subgroup P is the normalizer inG of a (standard) parabolic (minimal parabolic)

Q­subgroup PC of G0
C. To each standard cuspidal subgroup P is associated a subspace AC of the Lie

algebra a0
C of A0

C; this subspace will be called the split component of P . By definition the rank of P is

equal to its dimension. The set a of real points on aC will also be called the split component of P . P is a

product AMN where A is the analytic subgroup of Gwith the Lie algebra a,N is the set of real points

in the unipotent radical of PC, and M satisfies the same conditions as G. We identify M with N\MN .

Then Γ ∩ P ⊆ MN and Θ = Γ ∩ N\Γ ∩MN is an arithmetically defined subgroup of M . Assume

that for each standard cuspidal subgroup P it also has a fundamental domain with only one cusp.

Suppose P and P ′ are two standard cuspidal subgroups with the split components a and a′

respectively. If there is an element of Ω, the Weyl group (over Q) of a0
C, taking aC to a′C we shall say that

P and P ′ are associate; let Ω(a, a′) be the set of distinct linear transformations from aC to a′C obtained

by restricting such an element of Ω to AC. The relation of being associate is an equivalence relation.

The normalizer of A(A′) inG leavesM(M ′) invariant and consequently acts on the centre Z(Z′) of the

universal enveloping algebra of the Lie algebra of M(M′) and on the set X(X′) of homomorphisms of

Z(Z ′) into C. The orbits in X(X′) under this action are finite. If P and P ′ are associate, Z and Z′ are

isomorphic and there is a natural one­to­one corresondence between orbits in X and X′. Every element

of Z defines an unbounded operator on L2
0(Θ\M), the space of cusp forms on Θ\M . If ξ ∈ X let

V (ξ) = {φ ∈ L2
0(Θ\M) | Xφ = ξ(X)φ for all X ∈ Z}
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and if Ξ is an orbit in X let

V (Ξ) =
∑

ξ∈Ξ

V (ξ).

V (Ξ) is a closed subspace of L2
0(Θ\M) invariant under M and

L2
0(Θ\M) =

∑

Ξ

⊕V (Ξ).

If Ξ′ is the orbit in X′ corresponding to Ξ the spaceV (Ξ′) may be defined in a similar fashion. V = V (Ξ)

and V ′ = (Ξ′) are said to be associate. We shall call such a V a simple admissible subspace. The symbol

W will denote the space of functions on a fixed maximal compact subgroup K of G spanned by the

matrix elements of some irreducible representation of K .

2. Partial decomposition of L2(Γ\G). If V is a simple admissible subspace of L2
0(Θ\M) let E(V,W )

be the set of all continuous functions Φ on NA(Γ ∩ P )\G such that Φ(mg) belongs to V for all g and

Φ(gk−1) belongs to W for all g. E(V,W ) is a finite dimensional Hilbert space with the inner product

(Φ,Ψ) =

∫

Θ\M×K

Φ(mk)Ψ̄(mk)dm dk.

Let D(V,W ) be the space of all continuous functions on N(Γ ∩ P )\G such that φ(mg) belongs to V

and φ(gk−1) belongs to W for each g and such that the projection of the support of φ on NM\G is

compact.

Lemma 1. If φ ∈ D(V,W ) then

φ̂(g) =
∑

Γ∩p\Γ

φ(γg)

belongs to L2(Γ\G).

The proof of this lemma requires the result in §6 of Godement’s lecture on cusp forms.

Suppose {P} is the set of all standard cuspidal subgroups associate to a given one and {V } =

{V (P ) | P ∈ {P} is a collection of associate simple admissible subspaces. Let L({P}, {V },W ) be the

closed subspace of L2(Γ\G) spanned by the functions φ̂(·) with φ in D(V (P ), {V },W ) for some P in

{P}.
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Lemma 2. L2(Γ\G) is the orthogonal direct sum of the spaces L({P}, {V },W ) and for a fixed {P}
and {V },∑W ⊕L({P},W ) is invariant under G.

This lemma is fairly easy consequence of Lemma 3 which will be stated below. To some ex­

tent it reduces the problem of decomposing L2(Γ\G) to that of decomposing each of the spaces

L({P}, {V },W ).

3. Eisenstein series. If P belongs to {P} let aC be the split component of P . Let Λ be the generic

symbol for a linear function on aC. We can write any φ in D(V,W ) as a Fourier integral

(1) φ(g) =
1

(2π)q

∫

ReΛ=Λ0

exp(Λ(H(g)) + ρ(H(g))Φ(Λ, g)|dΛ|.

Here Φ(·), which I call the Fourier transform of φ, is an entire function on the dual of aC with values

in E(V,W ) and Φ(Λ, g) is the value of Φ(Λ) at g. The dimension of aC is q; ρ is one­half the sum

of the positive roots; and a(g) = expH(g) if g = na(g)mk, n ∈ N, a(g) ∈ A,m ∈ M,k ∈ K . If

(Λ0, α) > (ρ, α) for every positive root α then

φ̂(g) =
1

2π)q

∫

ReΛ=Λ0

∑

Γ∩P\Γ

exp(Λ(H(γg)) + ρ(H(γg)))Φ(Λ, γg)|dΛ|.

To study the map φ→ φ̂ we shall, for an arbitrary Φ in E(V,W ), study the series

∑

Γ∩P\Γ

exp(Λ(H(γg)) + ρ(H(γg)))Φ(γg).

