The Dimension of Spaces of Automorphic Forms*

R.P. Langlands

1. The trace formula of Selberg reduces the problem of calculating the dimension of a space of
automorphic forms, at least when there is a compact fundamental domain, to the evaluation of certain
integrals. Some of these integrals have been evaluated by Selberg. An apparently different class of
definite integrals has occurred in Harish-Chandra’s investigations of the representations of semi-simple
groups. These integrals have been evaluated. In this paper, after clarifying the relation between the
two types of integrals, we go on to complete the evaluation of the integrals appearing in the trace
formula. Before the formula for the dimension that results is described let us review Harish-Chandra’s

construction of bounded symmetric domains and introduce the automorphic forms to be considered.

If G is the connected component of the identity in the group of pseudo-conformal mappings
of a bounded symmetric domain then G has a trivial centre and a maximal compact subgroup of
any simple component has non discrete centre. Conversely if G is a connected semi-simple group
with these two properties then G is the connected component of the identity in the group of pseudo-
conformal mappings of a bounded symmetric domain [2(d)]. Let g be the Lie algebra of G and g its
complexification. Let G, be the simply-connected complex Lie group with Lie algebra g.; replace G
by the connected subgroup G of G, with Lie algebra g. Let K be a maximal compact subgroup of G
with Lie algebra ¢; then € contains a Cartan subalgebra h of g. Fix once and for all an order on . This
order is to be so chosen that g. is the direct sum of ¢.,p, and p_;p is spanned by the root vectors
belonging to the totally positive roots and p_ by the root vectors belonging to the totally negative roots.
Moreover p and p_ are abelian and [¢.,p;] C py and [t.,p_] C p_. Let P,,P_, and K. be the
connected subgroups of GG, with Lie algebras p,p_, and €. respectively. The exponential mapping of
p. into P, is bijective; thus P, is provided with the structure of a complex vector space. Moreover
GCP.K.P_and P, NK.P_ ={1}. Then P, K.P_/K_.P_ which is identified with p_ is a complex
vector space and the image of GG is a bounded symmetric domain B. Finally it should be observed that
G N K.P_ = K and that p_. is an open subset of the space G./K.P_. Now identify p with complex
coordinate space and let z be the column of coordinates. If g € G,z € py,and 2’ = g(z) € p4 (in the
space G./K.P_)letdz" = u(g, z)dz. Before defining the automorphic forms it is necessary to establish

a lemma.

* First appeared in Am. J. Math., vol. 85 (1963)
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Lemma 1. Let K. be the restriction of K. to p, then u(g,z) € K.

Suppose X € p, and f(-) is holomorphic in a neighborhood of 2 on p. or P, since they are
identified. Set h(p+kp—) = f(p+),p+ € Py, k € K.,p— € P_. Then h(-) is a holomorphic function
onpartof G.. Letz=p € P, and 2’ = p’ € P, then,att =0,

%h(g exp(tX)p) = %h(exp(tg(X))p')

= S h' exp('~g(X)))
= L(X1)h(p') + L(X2)h(p') + L(X3)h(p')

= L(Xl)h(p/) = R(Xl)h(p/)'

Herep'~1g(X) = X7+ Xo+ X3, X7 € py, Xo € b, X3 € p_. L(X;) and R(X;) denote the obvious left
or right invariant differential operators. It is necessary to verify that the map X — Xj is given by an
elementof K.. Butgp = p'kp_;sop’~tg=kp_p~tand kp_p~1(X) = kp_(X) = k(X)(mod t.+p_);
thus X; = k(X). Finally it should be remarked that x(g, z) is a holomorphic function of g and z.
Suppose that ¢ is an irreducible, holomorphic matrix representation of K, of degree d which is
unitary on K. Then, since u(g192,2) = u(g1,922)p(ge, 2), it is easily seen that the action of G on
the space H (o) of holomorphic functions on B, whose values are column vectors of length d, defined
by g7 f(2) = 071(g, 2) f(gz), with o(g, 2) = o(u(g, 2)), is a representation of G. If " is a discrete
subgroup of GG define an (unrestricted) automorphic form of type o to be a function f in H(o) such
that vf = f forall v in I'. For subgroups of the symplectic group this definition is essentially the same
as that of [7]. As is shown there the dimension of the space, H (I, o), of automorphic forms of type o
is finite if G/I" is compact. For a large class of representations o the calculations of this paper lead to

the following formula for the dimension

(1) N(D,0) = > v(Gy/T)x(7)-

{7}
The sum is over a set of representatives of those conjugacy classes of I" that have a fixed point in B.
G, is the centralizer of v in G and I, is the centralizer of v in I'. If the Haar measure v on G, is
appropriately normalized then x () equals

€(s s S esAH)+sp(H)
(_1)bw wa\w ( )agﬂ( A(Ha) + ﬂ(Ha)) N

v(By) (G, : GY) HP py(Ha)Hagg (e30(H) _ o~ 3a(H)
aely Qg
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The various symbols will be explained in the course of the proof. This formula agrees with those
presented in [3] and [6].

2. In this paragraph and the next the trace formula is reviewed in our special context and a first
connection with the work of Harish-Chandra is established. The end result is formula (1) with the

numbers () expressed as integrals.

