
The Dirac Monopole and Induced Representations *

In this note a mathematically transparent treatment of the Dirac monopole is given
from the point of view of induced representations. Among other things the question
of bound states for the spinning electron in the field of a magnetic monopole is
considered.

In 1948, as he was turning from theoretical physics to mathematics, Harish-Chandra wrote one last

paper [5] on a physical topic, investigating a question inspired by Dirac, and perhaps even proposed

by him. Does an electron moving according to Dirac’s equation in the field of a magnetic monopole

have a bound state? The technique involved, namely, separation of variables, is of course elementary,

and would reappear but at a much deeper level repeatedly in Harish-Chandra’s later work on har-

monic analysis on semisimple groups. However, this time, his mind on other matters, he handled it

perfunctorily, and went astray with the calculations, concluding – incorrectly – that there could be no

bound states. The matter has since been dealt with correctly ([4], [6], [8]). However, the derivation of

the radial equations in [6] and [8] is not so efficient as it might be. In view of the possible historical

interest to students of Harish-Chandra’s later work, a brief, mathematically transparent treatment does

not seem out of place. It is the purpose of this note, which does not touch on any questions of serious

current interest, to provide it.

In [2] Dirac considers the wave function ψ of a charged particle without spin, observing that one

can replace ψ by eiβψ without changing the distribution |ψ|2, which is what counts. The function β

depends on the coordinates g, x1, x2, x3. The substitution replaces

1
i

∂

∂t
by

1
i

∂

∂t
+
∂β
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this effect can be countered by a change in the electromagnetic potentials A0, A1, A2, A3. The upshot

is that ψ can be regarded as a section of a line bundle with metric and with a connection defined by the

electromagnetic potentials.

The pertinent line bundle is on M , four-dimensional space with the line x1 = x2 = x3 = 0

removed. This space is to be identified with R × R+ × H\G, where G is SU(2) and H is the group

of diagonal matrices. As usual G is mapped to SO(3) and thus acts on 3-space ((x1, x2, x3) →
(y1, y2, y3) = (x1, x2, x3)A(g)) in such a way that the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)

multiplied by i/2 correspond to infinitesimal rotations through the x1, x2, and x3-axes. Thus

(
y3 y1 − iy2

y1 + iy2 −y3

)
= f−1

(
x3 x1 − ix2

x1 + ix2 −x3

)
g.

Then (r, g) → r(001)A(g) identifies R+ × H\G with 3-space minus the origin. The line bundle is

defined by a one-dimensional representation

ρ :
(
eiθ 0
0 eiθ

)
→ einθ

ofH , sections being complex functions f on R × R+ ×G satisfying

f(t, r, hg) = ρ(h)f(t, r, g).

The connection, like the bundle, is a product trivial on the first two factors. Let H⊥ be the

orthogonal complement of H in G and regard functions on H\G as H-invariant functions on G. We

prescribe that forX ∈ H⊥ the tangent vectorXg atHg defined by

Xgf =
d

dt
f(exp tX · g)|t=0

acts on sections by the same formula, and verify that this yields a well-defined connection.

The curvature of this connection can be computed on H\G and, since [H⊥,H⊥] ⊆ H, is a two-

form that takes the value 1
2
ρ([X1,X2]) at X1

g ∧ X2
g . Taking X1 = iσ1/2,X2 = iσ2/2 and recalling

that when divided by −i/2 the curvature on M yields a two-form that gives the electric and magnetic

fields, we see that the associated electric field is 0 and the magnetic field purely radial and equal to

− n

2r3
(x1, x2, x3).
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Observe that all constructions are invariant under the action ofG onH\G, which of course yields

the usual action of G on M . Consequently the magnetic field is spherically symmetric and need only

be evaluated at (0, 0, r). Notice also that at a point (r, g) where g = 1,

(1) X1
1 = −r ∂

∂x2
, X2

1 = r
∂

∂x1
.