This series is of interest for all functions Φ on NA(Γ ∩ P )\G such that, for each g,Φ(mg) is an

automorphic form, in the sense of Harish­Chandra, on Θ\M which is square integrable on Θ\M and

Φ(gk−1) belongs to some space W . It is called an Eisenstein series. Denote its sum by E(g,Φ,Λ). For

each g and Φ this function is defined and holomorphic in the domain {Λ | Re(Λ, α) > (ρ, α) for all

α > 0}. One of the basic facts in the theory of Eisenstein series is that it can be continued to all of the

dual space of aC as a meromorphic function. This has first to be done when Φ belongs to one of the

spaces E(V,W ) and for the moment we concentrate on that.

Lemma 3. If P ′ is another standard cuspidal subgroup of rank g then

(a)

∫

Γ∩N ′\N ′

E(ng,Φ,Λ)dn = 0

if P and P ′ are not associate. However, if P and P ′ are associate

(b)

∫

Γ∩N ′\N ′

E(ng,Φ,Λ)dn =
∑

s∈Ω(a,a′)

exp(sΛ(H ′(g)) + ρ(H ′(g)))(M(s,Λ)Φ)(g)
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where M(s,Λ) is a linear transformation from E(V,W ) to E(V ′,W ) analytic as a function of Λ in

{Λ | Re(Λ, α) > (ρ, α) for α > 0}. Here V ′ is associate to V .

In order to gain some understanding of this lemma we consider the case that P is the standard

cuspidal subgroup, P ′ = P , and Φ is a constant function. The sum on the right of (b) is then a sum

over the Weyl group. The left side equals

∫

Γ∩N\N

∑

Γ∩P\L

exp(Λ(H(γng)) + ρ(H(γng)))Φ(γng)dn

or

∑

Γ∩P\Γ/Γ∩N

µ(Γ ∩N ∩ γ−1Pγ\N ∩ γ−1Pγ)

∫

N∩γ−1Pγ\N

exp(Λ(H(γng)) + ρ(H(γng)))Φ(γng)dn.

We consider the integrals in this sum individually. Using the Bruhat decomposition to write γ as pnWu,

we see that the integral equals

exp(Λ(H(p)) + ρ(H(p))

{

∫

N∩n−1
W

PnW \N

exp(Λ(H(nWng)) + ρ(H(nWng))dn

}

Φ(g).

The expression in brackets equals

exp(Λ(AdnW (H(g) + ρ(H(g))))

∫

N∩n−1
W

pnW \N

exp(Λ(H(nWn) + ρ(H(nWn)))dn

and we are done. Observe that if, as we suppose, the measure of Γ ∩N\N is one then M(1,Λ) = I .

4. Some functional analysis. Combining Lemma 3 with the Fourier inversion formula we obtain a

formula which is basic for everything to follow.

Corollary. Suppose P and P ′ are associate standard cuspidal subgroups, V and V ′ are associate

admissible subspaces, φ belongs to D(V,W ), and ψ belongs to D(V ′,W ) If the Haar measure on G

is suitably chosen, then

(2)

∫

Γ\G

φ̂(g)
¯̂
ψ(g)dg =

1

(2π)q

∫

ReΛ=Λ0

∑

s∈Ω(a,a′)

(M(s,Λ)Φ(Λ),Ψ(−sΛ̄))|dΛ|.

Of course Λ0 must be such that (Λ0, α) > (ρ, α) if α is a positive root of A. Simple approximation

arguments now show that if φ(g) can be represented in the form (1) with a function Φ(·), with values in

E(V,W ), which is defined and analytic in a tube over a ball of radius R with R > (ρ, ρ)
1
2 and behaves

well at infinity then φ̂(·) is defined and square integrable and the formula (2) is valid. In particular Φ(·)
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could be taken to lie in H(E(V,W )), the space of all functions analytic in some such tube which go to

zero at infinity faster than the inverse of any polynomial.

Let P 1, . . . , P r be the elements of {P}, let V i = V (P i) and set

H =
r

∑

i=1

⊕H(E(V i,W )).

Let Φ(·) = (Φ1(·), . . .Φr(·)), where Φi(·) is a function in H(E(V i,W )), be the symbol for a generic

element of H. It is clear that we can define a linear map Φ(·) → φ̂(·) of H into L({P}, {V },W ).

Suppose that, for 1 5 i 5 r, fi(·) is a complex valued function defined, bounded, and analytic in

the tube T i
R over some ball of radius R > (ρ, ρ)1|2 with center 0 in the dual of ai

C and fi(sΛ) = ri(Λ)

if s ∈ Ω(ai, aj). Set

fΦ(·) = (f1(·)Φ1(·), . . . , fr(·)Φr(·)).

The following lemma is quite useful.

Lemma 4. If

max
15i5r

sup
Λ∈T i

R

|fi(Λ)| = k

then there is a bounded operator λ(f) on L({P}, {V },W ) of norm at most k such that if Ψ(·) =

fΦ(·) then ψ̂ = λ(f)φ̂.

Suppose Φ(·) = (Φ1(·), . . . ,Φr(·)) and Ψ(·) = (Ψ1(·), . . . ,Ψr(·)) are two arbitrary elements in H.

Then (φ̂, ψ̂) is equal to

r
∑

i=1

r
∑

j=1

1

(2π)q

∫

ReΛi=Λδ

∑

s∈Ω(ai,aj)

(M(s,Λi)Φi(Λ
i),Ψj(−sΛ̄i))|dΛi|.