Since u(k, z) = k € K., the measure
dz = |det(u(g,0))| > [ | dwidy:,

with z = ¢(0), is well defined on B and invariant under G. The invariant measure on G is to be so

| = [ s(a0)ds
Set G(z) = 0*71(g,0)071(g,0) with z = g(0). G(=z) is well defined and G(g(z)) = o* (g, 2)G(2)

o~ *(g,2). Introduce the space H?(o) of functions f in H(c) for which [ f*(2)G(z)f(z)dz is finite.

normalized that

The action of G on H? (o) is easily seen to be unitary. The functional f — f;(z), where f;(z) is the j-th

coordinate of f(z), is bounded on H?(o); let

/ 95 (21, 22)G(22) f(22)dz2 = f(21)
B

and set K (z1,22) = (91(21,22),...,94(%1,22))*. Observe that K(gz1,922) = 0(g,21)K(21,22)0*
(g, 22). If L?(o) is the space of measurable functions f on B for which [ f*(2)G(z) f(z)dz is finite then

oo) = [ Kerm)Gle) f(ea)d
B
defines the orthogonal projection of L?(o) onto H?(o). Consequently
K*(ZQ, 2’1) = K(Zla 2’2)

and
/ K(Z?,,ZQ)G(ZQ)K(ZQ,Zl)dZQ = K(Zg,zl).
B

Although not necessary it is convenient to verify now that the representation of G in H?(o) is
equivalent to a representation investigated by Harish-Chandra [2(c)]. Let W be the inverse image of B

under the map G, — G_! — G;'/K.P_(W = P_K.B~!if B is considered a subset of P,); then
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ifge Wand f € H(o)set f(g) = 0‘1( ~10)f(g71(0)). Then f(g) satisfies: (av)f(pkg) = o(k)f(g)
if pe P_and k € K., moreover f(g) is holomorphic on W and if f(z) is in H?(c) then

O = / F*(2)C(2) f(2)dz = / 1£(9)]12dg.

So the mapping is an isometry on H? (o). The kernel is replaced by

K(g1,92) = 0 (971, 0)K (g7 (0),95 ' (0))o" (g5, 0).
Observe that (i) K (k1g1,k2g2) = o(k1)K (g1, 92)0" (k2) if ki, ko € K, (i) K(pg1,92) = K(g1,p92)
= K(g1,992) if p € P_, (iii) K(q19,929) = K(¢q1,92) if g € G, (iv) K*(g2,91) = K(g1,92), and (v)
J K (g1,92)K (g2, 93)dg2 = K (g1, 93)-

Now we introduce a third space of functions. Suppose £, is the semi-simple part of ¢. and ¢
is the centre of ¢. then ¢. = ¢ + cand h. = h. N €, + c¢. Any linear functional on h. N ¢, may be
extended to . by setting it equal to zero on ¢. Then the given order on the real linear functions on
h. induces an order on the real linear functions on h. N £.. The representation o restricted to ¢/ is
irreducible; let ¥y be a unit vector belonging to the highest weight with respect to the above order.
Then, for all h € b, hipg = A(h)po where A is a linear functional on h.. Extending the customary
language call A the highest weight of o. If f(g) is a holomorphic function on W satisfying (ap) above
set h(g) = (f(g9),%0). Then () if p € P_,h(pg) = h(g); (B) if n € N’, the connected group with Lie
algebran’ = XCX_,, the sum being over the positive roots « for which X_,, € £, then h(ng) = h(g);
and () if a is in the Cartan subgroup A of G, with algebra b then h(ag) = £(a)h(g) with £(a) = )
if « = exp(H). Conversely given a holomorphic function on W satisfying («), (), and () there is a
holomorphic function f(g) such that h(g) = (f(g), %0). Indeed for fixed g the function 1'(k) = h(kg)
on K satisfies (i) h’(ak) = £(a)h/(k) if a € AN K and (ii) R(X)R'(k) = 0if X € n'. Let ¢ be an
index for the classes of inequivalent irreducible representations of & and let (zpfj(k)) be the matrices
of the representations chosen with respect to a basis (¢1,...,¢q,) consisting of eigenvectors of b;

moreover suppose ¢; belongs to the highest weight. Then A/(k) ~ ZZafjlpfj(k). Using (i) and
0 i3

(i) it is easily seen that, first of all, afj = O unless ¢ = 1 and then that afj = O unless ¢ = {(o). So

h'(k) = " aijoi(k). Set f(g) = > ¢, then h(g) = (f(g),%0); moreover f(g) is a holomorphic
J
function of g satisfying (ag) above. Finally the Schur orthogonality relations imply that

/\h |dg_/| ) v0) g
- /Kd’f /G |(f(kg), o) *dg
=i [ rtolids,

G
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This shows that the representation of G on H?(o) is equivalent to the representation 7, studied by

Harish-Chandra [2(c)].

Now set (g1, 92) = (K(g1,92)%0,%0). This function satisfies (i) ¢(ng,1) = ¥(g,1) if n € N’,
(i) ¥(pg,1) = ¥(g.1) if p € P, (iil) d(ag, 1) = E(a)i(g. 1) i a € A, (v) $(ga. 1) = &(a) (g, 1)
ifa € AN K, and (v) ¥(g, 1) is a holomorphic function on W. But Harish-Chandra ([2(c)], p. 22)
has shown that there is essentially only one function with these properties; so ¥(g,1) = din(9g).
§ =1(1,1) and ¥a(g) = (C(g)do, Po)e ™9, Here ¢ is a representation of G.. with highest weight A
and A = A — Ag; moreover Ay is so chosen that A vanishes on h. N €. ¢, is a unit vector belonging to
the weight Ag. The function = !(g~!,0) is a holomorphic function on W with values in K. It may be
lifted to a function on W, the universal covering space of W, with values in K, the universal covering
group of K,. K is the product of a simply connected, complex abelian group C with Lie algebra ¢ and

a semi-simple group. Mapping W into K, projecting on C, and then taking the logarithm one obtains

I'(g) which lies in ¢c. Thus I'(g) is a single-valued function on I¥ but a multiple-valued function on .