However, the Dirac equation, with which [5] was concerned, is for electrons with spin. To introduce

it we tensor the bundle with the four-dimensional trivial bundle on M . If σ is the representation of G

to itself, then the equations are invariant under the transformation F → F′ with

(1 ⊗ σ(g))F ′(t,
⇀
x A(g)) = F (t,

⇀
x ).

So we replace F by f with

(2) f(t, r, g) = (1 ⊗ σ(g))F (t, r(0, 0, 1)A(g))

to obtain equations invariant under right translations.

In terms of f the Dirac operator may be written

(3) i

(
γ0 ∂

∂t
+ γ3 ∂

∂r
+
γ1

r
X2 − γ2

r
X1 +

1
r
γ3

)
−m.

The notation is that of [1]. This need only be verified at (t, r, 1). Using equations (1) we see that the

Dirac operator may be written as

i(1 ⊗ σ(g))
(
γ0 ∂

∂t
+
γ1

r
X2 − γ2

r
X1 + γ3 ∂

∂r

)
(1 ⊗ σ(g−1)) −m,

g being set equal to 1 after the differentiation. Thus it is

i

(
γ0 ∂

∂t
+ γ3 ∂

∂r
+
γ1

r
X1 − γ2

r
X1 − γ1

r
σ(X2) +

γ2

r
σ(X1)

)
−m.

Since

γ0 =
(

1 0
0 −1

)
, γj =

(
0 σj

−σj 0

)
(j = 1, 2, 3)

and

σ(Xj) =
i

2

(
σj 0
0 σj

)
,

the equation (3) follows.
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The eigenfunction equation of the associated Hamiltonian is

(4)

{
1
i

(
0 σ3

σ3 0

)
∂

∂r
+

1
i

(
0 σ1

σ1 0

)
X2

r
− 1
i

(
0 σ2

σ2 0

)
X1

r
+

1
ir

(
0 σ3

σ3 0

)}
f

=
(
E −m 0

0 E +m

)
f.

It cannot be interpreted until the formal expression on the left has been completely defined as an

operator H that will be an extension of the closure H0 of the obviously defined operator on functions

with compact support on R+ × G. Since H0 will be seen not to be self-adjoint if n �= 0, there will be

some freedom in the choice ofH .

To analyze H0 and its self-adjoint extensions we can clearly consider the projections onto the

space of functions f transforming according to a given representation of G. Take the representation

of dimension d + 1 acting on the polynomials of degree d in two variables with orthonormal basis

ej,k = ( d
j
)1/2xjyk, j + k = d.

The entries of the column vector f will then be matrix coefficients of the representation and we

can take them all from one column, the several columns entailing a multiplicity. As a consequence of

(2) the first and the third entries will be multiples f1/r and f3/r of the matrix coefficient on the row

with j = k = n+1, and the second and fourth entries will be multiples f2/r and f4/r of the coefficient

in the row with j − k = n− 1.

The denominator simplifies the inner product

∫
R+×G

‖f‖2r2drdg =
4∑

i=1

∫ ∞

0

|fi(r)|2dr

and, when we rewrite (4) in terms of the fi, removes the last term on the left. We have

σ1X2 − σ2X1 =
(

0 X2 + iX1

X2 − iX1 0

)

and, in the Lie algebra,

X2 + iX1 =
i

2
(σ2 + iσ1) =

(
0 0
−1 0

)
,

X2 − iX1 =
i

2
(σ2 − iσ1) =

(
0 1
0 0

)
.

Moreover (
0 0
1 0

)
: ej,k → (j(k + 1))1/2ej−1,k+1,(

0 1
0 0

)
: ej,k → ((j + 1)k)1/2ej+1,k−1.
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So the left side of (4) becomes

(5)




1
i




0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0


 ∂

∂r
+

1
ir




0 0 0 −µ
0 0 µ 0
0 −µ 0 0
µ 0 0 0









f1
f2
f3
f4




and the right side

(6)



E −m 0 0 0

0 E −m 0 0
0 0 E +m 0
0 0 0 E +m






f1
f2
f3
f4


 .