Denote this expression by (Φ(·),Ψ(·)). It is easily verified that

(fΦ(·),Ψ(·)) = (Φ(·), f ∗Ψ(·))

if f∗(·) = (f ∗
1 (·), . . . , f∗r (·)) and f∗

i (·) is defined by f∗
i (Λ) = fi(−Λ̄). Consequently (f∗fΦ(·),Φ(·)) =

0. If ` > k there is a function g(·) satisfying the same conditions as f(·) such that `2 − f∗
i (Λ)fi(Λ) =

g∗i (Λ)gi(Λ), 1 5 i 5 r. Consequently

`2(Φ(·),Φ(·))− (fΦ(·), fΦ(·)) = (gΦ(·), gΦ(·)) = 0.



Eisenstein series 6

The lemma is an easy consequence of this inequality. In particular take

fi(Λ) = (µ− (Λ,Λ))−1

with µ > (ρ, ρ). Then λ(f) is self­adjoint with a dense range; consequently the operator A = µ −
λ(f)−1 is a self­adjoint operator, usually unbounded, on L({P}, {V },W ). If Ψi(Λ) = (Λ,Λ)Φi(Λ), 1

5 i 5 r, then Aφ̂ = ψ̂. The resolvent R(z,A) = (z − A)−1 is an analytic function of z off the infinite

interval (−∞, (ρ, ρ)].

5. A theorem.

Theorem. For each i and each j and each s in Ω(ai, aj) the function M(s,Λ) is meromorphic

on the dual of ai
C. For each Φ in ξ(V i,W ) the function E(·,Φ,Λ) with values in the space of

continuous functions on Γ\G is meromorphic on the dual of ai
C. If s ∈ Ω(ai, aj), t ∈ Ω(aj , ak) and

Φ ∈ E(V i,W ) the functional equations

M(ts,Λ) = M(t, sΛ)M(s,Λ),

E(g,M(s,Λ)Φ, sΛ) = E(g,Φ,Λ)

are satisfied.

The first, and most difficult, step in the proof of this theorem is to show that it is true when

dim ai = 1 for one, and hence all, i. Most of the important ideas in this case have been described by

Selberg in his talk at the International Congress.

6. In which the number variables is one. If dim ai = 1 then r is 1 or 2. If z is a complex number

let Λi(z) be such that (αi,Λi(z)) = z(αi, αi)
1
2 if αi is the unique simple root of ai. Let E = E(V 1,W )

or E(V 1,W ) ⊕ E(V 2,W ) according as r is 1 or 2. If r = 1, there is an s in Ω(a1, a1) different from the

identity; let M(z) = M(s,Λ1(z)). If r = 2 and s is in Ω(a1, a2) then sΛ1(z) = −Λ2(z). In this case let

M(z) =

(

0 M(x−1,Λ2(z))
M(s,Λ1(z)) 0

)

.

In both cases M(z) is a linear transformation of E . If Φ = (Φ1) or (Φ1,Φ2) belongs to E let

E(g,Φ, z) =
∑

i

E(g,Φi,Λ
i(z)).

The theorem may be restated as:
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Theorem. (i) E(·,Φ, z) and M(z) are meromorphic in the complex plane,

(ii) M(z)M(−z) = I,

(iii) E(g,M(z)Φ,−z) = E(g,Φ, z).

If (i) and (ii) are true and P is any maximal standard cuspidal subgroup then

∫

Γ∩N\N

E(ng,M(z)Φ,−z) − E(ng,Φ, z)dn = 0.

It follows from this that the integrand is a cusp form. Since on the other hand it is by construction

orthogonal to the cusp forms it must vanish identically. Thus (iii) is also true.

The space H may be regarded as a space of functions, each of which is defined on some strip of

the form |Rez| < (ρ, ρ)
1
2 + ε, ε > 0, by setting

Φ(z) =
∑

i

⊕Φi(Λ
i(z)).

Φ(·) takes values in E . If c is close to but greater than (ρ, ρ)
1
2

(φ̂, ψ̂) =
1

2πi

∫ c+i∞

c−i∞

(Φ(z),Ψ(−z̄)) + (M(z)Φ(z),Ψ(z̄))dz.

If c1 > Reλ > c then (R(λ2,Λ)φ̂ψ̂) is the sum of

(3)
1

2λ
{(Φ(λ),Ψ(−λ̄)) + (M(λ)Φ(λ),Ψ(λ̄))}

and

(4)
1

2πi

∫ c1+i∞

c1−i∞

1

λ2 − z2
{(Φ(z),Ψ(−z̄)) + (M(z)Φ(z)Ψ(z̄))}dz.

If Φ(z) = exp z2Φ and Ψ(z) = exp z2Ψ with Φ and Ψ in E then (4) is an entire function of λ and (3) is

equal to

(exp 2λ2/2λ){(Φ,Ψ) + (M(λ)Φ,Ψ)}.

ConsequentlyM(λ) is analytic wherever (R(λ2, A)φ̂, ψ̂) is. In particular it is analytic for Reλ > 0, λ /∈
(0, (ρ, ρ)

1
2 ].

Now we want to show thatE(·,Φ, z) is analytic in this region also. If f(g) is a continuous function

on Gwith compact support such that f(kgk−1) = f(g) for all k in K there is an entire function π(f, z)

with values in the space of linear transformations of E such that the convolution ofE(g,Φ, z) and f(g)



Eisenstein series 8

is E(g, π(f, z)Φ, z). As a consequence it is enough to show that if ψ(g) is any continuous function on

Γ\G with compact support then
∫

Γ\G

E(g,Φ, z)ψ̄(g)dg

is analytic in this region. In doing this we are free to modify E(g,Φ, z) outside of the support of ψ. If

Φ =
∑

i ⊕Φi then

E(g,Φ, z) =
∑

i

∑

Γ∩Pi\Γ

F (γg,Φi,Λ
i(z))

with

F (g,Φi,Λ
i) = exp(Λi(Hi(g)) + ρ(H i(g)))Φi(g).