Certainly § # 0if H?(o) # {0}. In particular, if X5 is a root vector belonging to the positive root 3,
if X_5 belongs to —( and Hs = [X 3, —X_ 3] then ([2(d)], p. 612) H2 (o) # {0} if 268~ (Hz)(A(Hp) +
p(Hpg)) < 0 for every totally positive root 3. p is one-half the sum of the positive roots.
3. It will now be supposed that 25~ (Hg)(A(Hg) + p(Hg) + 2p+(Hg)) < 1 for every totally positive
root [3; p. is one-half the sum of the totally positive roots. Then ([2(d)], p. 610) ¢4 (g) is integrable and,
since o is irreducible, K (g, 1) is integrable. Let H> (o) be the space of functions in H (o) such that
f*(2)G(2)f(z) is bounded. Then, if f(z) isin H>* (o),

/ K(21,22)G(22) f(22)dzo
B

converges. To verify that it equals f(z1) it is sufficient to show that H? (o) contains all polynomials for
then the argument of Godement in [7] applies. To do this it is sufficient to show that G(z) is integrable
over B. This is the same as showing that |[c~!(g~*, 0)||? is integrable over G. Let A, be the connected
group with Lie algebra ay,, ([2(d)], p. 583). Then every element of G may be written as k;aky with

ki,ke € Kand a € A,. Moreover
lo= (g~ 0)[1> = [lo~ (a1, 0)|1* = [lo(h(a))?

([2(d)], p. 599). But ||o(h(a))||> = tr(c(h*(a))) which is known to be integrable. Let L*(T,0)

be the space of measurable functions on B, whose values are column vectors of length d, such that
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o (v, 2)f(vz) = f(z) forall zin Band all v in " and [, f*(2)G(2) f(z)dz is finite, where F is a

fundamental domain for I' in B. Then

ﬂwHLMwmwmm

defines the orthogonal projection of L?(T", o) onto H(T', o). Now
[ Ko fGad = [ 3 K(1,95200" 7 (0026 ) f2)
B F T

provided >~ K (z1,vaz)o* (v, z2) is uniformly absolutely convergent for 2; and 2, in F. To verify
T

this it is sufficient to show that Y~ K (g, g2-y) converges uniformly absolutely in some neighborhood of
r

each point (¢}, g5) in G x G. Since o is irreducible it is enough to consider the series 3~ [¢a (91795 )|-
r

Writing g = k1ako we have ([2(d)], pp. 598-600)

1A (9)] £ 1(C(kT Mo, C(a)C (k2)do)e (@)
< @y, (h(a)).

Let ¢ be the mapping of G onto the symmetric space G/ K and let r be the metric on G/ K. Every
element of G may be written as a product g = kjaks with k1, ks € K and with ¢ € A, such that
loga € a,‘f0 ={X € ap,|a(X) = 0 for all positive roots o}. To be more precise one introduces an order
on the linear functions on qa,,, extends a,, to a Cartan subalgebra of g, extends the ordering, and takes
the positive roots of this subalgebra with respect to the resulting order. Although it is not a prior:
uniquely determined by g we seta(g) = a. We want to show that if e > 0 is given it is possible to choose
€1 so that if by and hy are in G and r(¢(hq), ¢(hz2)) < €1 then |v(log(a(h1)) — log(a(hs)))| < €||v|| for
any linear functional v on ay,,. Itis enough to establish this for a basis of the space of linear functionals
which may be supposed to consist of the highest weights of certain representations of G restricted
to a,,. Let 7 be such a representation which may be supposed to satisfy 7(6(g)) = 7~ *(g) if 6 is
the Cartan involution of G leaving K fixed. Then ¢ — w(g)7*(g) defines an imbedding of G/K
in a manner which we shall pretend is isometric in the space of positive definite Hermitian matrices
with the Riemannian metric d*Y = tr(Y ~1dYY ~!dY). So it is enough to show that if P, and P, are
positive definite matrices with maximum eigenvalues A1, A2 then |log A1 /Ao| < €if r( Py, P2) < e (cf.

1

[Z(I)], P. 280) If P, = AA* and P, = A((Sweo“)A*, (671 z (67 g s 2 (o7 then T(Pl,PQ) = (Z 062)5.

%
i=1

n

Let [|z]| = 1 and ||A*z||? = Ay; then, if y = A%z, Ay = D e®y? = e Ay, Similarly \; = e~ \y; SO
=1

— Q1 é log )\1/A2 é — Q.
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As a consequence there are positive numbers c and 6 < 1 such thatif U(¢') = {g | 7(¢(9), ¢(¢))
< 0} then

M@y, (h(a(g))) < C/U( )e)\(F(a(g)))XAO(h(a(g)))dg,
g/

Let U; and Us be compact neighborhoods of ¢} and g5 respectively. There is an integer N such that for
g1 € Uy and g, € U, any point in G belongs to at most N of the sets U(gl’ygz_l),v € I'. Finally given
e > 0 there is a positive number M such that if Vi; = {g | 7(¢(g), #(1)) = M} then

| e, (hao))dg <
Vi
For all but a finite set I'; of elements of T, U1'yU2_1 C G — Vpgq1. Thus

> exp(MT(alg1795 1)) xa0 (Mlalgrvgy 1)) < eNe
Y¢Ty

which was to be shown.

The kernel 3~ K (z1,v22)0* "1 (7, 22) iscontinuous; thus if {w'},i = 1,---, N(T', o), is an orthonor-
r

mal basis for H(T', o),

N(T',0)
S K(ym)o ) = 3 W) (z).
=1
But
N(To)
NI = 3 /F S Gk (2) Gig ()l ()dz;
i=1 7,

consequently

N(T,0) :/F tr{zK(z,’yz)o*_l(%z)G(z)}dz.