Here µ = ((j+ 1)k)1/2 =
√

(d+ 1)2 − n2/2, j + k = d, j − k = n− 1. In the special case d+ 1 = −n,

the coefficients f2 and f4 are fictitious, µ = 0, and (5) becomes

(7)
1
i

(
0 1
1 0

)
∂

∂r

(
f1
f3

)
.

If d+ 1 = n then (5) becomes

(8) −1
i

(
0 1
1 0

)
∂

∂r

(
f2
f4

)
.

Taking 

f1
f2
f3
f4


 =




f
εf
g

−εg




with ε = ±1, we decouple the system given by (5) and (6) into the systems

(9)
{

1
i

(
0 1
1 0

)
∂

∂r
+
εµ

ir

(
0 1
01 0

)} (
f

g

)
=

(
E −m 0

0 E +m

)(
f

g

)
.

In the two exceptional cases we have the system

(10) ±1
i

(
0 1
1 0

)
∂

∂r

(
f

g

)
=

(
E −m 0

0 E +m

) (
f

g

)
.

The operators appearing on the left of (9) and (10) have still to be defined. They are to be self-

adjoint extensions of the closureG0 of the obviously defined operators on smooth functions of compact

support on (0,∞). We apply the theory of [3], XIII. 2, which obviously extends to systems. Denote the

formal differential operator on the left of (9) or (10) by τ .
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For equation (9) the roots of the indicial equation of τ at 0 are ±µ. Since µ ≥ 1, only one solution

of

(11) τ

(
f

g

)
= ±i

(
f

g

)

is square-integrable on (0, 1] and there are no boundary conditions ([3], XII.4.21, XIII.2.19,

XIII.2.23). For equation (10) the indicial equation has the multiple root 0 at 0. So there are two

independent boundary values. For both equations there is one square-integrable solution of (11) on

[1,∞) and no boundary condition at ∞.

We conclude that for (9) the operator T0 is already self-adjoint. It follows from Lemma XIII.4.23 of

[3] and integration by parts that for (10)

−i(T ∗
0 F,F

′) + i(F, T ∗
0 F

′) = f ḡ′ + gf̄ ′,

withF = (f, g)t, F ′ = (f ′, g′)t. So the self-adjoint extensionsT ofT0 are defined by f(0) = iλg(0), λ ∈
R, or g(0) = 0.

In all cases the discrete spectrum of

T +



m 0 0 0
0 m 0 0
0 0 −m 0
0 0 0 −m




is obtained by explicitly solving (9) or (10). For a square integrable solution E must be real. For (10)

there is a square-integrable solution of the equation only ifm2 > E2 and it is

f = e−r
√

m2−E2
, g =

∓1
i

√
m−E
m+E

e−r
√

m2−E2
.

It satisfies the boundary conditions if and only if −√
(m+ E)/(m−E) = λ. So there is a bound state

if −∞ < λ < 0 and none otherwise.

For (9) there could be a solution square-integrable at ∞ only if m2 > E2 and then it would

have to be a multiple of the pair with f equal to the Whittaker function W0,ν(αr) ([7]) where α =

2
√
m2 − E3, ν = µ− 1

2 , ε > 0, ν = µ+ 1
2 , ε < 0. This pair cannot be square-integrable near 0.

We can sum the discussion up with a theorem (cf. [4]).
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Theorem. If n = 0 the operator H0 is self-adjoint. If |n| > 0 then there is a 1-parameter family

of spherically symmetric self-adjoint extensions H of H0, parametrized by λ ∈ R ∪ {∞} and no

others. The operator

H +



m 0 0 0
0 m 0 0
0 0 −m 0
0 0 0 −m




has a discrete spectrum if and only if λ ∈ (−∞, 0), and then it consists of the eigenvalue E =

m(λ2 − 1)(1 + λ2)−1 with multiplicity |n|.
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