According to a principal stated by Borel in his lectures on reduction there is a number x such that, for

1 5 i 5 r, the inverse image in G of the support of ψ is contained in {g | αi(Hi(g)) < x(αi, αi)
1
2 }.

Let F ′′(g,Φi, z) equal F (g,Φi,Λ
i(z)) if αi(Hi(g)) < x(αi, αi)

1
2 and let it equal −F (g,Φi(z),−Λi(z))

otherwise. Here Φi(z) is defined by

M(z)Φ =
∑

i

⊕Φi(z).

Set

E′′(g,Φ, z) =
∑

i

∑

Γ∩P i\Γ

F ′′(γg,Φi, z).

The functions E(g,Φ, z) and E′′(g,Φ, z) are equal on the support of ψ.

It is easy to compute the Fourier transform of F ′′(g,Φi, z). The argument of §4 allows us to show

that E′′(g,Φ, z) is in L2(Γ\G) and that the inner product (E′′(·,Φ, λ), E′′(·,Φ, λ)) is equal to

(λ+µ̄)−1{expx(λ+ µ̄)(Φ,Ψ)− exp(−x(λ+ µ̄))(M(λ)Φ,M(µ)Ψ)}

+ (λ− µ̄)−1{expx(λ− µ̄)(Φ,M(µ)Ψ)− expx(µ̄− λ)(M(λ)Φ,Ψ)}.

Call this expression ω(λ, µ̄; Φ,Ψ). Suppose E′′(g,Φ, λ) is defined at λ = λ0 and that ω(λ, µ̄; Φ,Φ) is

analytic in λ and µ̄ for |λ− λ0| < R, |µ̄− λ̄0| < R. Since

∣

∣

∣

∂n

∂λn
E′′(·,Φ, λ0)

∣

∣

∣

2

=
∂2n

∂λn∂µ̄n
ω(λ0, λ̄0; Φ,Φ)

we easily show that
∞
∑

n=0

(λ− λ0)
n

n!

∂n

∂λn
E′′(·,Φ, λ0)
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converges for |λ − λ0| < R so that E′′(·,Φ, λ) is an analytic function of λ in this region with values

in L2(Γ\G). It is easy to convince oneself that if M(λ) is a meromorphic function of λ satisfying

M(λ)M(−λ) = I then ω(λ, µ; Φ,Ψ) is a meromorphic function of λ and µ̄ whose only singularities

are on the lines λ = λ0 or µ̄ = λ̄0 where λ0 is a singularity of M(λ). In verifying this use the relation

M∗(λ) = M(λ̄). Because of this remark our only responsibility is to show thatM(λ) is meromorphic in

the entire complex plane and satisfies the stated functional equation. However the functionsE′′(g,Φ, z)

will still be used in an auxiliary role.

If λ = σ + iτ then ω(λ, λ̄; Φ,Ψ) which equals

(1/2σ){exp2xσ(Φ,Ψ) − exp(−2xσ)(M(λ)Φ,M(λ)Ψ)}

+ (1/2iτ)({exp2ixτ(Φ,M(λ)Ψ) − exp(−2ixτ)(M(λ)Φ,Ψ)}.

is a positive semidefinite form in Φ and Ψ. As a consequence

‖M(λ)‖ 5 max

{√
2 exp 2xσ,

4σ

|τ | exp 2xσ

}

.

We conclude first of all that if U is a set of the form a 5 τ 5 b, 0 < σ 5 c, with ab > 0, then ‖M(λ)‖
is bounded uniformly for λ in U . This allows us to estimate E(g,Φ, λ) for λ in U and then, utilizing

the close relation betweenE(g,Φ, λ) andE′′(g,Φ, λ), to show that ‖E′′(·,Φ, λ)‖ is uniformly bounded

for λ in U . Unfortunately the analysis required for these two steps is rather elaborate and cannot be

reproduced here. It may be found in §5 of my notes on Eisenstein series. To continue we observe that

this implies, by the very definition of ω(λ, λ̄,Φ, τ), that, for each Φ and Ψ, ω(λ, λ̄; Φ,Ψ) is bounded in

U . This can only be so if

lim
σ↓0

M∗(σ + iτ)M(σ + iτ) = M(σ − iτ)M(σ + iτ) = I

and

lim
σ↓0

M−1(σ − iτ) −M(σ + iτ) = 0

uniformly for t ∈ [a, b]. Roughly speaking this means that M(iτ) = M−1(−iτ) for τ real. In

any case, by an appropriate variant of the Schwarz reflection principle we can show that if we set

M(λ) = M−1(−λ) for Reλ < 0, λ /∈ [−(ρ, ρ)
1
2 , 0] then M(λ) can be extended across the imaginary

axis to be meromorphic everywhere but in the interval [−(ρ, ρ)
1
2 , (ρ, ρ)

1
2 ].

Finally it must be shown that M(λ) is also meromorphic in the interval [−(ρ, ρ)
1
2 , (ρ, ρ)

1
2 ]. Since

the proof of this is also based on §5 of my notes I shall not present it here.
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7. In which the number of variables is usually two. In the proof of the functional equations

for Eisenstein series in one variable there are two main points: to show that the function M(z) is

meromorphic and satisfies the stated functional equation and to construct the functions E′′(g,Φ, z)

and find the expressionω(λ, µ̄; Φ,Ψ) for the inner product of two such functions. In the general case the

first step is to show that the functions M(s,Λ) are meromorphic everywhere and satisfy the equations

of the theorem. After this one can proceed in two ways. Either one can find the analogues of the

function E′′(g,Φ, z) and the expression ω(λ, µ̄; Φ,Ψ) as we shall do now or one can proceed in a more

direct fashion to continue analytically the functions E(g,Φ,Λ) as is done at the end of §6 of the notes

referred to before. Since in proceeding the first way I work from rather rough notes you may prefer

the second upon which a little more reliance can be placed. I present the first because it introduces a

number of ideas and formulas likely to be of use in the attempt to obtain in the general case a trace

formula in the sense of Selberg.