Following Selberg [5] this may be written
S5 [ R e (5 8,6
(A7 E

The outer sum is over a set of representatives of the conjugacy classes of I'; the inner sum is over a set

of coset representatives of the centralizer I', of v in I'. Rewrite the last sum as

S 3 [ wle G K @8 (08,206 = Y [ (K (2 (0,206 ()
(o Ar {7}



The dimensions of spaces of automorphic forms 8

F, isafundamental domain for I, in B. Replace these integrals by integrals over fundamental domains

F for I acting on G to the right to obtain

> / (K (g(0),7971(0))0" (1,97 (0) g 0)) g = 3 / tr{K (79", 1)}dy.
{7} {7}
According to [5] this equals
ZV(G’Y/F’Y) tr{K(g'yg_l,l)}dS,y;
{7} /SV

G, is the centralizer of v in G; S, = G/G.,; and the measures are so normalized that dg = ds.dg,.
v(G,/T') is the volume of a fundamental domain for I, acting to the left (or right) in G,. Itis of some

importance to observe that every integral appearing is absolutely convergent. If v isin I set

X(W)Z/ tr{K (gyg "', 1)ds,.

SW
Apart from the arbitrariness of the invariant measure on S, x(v) depends only on the conjugacy class

of v in G. By the Schur orthogonality relations
) = d/ / (K (kgyg™'k™", )¢, o) dkds,
S, JK

= dé/ / VYa(kgyg k™) dkds.,.
s, JK
4. The first step in the evaluation of these integrals is to calculate dé. Now

1K (g, Lo, o) |2 = / (K (9, 10, o) Pdg

= [ [ 1w 6. 1), o) Py

— ! / 1K (g, )0l dg
=d~ / |K g,1 )1/1071/10)
K(1,1)g,100) = d~ 16
which shows that dd = [|¢a(g)[| =2 since [|[(K (g,1)10,%0)|1* = 6%[|va(g)||?. But [[1a(g)]| 2 has been

calculated by Harish-Chandra ([2(d)], p. 608); it equals

G) [ I(A(Hg) + p(Hp))/p(Hp),
pepP



The dimensions of spaces of automorphic forms 9

where P is the set of positive roots and ¢(G) is a constant independent of A. To calculate ¢(G) take
o(k) = (det k)~',k € K., sothat A = —2p,; this is permissible since, as will be seen in a moment,

2871 (Hg)(—2p+(Hg) + p(Hg)) < 0 for every totally positive root 3. Then

1va(9)lI 72 = e(G) [T (=204 (Hp) + p(Hp))/p(Hp)| = (@)
BepP

since [[ | — 2p+(Hg) + p(Hg)| = TI |p(Hg)|. To see this observe that ([2(b)], p. 749) one could
BeP BeP

choose as a set of positive roots the positive roots with root vectors in €. and the negatives of the totally
positive roots. Let o’ be one-half the sum of the positive roots in this new order. Then o/ = p — 2p
and 23~ Y(Hg)p' (Hp) = —2(—=B(H_p))"p'(H_g) < 0since —3 is positive in this new order if 3 is
totally positive. There is an element s in the normalizer of b, in G. which takes the positive roots in

the original order into the positive roots in the new order; in particular g (H) = p(s~(H)). Now
[H,5(Xa)] = s([s7" (H), Xa]) = a(s 7' (H))s(Xa) = s(a) (H)s(Xa)
and
H o) = [ X0y Xog(oy) = [5(Xa)s s(X—a)] = s(Ha).
Now [H( (), X((o)] = s[Ha, Xo] = a(Ha) X, Soifall X, are so normalized that o(H,) = 2 then

H;(a) = H,(q). Consequently

T s =1 T o' (i)l = | T] ¢ (oDl = | T] o(Hps)l.

BepP BepP BepP BepP

On the other hand v(g) = det(u(g~?,0)) satisfies (i) 1(pg) = ¥(g) if p € P_, (ii) ¥(gk) =
P(kg) = det_l(l})zﬁ(g) if k € K., (iii) ¥(g) is holomorphic on W, and (iv) /(1) = 1. This is enough to
ensure that ¢'(g) = ¥a(g). Thus

loag)]? = /G 16(g) *dg

- /B det(s(g, 0) et (u(g, ) |* T
= v(B).

v(B) is the Euclidean volume of B. In conclusion

xX(1) = (=1)"/o(B) [T (A(Hps) + p(Hp))/p(Hp)),

BeP
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with b equal to the complex dimension of B.

It will be useful at this point to establish some notation. The universal covering groups of G and
K, have been denoted by G and K. If G is a subgroup of G then G is the group of all elements in G
lying over G;. Elements of G will be denoted by § and 4 and their projection in G by g and ~; similarly
kek, projects on k. If N is a simply-connected subgroup of G then N is isomorphic to the connected
component of the identity in N so the same symbol will be used for corresponding elements in the two
groups. Finally gyg~—! will be written gyg—1.

Every element of I is semi-simple [1]; this implies in particular that G?, the connected component
of the identity in G, is of finite index in G,. The measure on G, will be so normalized that, on

GY,dg, = dgY. Then if the measure on S = G//GY is normalized in the usual manner
x(v) = dalG, : G /SO /K P (kgyg ™'k )dkds)

with d, = dd. But 1), may be lifted to a function on G and x(y) may be written as

Q) Aai6x: G [ ol dnast,

Recall that ¢z (§) = (C(g)¢o, ¢o)e*T(9), Revising the notation slightly denote the linear functions A
and A associated to the representation o by X and A’ and let X be an arbitrary linear function on b,
vanishing on h. N £, and, accordingly, let A = Ag + \. dx and ¥5 (), but not ¢5 (g), are still defined.

Let us now see for which functions X the integral converges.