α 3 = ρ

α 2

α
1

III

I

II

The first step is based on familiar ideas. It will probably be easier to understand if we discuss it in a very

simple case. LetG = SL(3, R), let Γ = SL(3, Z), and let {P} consist of one group, the groupP of upper

triangular matrices inG. In the diagram α1 and α2 are the simple roots of a, α3 = ρ = 1
2
(α1 +α2 +α3)

is the other positive root, and I is the region (Λ, αi) > (ρ, αi), i = 1, 2. The union of I and II is the

convex hull of I and its reflection in the line (α1,Λ) = 0. The region III plays the same role as II with

the line (α1,Λ) = 0 replaced by (α2,Λ) = 0. Let A be the tube over I, B the tube over the union of I

and II, and C the tube over the union of I and III. The functions M(s,Λ) are at first defined only in A.

Let si, i = 1, 2, be the reflection corresponding to the root αi. For reasons to be discussed later

M(si,Λ) depends only on the projection of Λ on the orthogonal complement of the line (Λ, αi) = 0
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and is a meromorphic function of Λ. Suppose we could show that, for all s, M(s,Λ) is meromorphic

in B and satisfies there the relation

(5) M(ss1,Λ) = M(s, s1Λ)M(s1,Λ).

Suppose we could also show the analogous facts for s2. Then, for example,

M(s1s2,Λ) = M(s1, s2Λ)M(s2,Λ)

in A. Since the right side is meromorphic in the entire two­dimensional complex plane so is the left.

An easy induction can be used to show that M(s,Λ) is meromorphic everywhere for each s and that

the functional equations are satisfied.

How then do we continue M(s,Λ) over B and prove (5). Suppose that for any Φ in E(V,W ) we

could analytically continue, E(·,Φ,Λ) over all of B (except perhaps for some poles) and show that

(6) E(·,M(s1,Λ)Φ, s1Λ) = E(·,Φ,Λ)

in this region. If N is the group of upper triangular unipotent matrices and Ω is the Weyl group of G

∫

Γ∩N\N

E(ng,Φ,Λ)dn =
∑

s∈Ω

exp(sΛ(H(g)) + ρ(H(g)))(M(s,Λ)Φ)(g)

and

∫

Γ∩N\N

E(ng,M(s1,Λ)Φ, s1Λ)dn =
∑

s∈Ω

exp(ss1Λ(H(g)) + ρ(H(g)))(M(s, s1Λ)M(s1,Λ)Φ)(g).

The left­hand sides of these equations are meromorphic and equal inB. As a consequence the functions

M(s,Λ) are all meromorphic in the same region and the equations (5) are satisfied.

As a further simplification we shall in proving (6) assume that E(V,W ) is the space of constant

functions. The space a is the set of diagonal matrices D(x1, x2, x3) of trace zero. Suppose α1 is the

linear function x1 − x2. Let ∗P be the group of all matrices in G of the form





x11 x12 x13

x21 x22 x23

0 0 x33



 .

∗N is the group of all such matrices with x12 = x21 = 0 and x11 = x22 = x33 = 1. ∗M is the group

of all such matrices with x13 = x23 = 0 and x33 = ±1 and ∗Θ = Γ ∩ ∗N\Γ ∩ ∗P is an arithmetic

subgroup of ∗M . Moreover

†P =∗ N\P ∩∗ N∗M
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is a percuspidal subgroup of ∗M . We can choose †V and †W bearing the same relation to †P as V and

W bear to P so that E(†V, †W ) is also the space of constant functions. There is a natural map Φ →†Φ
of E(V,W ) onto E(†V, †W ). a is the direct sum of ∗a = {D(x, x,−2x)} and †a = {D(x,−x, 0)} and

†a may be regarded as the split component of †P . The restriction †s1 of s1 to †a belongs to the Weyl

group of †a. Corresponding to †s1 there is a function M(†s1, †Λ) on the dual of †aC with values in

the space of linear transformations of E(†V, †W ). Because the dimension of a is one we know that

M(†s1, †Λ) is meromorphic everywhere in the dual space of †aC. The dual space of aC is of course

isomorphic to the sum of the dual spaces of ∗aC and †aC. Thus we may decompose a general Λ as a

sum ∗Λ + †Λ. A careful study of the computations following the statement of Lemma 3 reveals that

if Φ corresponds to †Φ then M(s1,Λ)Φ corresponds to M(†s1, †Λ)†Φ. This is the fact with which we

started.

By definition

E(g,Φ,Λ) =
∑

Γ∩P\Γ

exp(Λ(H(γg)) + ρ(H(γg)))Φ(γg)

=
∑

Γ∩∗P\Γ







∑

Γ∩P\Γ∩∗P

exp(Λ(H(δγg)) + ρ(H(δγg)))Φ(δγg)







.

Consider the inner sum with the argument γg replaced by g and let g = namk, n ∈ ∗N,m = m(g) ∈
∗M,a ∈ ∗A, and k in K . It equals

exp(∗Λ(∗H(g)) + ρ(∗H(g)))











∑

∗Θ∩†P\∗Θ

exp(†Λ(†H(θm)) + ρ(†H(θm)))†Φ(θm)











or

exp(∗Λ(∗H(g)) + ρ(∗H(g)))E(m, †Φ, †Λ).

Consequently

E(g,Φ,Λ) =
∑

Γ∩∗P\Γ

exp(∗Λ(∗H(γg)) + ρ(∗H(γg)))E(m(γg), †Φ, †Λ).

It can be shown that the series on the right converges at any point ofB at which it is defined and that it

represents a meromorphic function in B. The relation (6) is an immediate consequence of the known

relation

E(m,M(†s1, †Λ)†Φ, †s1†Λ) = E(m, †Φ, †Λ).
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8. A combinatorial lemma. Before defining the functions E′′(g,Φ,Λ) we had best discuss a simple

combinatorial lemma. V will be a Euclidean space; V ′ will be its dual; {λ1, . . . , λp} will be a basis of

V ′ such that (λi, λj) 5 0 if i 6= j; and {µ1, . . . , µp} will be a basis of V ′ dual to {λ1, . . . , λp}. Suppose

p is an ordered partition of {1, . . . , p} into r = r(p) nonempty subsets Fu, 1 5 u 5 r. If i ∈ Fu let µi
p

be the projection of µi on the orthogonal complement of the space spanned by {µj | j ∈ Fv, v < u}
and let λi

p, 1 5 i 5 p, be such that (λi
p, µ

j
p) = δij . A point Λ in V ′ will be called singular if, for some

i and some p, (Λ, µi
p) = 0 or (Λ, λi

p) = 0 and a point H in V will be called singular if λi
p(H) = 0 for

some i and some p. Suppose Λ in V ′ is not singular. Define the function φΛ
p on V by the condition

that φΛ
p (H) = 0 unless λi

p(H)(µi
p,Λ) < 0 for all i when φΛ

p (H) = 1. Define the function ψΛ
p by the

condition that ψΛ
p (H) = 0 unless λi

p(H) > 0 for i in F1 and λi
p(H)(µi

p,Λ) < 0 for i not in F1 when

ψΛ
p (H) = 1. Let au

p be the number of elements in Fu; let bΛp be the number of i such that (µi
p,Λ) < 0,

and let cΛp be the number of i in ∪r
u=2Fu such that (µi

p,Λ) < 0. Set

αΛ
p = bΛp +

r
∑

u=1

(au
p + 1) , βΛ

p = 1 + cΛp +
r

∑

u=2

(au
p + 1).

Lemma 5. If H is not singular then

∑

p

(−1)αΛp

φΛ
p (H) =

∑

p

(−1)βΛ
pψΛ

p (H)

if (λi,Λ) < 0 for some i and

∑

p

(−1)αΛ
pφΛ

p (H) = 1 +
∑

p

(−1)βΛ
pψΛ

p (H)

if (λi,Λ) > 0 for all i.

It is a pleasant exercise to prove this lemma.

9. L2(Γ\G) as the bed of Procrustes. Suppose a = ai0 and Φ ∈ E(V i0 ,W ) (the notation is that

of §4). Suppose Λ in the dual of aC is such that for all i and all s in Ω(a, ai) the point Re(sΛ) is not

singular in the sense of the previous paragraph. Take V to be ai and λ1, . . . , λp to be the simple roots

of ai. Suppose also that Re(Λ, α) > (ρ, α) if α is a positive root of a. Choose a point H0 in the split

component of the standard percuspidal subgroup such that α(H0) is very large for every positive root

and let Hi
0 be its projection on ai. For each i let F ′′

i (g,Φ,Λ) be the function

∑

s∈Λ(a,ai)

∑

p

(−1)αRe(sΛ)

p φ
Re(sΛ)
p (Hi(g) −H i

0) exp(sΛ(H i(g)) + ρ(H i(g)))((M(s,Λ)Φ)(g)).
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Since the functions ψ
Re(sΛ)
p (Hi(g)−H i

0) are zero on

{g ∈ G | µj(Hi(g)−H i
0) < 0, 1 5 j 5 p}

the lemma shows that F ′′
i (g,Φ,Λ) is zero almost everywhere on this set unless i = i0 and that

F ′′
i0(g,Φ,Λ) − exp(Λ(H i0(g))− ρ(H i0(g)))Φ(g)

is zero almost everywhere on this set. Set

E′′(g,Φ,Λ) =
r

∑

i=1

∑

Γ∩P i\Γ

F ′′
i (γg,Φ,Λ).

It is a consequence of the above remarks and the minimum principle stated by Borel in his lectures on

reduction theory that if U is any compact set in Γ\G the point H0 may be so chosen that

E′′(g,Φ,Λ) = E(g,Φ,Λ)

almost everywhere on U .

It is an easy matter to compute the Fourier transform of the functions F′′
i (g,Φ,Λ). The arguments

of §4 may be used to show that E′′(g,Φ,Λ) is square integrable. The relation (2) may be used to

evaluate

(E′′(g,Φ,Λ), E′′(g,Ψ,M))

if Ψ lies in E(V i′0 ,W ) and M in the dual of A′
C = A

i′0
C

satisfies the same conditions as Λ. If αp =
∑r

u=1(a
u + p + 1) the result is

r
∑

j=1

∑

s∈Ω(a,aj)

∑

t∈Ω(ai,aj)

∑

p

(−1)αp
exp(tΛ + sM̄)(Hj

0)
p
∏

m=1
(µm

p , tΛ + sM̄)

(M(t,Λ)Φ,M(s,M)Ψ).