The function x(g, z) on G x B may be lifted to a function ;(g,z) on G x B with values in K,
which satisfies 14(g1, 922) (g2, 2) = (G192, ). Perhaps the simplest way to see this is to observe that
if 2=p,p€ Py, thenp lisinW = P_K.B~' ([2(c)], p. 5) and sois p~'g~' = p_k~'p;',ps € B;
then (g, z) = k. In particular (k1 gk, 0) = k1u(g, 0)ks so that

[(k1gkz) = (k1) +T(g) + T(k2).
Now write § = kyaks with a = exp(> (X, + X_.,)) ([2(d)], p. 599).
i=1

It is possible to choose a basis {cy,---,c} for ¢ so that the coordinates of I'(k;) and T'(ks) are

purely imaginary and those of I'(a) are of the form ) log(cosh ¢;)a;; with a;; = 0. If the basis is
i

chosen from i(c N £) the first condition is satisfied. The second will be satisfied if we choose a basis
so that the projection of H,,,7 = 1,---,s, on the centre has positive coordinates ([2(d)], p. 600). It

will be enough to show that this can be done when the group is simple and ¢ has dimension 1. But
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2p4(H,,) >0,i=1,---,s and 2p; (H) is determined solely by the projection of H on c¢ since it is the
trace of the representation of £, on p_. Since H,, € it the assertion is proved. It will be shown below
that for fixed 7 the imaginary parts of the coordinates of I'(gg~') remain bounded as g varies over
G consequently the integral over S9 converges absolutely if Re{A(c;) — A\'(¢;)} < 0and represents a
function of A which is continuous on this set and holomorphic in its interior. Thus it will be sufficient

to evaluate the integral (3) when A(¢;) is real and very much less than zero.

We now establish the unproved assertion. The notation of [2(d)] will be used. In showing that the
imaginary parts of the coordinates of I'(§5¢~!) are bounded we may suppose that § = k; exp(X )k,
with X € a,, and k; and k- in some fixed compact subset of K. Suppose (k) is the result of projecting

k on the centre of K. and then taking the logarithm. Then

T(g7g™") = m(p " (exp(X)kay k3 ' exp(—X),0

= —m(u(exp(=X),0)) = m(u(y, ky " exp(=X)(0))) — m(u(exp(X), k2y ™ ks " exp(=X)(0))).

The first term gives no contribution to the imaginary part. x(v, z) is defined for z in an open subset of
p+ containing the closure of B; so it is possible to define (7, z) on the same set. Since it is continuous
it takes the closure of B into a compact set. Thus only the third term causes trouble. So we consider

u(exp(X), z) letting z vary over B.

The calculations will be simplified if we first prove a lemma. Every element X of p, determines
a linear transformation from p_ to ¢., namely 7'(X)Y = [X,Y]if Y € p_. Introduce on p_ and ¢, the

Hermitian inner product —B(Y7,0(Y3)) then
Lemma 2. B is the set of vectors X in p for which 21 —T*(X)T(X) is positive definite.

If kisin K then
T(k(X)) = Ad(k)T(X)Ad(k™1)
and
T*(K(X)T(k(X)) = Ad(k)T*(X)T(X) Ad(k™");

moreover X is in B if and only if £(X) is in B. So in proving the lemma we may replace X by any
element equivalent to it under the adjoint action of K. Suppose X is in B then X may be supposed

S
equal to > a;X,, with —1 < a; < 1. Any element of p_ may be written as
=1

Y= b X 4> ) baXa+ > > baX_a
=1

i aEP; 1<j € P
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Then

Y] = Zaibi[X%vX—%] + Z Z aiba Xy, X—a] + Z Z a;ba[Xy,, X_a.
i=1

7 OzEPj, i,j OéEPj,j

It is easily seen that B(X,,0(Xs)) = 0 unless o = 3 and that [X.,,,Y] is orthogonal to (X, , Y] if
i # j. Moreover 0([X.,,, X_,]) = [X_,,, X,] and
—B([X5:, Xoal, [X v, Xpl) = =B([[X5:, X o], X ], Xg)
= ~B((H,,. X_]. Xp)
=a(H,,)B(X_q, Xp).
Since o(H,,) = 0,1, or 2 it follows that ||7'(X )Y||2 < 2||[Y||?>. Conversely, suppose X € p, and

IT(X)Y|? < 2||Y]||* forevery Y inp_. If X = Z a; X, with a; real, as may be assumed, then
11X, X -] 2= QGZZHX—%

,so that |a;| < 1. It follows that X isin B.
Similar calculations now show that if

Xo_ZaZX%—l—ZZbX +) 0> baXa

T aEP; 1<j a€P;;

isin Bthen|a;| < 1,i=1,---,s
The original assertion will be proved if we show that the imaginary coordinates of 7(u(exp
(t(X,, + X_5,)),2)) remain bounded as z varies over B. Let z = exp(Xy) with X, as above and set

g(t) = exp(t(Xy, + X_,)). Write

Xy = Z aaXao +a; X, + Z aoXe = X1+ Xo+ X5

a€ES; D‘isi

where §; is the set of roots which vanish on H,,. Then
g(t) exp(Xo) = exp(X1)g(t) exp(X2) exp(Xs).

Here g(t) and exp(X3) belong to the complex group whose Lie algebra is spanned by H;, X, and
X_,,. A simple calculation in SL(2,C) shows that g(t) = exp(a(t)X,,) exp(b(t)H,,) exp(c(t)X_,,)

with
a(t) = (a; cosht 4 sinht)(a; sinht + cosht)™?

b(t) = —log(a; sinht 4+ cosht)

c(t) = sinht(a; sinht 4+ cosht) ™!
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Finally
exp(c(t)X_,,) exp(X3) = exp(X3) exp(X4)

with X, = Ad(exp(—X3))(c(t)X_+,); s0 X4 = c(t)X_+, + > caXa. The sum is over the positive
compact roots. Thisimpliesthatexp(X}) isthe product of an elementin K, the semi-simple component

of K., and an elementin P_. So
m(u(g(t),2)) = m(exp(b(t)H,,)) = —log(a; sinh ¢t + cosh t)7(exp(H,,)).
The coordinates of 7(exp(H.,,)) are real and, since |a;| < 1,

Re(a; sinht + cosht) > 0;

SO

—g < Im(log(a; sinht + cosht)) <

b | 3

It will be seen that for A\(¢;) < 0 and 4 semi-simple the double integral in (3) is absolutely
convergent; consequently in our analysis the integral over K may be omitted and v need not belong to
T.