The notation is poor because the linear functions µm
p depend, of course, on j. Since it can be shown that

the functional equations for the functions M(t,Λ) imply that this expression is an analytic function of

Λ and M̄ wherever all the functions M(t,Λ) andM∗(s,M) are, we can proceed as in the rank one case

to complete the proof of the theorem.

10. More Eisenstein series. Once one knows that the functions E(g,Φ,Λ) and M(s,Λ) are mero­

morphic everywhere one can try to use the formula

(φ̂, ψ̂) =
1

(2π)q

∫

ReΛ=Λ0

∑

(M(s,Λ)Φ(Λ),Ψ(−sΛ̄))|dΛ|
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to analyze the space L({P}, {V },W ). In order to get some idea of what actually happens let us look

at a particular case. We shall study the case that G = SL(3,R),Γ = SL(3,Z), P is the percuspidal

subgroup introduced in §7, and V and W , and hence E(V,W ), are the space of constant functions.

As a preliminary let us look at the same situation with SL(3,R) replaced by SL(2,R) and with the

other objects of our attention modified accordingly. Godement has already done this in his first lecture.

However, he was not concerned with the discrete spectrum in L({P}, {V },W ) and we shall be.

To remind you of the notation:

N =

{(

1 x
0 1

)

∣

∣x ∈ R

}

;

AR =

{(

α 0
0 α−1

)

∣

∣α ∈ R×

}

;

K =

{(

cos θ sin θ
− sin θ cos θ

)

∣

∣θ ∈ R

}

.

Take dn = dx, da = |α|−1dα, dk = dθ/2π, and take dg to be such that

∫

G

φ(g)dg =

∫

N

dn

∫

AR

da

∫

K

dk|α|−2φ(nak).

Then the inner product of φ̂ is equal to

(a)
1

2πi

∫

Re z=z0

Φ(z)Ψ̄(−z̄) +
ξ(z)

ξ(1 + z)
Φ(z)Ψ̄(z̄)dz (z0 > 1).

Here Φ(z) = Φ(Λ(z)) where Λ(z) is the linear function such that Λ(Hα) = z if

Hα =

(

1 0
0 −1

)

.

In the present situation Φ(·) is a scalar­valued function so inner products are replaced by products

and if s is the nontrivial element of the Weyl group M(s,Λ(z)) is a scalar­valued function equal to

ξ(z)/ξ(1 + z) if

ξ(z) = π−z/2Γ(z/2)ξ(z).

Using the residue theorem we see that the expression (a) is the sum of two terms

(b)
1

2πi

∫

Rez=0

Φ(z)Ψ̄(−z̄) +
ξ(z)

ξ(z + 1)
Φ(z)Ψ̄(z̄)dz

and

(c)
1

ξ(2)
Φ(1)Ψ̄(1).
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The esimates of §6 justify this application of the residue theorem. We immediately see thatL({(P}, {V },W )

is the direct sum of two subspacesLi({P}, {V },W ), i = 0, 1. L0({P}, {V },W ) is the space of constant

functions and the inner product of the projection of φ̂ and ψ̂ on this space is given by (c). The inner

product of the projection of φ̂ and ψ̂ on L1({P}, {V },W ) is given by (b) which equals

1

π

∫ ∞

−∞

1

2

{

Φ(iy) +
ξ(−iy)
ξ(1− iy)

Φ(−iy)
}

· 1

2

{

Ψ(iy) +
ξ(−iy)
ξ(1− iy)

Ψ(−iy)
}

dy.

As a consequenceL1({P}, {V },W ) is isometric to the space of all functions Υ square integrable on the

imaginary axis with respect to the measure dy/π, which satisfy

Υ(−iy) =
ξ(iy)

ξ(1 + iy)
Υ(iy).

The term (c) comes from the pole of ξ(z)/ξ(1 + z) at z = 1. As it happens E(g,Φ, z) also has a pole at

z = 1; to see what the residue is we observe that

(a)

∫

Γ∩N\N

Res E(ng,Φ, z)dn = Res
z=1

∫

Γ∩N\N

E(ng,Φ, z)dn.

This of course is equal to

Res
z=1

{

exp((Λ(z) + ρ)(H(g))) +
ξ(z)

ξ(1 + z)
exp((−Λ(z) + ρ)(H(g)))

}

Φ =
1

ξ(2)
Φ

if Φ(g) ≡ Φ. Thus

Res
z=1

E(g,Φ, z) − 1

ξ(2)
Φ

is a cusp form. Since it is also orthogonal to all cusp forms it must be zero.

The analogue of the expression (a) when G = SL(3,R) is

(d)
1

(2π)2

∫

ReΛ=Λ0

∑

s∈Ω

M(s,Λ)Φ(Λ)Ψ̄(−sΛ̄)|dΛ|

with

M(s,Λ) =
∏

α>0;sα<0

ξ(Λ(Hα))

ξ(1 + Λ(Hα))
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(for notation, see my lecture on the volume of fundamental domains).

α1

δ1

Λ 0

γ1
γ2

γ3
δ3

δ2

α 2

α3
(H ) = 1Λ

α2(HΛ ) = 1

α1
(HΛ ) = 1α3 = ρ

The only singularities of the functions M(s,Λ) which meet the tube over the positive Weyl chamber

are simple poles on the lines Λ(Hαi
) = 1, i = 1, 2, 3. If Φ(Λ) vanishes on these three lines then (d) is

equal to

(e)
1

(2π)2

∫

ReΛ=0

∑

s∈Ω

M(s,Λ)Φ(Λ)Ψ̄(−sΛ̄)|dΛ|.

Call the closed subspace generated by the functions φ̂ corresponding toΦ(·)of this sortL2({P}, {V },W ).