5. It will be convenient in the evaluation of the integrals (3) to omit at first any detailed estimates.
These will be discussed in the next paragraph. Suppose that ~ is a regular element in G and let
belong to the centralizer B of the Cartan subalgebra j of g. According to [2(e)] it may be supposed that
6(j) = j. Hencej = j; + jo with j; =jnNetandj, =jNp. The case that jo = {0} will be treated first.
Then B C K and it may be supposed that j = h. G, C K and the measure on G is so normalized
that the total measure of Gg is 1. The integration over SS in (3) may then be replaced by an integration
over G; as will be seen below the integral is then a continuous function of 4 as 74 varies over the regular

elements in K. Harish-Chandra has shown that if Ty is the character of the representation w5 then

To(f) = da /G dg /G P91 (ging ™ )din}

when f is an infinitely differentiable function with compact support. If the support of f is contained in
the set of regular elements in GK G~ the order of integration may be reversed. Another formula for
Tx(f) is implicit in the papers [2(c)] and [2(e)]. However before introducing this it must be observed

that B is connected and thus every element of B can be written as the exponential of an element in §.
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In particular, let ¥ = exp(H). Then T (f) is obtained by integrating f against a continuous function

whose value at 7 is

{H (e%a(H) _ e—%a(H))}—l Z 6(8)€SA(H)+SP(H).

aEeP scw
P is the set of positive roots; w is the Weyl group of K; and ¢(s) = +1 according as s is the product of
an even or odd number of reflections. It should be observed that the second hypothesis of Section 10
of [2(e)] does not hold here. So it is necessary to prove Lemma 43 using Fourier integrals rather than
series. The value of x(v) obtained agrees with (2) since B, is reduced to a point with v(B,) = 1, P, is

empty , and w, is reduced to {1}.

Retaining the assumption that 4 is regular it will now be supposed that j, # {0}. Define the

subgroups M and N as on page 212 of [2(g)] with j replacing b then ([2(9)], p. 216)

/ ¢A(g’yg_1)ds9Y = / Ya(kmnAn~tm ™ k) dkdmdn,
G/GY KxMxN

if the Haar measures on M and N are suitably normalized. It should be observed that, contrary to the
assertion in [2(e)], the centralizer B in G of a Cartan subalgebra is not always commutative. Thus, if 5
belong to B one must consider fG/BO f(g79~1)dg and not fG/B f(g79~1)dg; B is the projection of B
on G and B is the connected component of the identity in B. The theorems of [2(h)] used later must
be interpreted with this observation in mind. It is not difficult (cf. [2(a)], p. 509) to see that the above
integral equals

E(X) () /K  Uakmmim ™ dikdmdn

with £(X;)(7) equal to the determinant of the restriction of I — ad(y) to n, the Lie algebra of V. It can
be assumed that j, is contained in a,,. Then, in the notation of [2(d)], for some ¢ either v~ !(X.,,) or

v~1(X_,,) isinn.. Since the order on js is arbitrary suppose that v~ *(X,,) is in n..

1
_(Xw - X—’Ye - H’Ye)

V_l(X’Yz) = 9

and 2i,'(X,,) = X isingand thusinn. Let Ny = {exp(tX)| — oo < t < oo}; N7 is a closed subgroup

of NV, so that the above integral may be written
() / { / Ya (kexp(tX)nmAm ™ k™) dkdmdn.
KXxMxNi\N J—o0

To show that x () = 0 itis sufficient to show that the inner integral is identically zero; this will be done

using Cauchy’s integral theorem. Recall that

Ya(kexp(tX)nmAm k™) = (C(k)¢(exp(t X)) (nmym ™) gy, %)e/\(F(g))
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with g = exp(tX)nmym~1k~1. The first term is clearly an entire function of ¢.

L(g) = —m(p(mim™"n~", exp(~tX)(0))) — w(u(exp(~tX),0)).

For m, ¥, and n fixed the first term is defined, bounded, and analytic in ¢ so long as exp(—tX)(0) isin
B. If itis observed that the subgroup of G. whose Lie algebra is spanned by H.,,, X.,,, and X_,, is the

homomorphic image of SL(2, C) then the calculations may be performed in this group. Now

—i i 1—ti i
X_<—i z) eXp(tX)_( —ti 1+ti>

and

() =0 ) k) G o 1)

Thus exp(—tX)(0) = —it(1 — it) "1 X, isin B if |it(1 — ti)~'| < 1or Im(¢) > —1 and
—m(p(exp(—tX),0)) = log(1 — ti)m(exp(H-,))
is analytic in the half-plane Im(t) > —1. Moreover, in this region
[¥a(kexp(tX)nmim ™ k)| < o1+ [t])" 1 — ¢i[Ae)
< c(1+ )72

if \(H,,) < 0. nis a positive integer. Here and in what follows c is used as a generic symbol for a
positive constant. Cauchy’s integral theorem may now be applied.

Suppose 7 is singular. ¥ belongs to the centralizer of at least one Cartan subgroup j of g; j may
be taken such that §(j) = j. Let g, be the centralizer of ¥ in g, then 6(g,) = g,. Consequently g., is
the direct sum of an abelian algebra a and a semi-simple algebra g;. Let j; be a fundamental Cartan
subalgebra of g; ([2(9)], p. 236). Then j; + a is a Cartan sub-algebra of g which may be supposed to

equal j. Let B be the connected component of the centralizer of j in G. Then

* * 0 * *
f 0= [ st [ e

- / ds? / F((990)")dg:
G/GY Gi/B:

if G1 is the connected group with Lie algebra g; and B, = B° N G4. The measures are so normalized

that dg = dg*dband dg9 = dggdb, dbbeing the Haar measure on B°. Moreover GY, is the homomorphic
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image of G1 x A where A is the connected group with Lie algebra a. The measure on GE’Y issonormalized

that
/ £(60)dg? = / f(gra)dgrda.
a0 GixA

Finally let BY be the connected component of the identity in B; and write the above integral as

BB [ as [ filen) )i
G/GY GY/B?