As before, L2({P}, {V },W ) is isometric to the space of square­integrable functions on the (real) plane,

ReΛ = 0, which satisfy certain functional equations. Under this isometry convolution by K­invariant

functions on G becomes multiplication by scalar­valued functions. The inner product of the projection

of any φ̂ and ψ̂ on L2({P}, {V },W ) is given by (e).

The difference between (d) and (e) is nothing but the inner product of the projection of φ̂ and ψ̂ on

the orthogonal complement of L2({P}, {V },W ). If si is the complex line Λ(Hαi
) = 1, 1 5 i 5 3, then

by the residue theorem the difference will be a sum of three integrals taken respectively over the real

lines ReΛ = γi in si. To describe the exact form of the integrals we need a little notation. Let Ω(si, sj)

be the set of distinct affine transformations from si to −sj obtained by restricting those elements of Ω

which take si to −sj . The difference we spoke of can be written as

(f)
3

∑

i=1

3
∑

j=1

∑

s∈Ω(si,sj)

1

2π

∫

ReΛ=γi

M(s,Λ)Φ(Λ)Ψ̄(−sΛ)|dΛ|.
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Here M(s; Λ) is a certain scalar valued function on si. In a moment I shall give the explicit form of

these functions. First we observe that Ω(s1, s2) contains exactly one element ρ, the restriction to s1 of

the reflection in Λ(Hα1
) = 0, that Ω(s1, s2) contains exactly one element σ, the restriction to s1 of the

reflection in Λ(Hα3
) = 0, and that Ω(s1, s3) contains exactly one element τ , the restriction to s1 of the

rotation through an angle of 2π/3. From these three elements we can obtain for each i and j the unique

element of Ω(si, sj). For example, the unique element of Ω(s3, s2) is σρτ−1. Observe that, for example,

τρ takes s1 to s3. If Λ is in s1 and Λ(Hβ3
) + 1

2
= z the number in the second row and third column of

the following table is M(σρτ−1, τρΛ). The other entries are interpreted accordingly.

ρ σ τ

ρ 1
ξ(2)

1
ξ(2)

ξ(−z− 1
2 )

ξ(−z+ 3
2 )

1
ξ(2)

ξ( 1
2−z)

ξ( 3
2−z)

σ 1
ξ(2)

ξ(z− 1
2 )

ξ(z+ 3
2 )

1
ξ(2)

1
ξ(2)

ξ( 1
2+z)

ξ( 3
2+z)

τ 1
ξ(2)

ξ(z+ 1
2 )

ξ(z+ 3
2 )

1
ξ(2)

ξ(−z+ 1
2 )

ξ(−z+ 3
2 )

1
ξ(2)

ξ( 1
2−z)

ξ( 3
2−z)

ξ( 1
2+z)

ξ( 3
2+z)

The matrix defined by this table is of rank one.

The integral (f) is the sum of

(g)
3

∑

i=1

3
∑

j=1

∑

s∈Ω(si,sj)

1

2π

∫

ReΛ=δi

M(s,Λ)Φ(Λ)Ψ̄(−sΛ̄)|dΛ|

and

(h)
1

ξ(2)ξ(3)
Φ(ρ)Ψ̄(ρ).

The points δi are shown on the diagram. Correspondingly, the orthogonal complement of L2({P},
{V },W ) in L({P}, {V },W ) is the direct sum of L1({P}, {V },W ) and L0({P}, {V },W ) and the

inner product of the projections of φ̂ and ψ̂ on these two spaces are given respectively by (g) and (h).

L0({P}, {V },W ) is just the space of constant functions. There is an isometry ofL1({P}, {V },W ) with

a subspace of the direct sum of the spaces of square­integrable functions on ReΛ1 = δ1 and ReΛ1 = δ2

which is such that convolution byK­invariant functions corresponds to multiplication by scalar valued

functions.

The functions E(g,Φ,Λ) also have poles on the lines si. To compute the residue of E(g,Φ,Λ) on

the line s1 we combine our earlier result for SL(2,R) with the formula of §7. The result is

1

ξ(2)

∑

Γ∩∗P\Γ

exp(∗Λ(∗H(γg)) + ρ(∗H(γg)))Φ =
1

ξ(2)
E′(g,Φ,∗ Λ),
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an Eisenstein series belonging to the cuspidal subgroup ∗P . The Eisenstein series on the left is, unlike

those we have dealt with up to now, not an Eisenstein series associated to a cusp form. An automatic

consequence of the above is that the function defined by the sum on the left is everywhere meromorphic.

Denote the residue of E(g,Φ,Λ) on si, by Ei(g,Φ,Λ). Then

∫

Γ∩N\N

Ei(ng,Φ,Λ)dn =
3

∑

j=1

∑

s∈Ω(si,sj)

exp(sΛ(H(g)) + ρ(H(g)))(M(s,Λ)Φ)(g).

Since the matrix introduced above is of rank one this implies that

E2(g,Φ, σρΛ) =
ξ(−z − 1

2)

ξ(−z + 3
2)
E1(g,Φ,Λ),

E3(g,Φ, τρΛ) =
ξ( 1

2
− z)

ξ( 3
2
− z)

E1(g,Φ,Λ).

In the general case one can show that L({P}, {V, },W ) is a direct sum

⊕g

i=1
Li({P}, {V },W )

with g equal to the rank of the elements of {P}. In the course of doing this one sees that all Eisenstein

series define functions which are everywhere meromorphic and satisfy functional equations of the

expected type. The spectrum of Li({P}, {V },W ) is again continuous of dimension i. Beyond this,

however, the situation is very foggy.