Choose 7; close to the identity in B so that 7 is regular then
(4) [B1 : BY) / fg3g Hdg* = / ds?) / fgvgingy tg~")dgs.
G/B° G/GY G1/B°

If G, is any connected semi-simple group with finite center, B; the centralizer of a Cartan subalgebra j;
of g1, and m(g,) a function on G, the universal covering group of (z1, then a function can be defined

on By by
dm (1) = A1@1)/ m(g17197 ')dg;
GY/BY

when the integral exists. To obtain A;(51) map G, into the simply connected complex group whose
Lie algebra is the complexification of g;; let 4; go into v, and set 3, = exp(H;) with H; in the
complexification of j;. Then A (%) = e~71(H) TT (e*(H1) — 1): Py is the set of positive roots with
respect to some order on j; and p; is one-half the Csﬁﬁw of the roots in P,. For every o € Py, H,, defines
an invariant differential operator D, on By;set D, = [I D.. Harish-Chandra [2(h)] has shown that

aEP
if m(g1) is infinitely differentiable with compact support then

lim Di¢p,(51) = am(1).

Yy1—1

a is a constant independent of m and a # 0 if j; is fundamental. To be more precise ¢,,(%1) is defined

if 41 is regular and the limit is taken on the set of regular elements.

Apply this result formally to equation (4) with f(g) = daa(g) and m(g1) = daa(gygrg™t). If

BY is not compact the left side is 0 and one obtains

/ dava(gyg—")dsS =0,
G/GY
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so that x(v) = 0 if v has no fixed point in B. If B® is compact it may be supposed that j =  and that
j1 =j N g1. In this case By is connected. If 9, = exp(H + H;) then

a / daa(gig")ds)
G/GY

_ lim Dl{( H (eéa(H—l-Hﬂ _ e—%a(H—l—Hl)))—l Z6(8)68A(H+H1)+SP(H+H1)},

H1—>O
aEP sew
ag Py

if the total measure of B is 1 as will be assumed and if an order on j; is so chosen that the positive
roots are just the positive roots of j whose root vectors lie in g; .. The denominator is regular at H; = 0
and is invariant under the Weyl group of g; .. Thus, as on page 159 of [2(h)] the right side equals

(H (€%Q(H) _ e—%a(H) -1 lim DI{Z sA(H—i—Hl)—&—sp(H—&-Hl)}.

H{—0
acP
ag P

The second term equals

w1 Z e(s) H (sA(Hy) 4 sp(Hy))es M H)Fsp(H),
w1 Jw aEP
wy is the Weyl group of €. N g; . and w; is its order. The sum is over a set of representatives of cosets
of wy in w. It remains to calculate a. Since, as is easily seen, every non-compact positive root of
g1,c is totally positive, G is locally isomorphic to the product of a compact group and the group of
pseudo-conformal mappings of a bounded symmetric domain B,. A; and 5, (g1) may be defined in
the same manner as A and 5 (g); the compact component causes no difficulty [2(c)]. Apply the limit
formula of Harish-Chandra to dy, ¥, (g1) to obtain

— : SA1(H1)+Sp1(H1)
ady, I}}IBO D{ Z e(s)e }

scwi

=w H (AM(Hy) + p1(Hy))

aceP;

if the total measures of BY is 1 as may be assumed. If the measure on G is normalized in the same

way as that on G, then

da, = (=1)"/v(B,) T] (M(Ha) + pr(Ha))/p1(Ha))

acP;
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if B, is equal to the complex dimension of B,. The constant a is now easily determined. Setting

Py = P,, p1 = py, and w; = w,, the value of (3) is found to be

S e(s) T1 (sA(Ha) + sp(Hy))esAH)+splH)

(_1)b’y Wy /W acPh,
v(By) [Gy: GOt [T py(Ha) I (e30UD — emze(H))y
acP, aeP

ad P~y

and (2) is established. It should be observed that since the total measure of both B° and By must be 1

the measure on A, and thus on Gg, is completely determined.

6. The prime task of this section is to justify the above application of the limit formula of Harish-
Chandra. The truth of the other unproved statements above will become evident in the course of the
justification so there is no need to mention them explicitly again. G will now denote a connected
semi-simple group with finite centre and G will denote its universal covering group. All the other

standard symbols will also refer to G.

In particular a, will be a maximal abelian subalgebra of p. If {H;} is a basis for a, and if
§ = ki exp(H)ky with H = ZS: t;H; sett; = t;(g). The family (¢;(g)) is not uniquely determined by g.
Let w(k), for k € K, be the dze:t}arminant of the restriction of I — Ad(k) to p; then

Lemma 3. There are positive constants €, c, and q such that
S S
exp(Y _ [ti(gkg ")) Z clw (k)| exp(e > [ti(g)]).
i=1 =1

If A= (A;;)isany matrix set [|A]| = (3 \Aij\z)% and if g € G let ||g|| = ||Ad(g)|| where Ad(g) is
1,J
the matrix of the adjoint of g with respect to a basis of g orthonormal with respect to the inner product

—B(X,0(Y)). Itis easy to verify that
S S
(5) crexp(By Y Iti(9)]) Z llgll Z caexp(Br Y  Iti(g)])
=1 =1
for some positive constants cy, co, 51, and B2. Now it is sufficient to verify the lemma for g = a =

exp(H). If Ad(k) = (s;) with respect to a basis which diagonalizes a, then [|aka™"||* = 3 et (H)s2,,
i,

The \;; are linear functions on a,. For a fixed k with w(k) # 0 this must approach infinity with > |¢;]|

=1
([2(h)], p. 743). Let S(H) be the set of pairs (ij) for which A;;(H) > 0 then

Y. sh#0

(i5)eS(H)
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unless w(k) = 0. Moreover, for some small positive number €(H), (ij) € S(H) implies \;;(H) >

3e(H) ZS:I |t;|. Let M = {H = ZS:ItZHZ] 'Sl |t;| = 1}. If H isiin M there is a neighbourhood U(H) of H
in M suchthatif H'isinU(H)andt > Othen || exp(tH' )k exp(—tH')||* = exp(e(H )t Zsjl i X 57}
Since B S>> s2. vanishes only when w(k) vanishes the theorem of tojasiewicz [4] i%plies t(r:]a)tetf\(g()a

are po(;i]t)if/z(égnstants ¢(H) and ¢(H) such that

c(H)|w(k)[*H)

—~
»
SN
~—
[
v

(ij)€S(H)
for all k. All that is left is to observe that M is compact.

Suppose 7 is a semi-simple element of G. Define G, Gg, (i1, and so on, as before. It is no longer

necessary, however, to suppose that j; is fundamental. Then

. 0 * d * d 0 * d *.
s [ s = [k [ S

If A1(51) and D, are defined as above we are to show that
lim Dy A (1) / ds?) / (97917191 "9~ ")dg}
m—l G/GY G1/B?
= a/ V(979 ")ds).
G/GY

41 is chosen so that 4, is regular and the limit is taken in the manner previously indicated. Of course

(6)

it will be necessary to impose some conditions on the function . If ¢ is infinitely differentiable with
compact support then for 77 in some compact neighbourhood of the identity the inner integral on the
left, a function on G//G2, vanishes outside some fixed compact set U ([2(h)], Thm. 1). Moreover

D1A1W1)/ V(gynAngr g ")dgy
Gl/B(l)

converges uniformly on U to ay)(gyg~") ([2(h)], Thms. 2 and 4). This shows the validity of (6) for
functions with compact support. To establish it for another function v it would be sufficient to show
that for any € > 0 there is a sequence {¢;(g) } of infinitely differentiable functions with compact support
such that

(i) lim D1 A1 (51) / Gi(g7ng " )dg" = DAL (31) / Plg5ing ) dg"
i—00 G/BO G/BO
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uniformly in 7, and
() i [ wilig sy = [ ulgigast,
ataiele] G/GY

71 is, of course, to lie in a fixed compact neighbourhood of the identity and be such that 44, is regular.

In order to establish the existence of {4 } it is sufficient to assume that ¢ is infinitely differentiable
and that there is a sufficiently large constant « such that, for any left-invariant differential operator D
on G, |Dy ()] < e(D) g~

Once it has been verified that this condition is satisfied by 5 (§) when X is real and A\(H.,,) < 0
there will no longer be any need to refer specifically to this function. For convenience, if X € g we

k
denote the differential operator % (gexp(tX))|t=o by X. It may be supposed that D = ] X; so that
=1

Dipa(5) = D{(¢(9)60, 60)e* T} = 3 Do (¢() b0, 60) Do T

o runs over the subsets of {1,---,k} and D, = [] X; with the order of the X;’s left unchanged. ¢’ is
1€

the complement of o. Now D, ({(g) 0, ¢0) = (((Z]) [T ¢(X3)do, do), so that there is no doubt that

i€o’
Do (¢(9) 0, d0)| = c(Dg)llgl|™*

with some constant «;. To find D, e*T'(9) we must differentiate
exp(A(I'(g H exp(tiXi)))
1€E0
with respect to each of the variables and evaluate the result at the origin. But
/
I'(g H exp(t; X;)) = —W(M(H exp(—t: Xi)g~,0)),
i€0 i€o

the prime indicating that the order of the factors is reversed, and this equals

There is an open neighbourhood U of the identity in G, and an open neighbourhood V of B, the closure
of B, suchthat h € U implies h=1(V) C p. Consequently u(h~1, 2) is defined and analyticon U x V.

Sois w(u(h™1,2)) and its derivatives at the identity are bounded functions on B. Thus

‘DaeA(F(é))‘ < C(Da),eA(F(é)),;
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S

but [eAT@)| < (N exp( " [ti(9)|A(HS,)) ([2(d)], p. 600). Thus, if \(H,,) < 0,i=1,-

i=1
|D GA(F(g))‘ <e¢ exp —Q Z ‘t

with oy large and positive. These remarks and formula (5) show that the assumption is satisfied.

We shall need a non-decreasing sequence {¢;(§)} of infinitely differentiable functions on G with
compact support satisfying conditions: («) Em ¢:(g) = 1, (0B) there is a non-decreasing sequence {U; }
of open sets which exhausts G such that ¢; (jc}) OEO lon U;, () if D is a left-invariant differential operator
on G then |D¢;(§)| < ¢(D) for all i and §. We write, after Iwasawa, G = K HN. If {X;} is a basis for
g and if (a;;) is the matrix of Ad(hn) with respect to this basis then

f(khn) Zaﬂ f(kexp(tX;)hn)

=Zqﬁf (khn;Y;, Z;)
J

ifX; =Y, +7%;,Y; e tand Z; € h +n. If Dy is a left-invariant differential on K and D, a right-
invariant differential operator on HN then f(g; D1, D2) is the result of the successive applications of
these two operators to f considered as a function on K x HN. In particular,

if(l% exp(tZ;)hn)|i=o.

fkhns1, Zj) = —

Iterating we obtain

f(khn) Zg, (hn) f(khn; Dt, D3);

gi(hn) is a polynomial in the coefficients of Ad(hn). If X e h+nand X = X; + X5, X7 € h, Xs € n,
then

% Flexp(tX)hn) = L Flexp(tX1)hn) + % F(hexp(th=1(Xa))n).

dt
Consequently

khn Zgz hn,h™ khn; Dy, D, D4);

Diactson K, Dion H,and D} on N. Moreover g;(hn, h~') isapolynomial in the coefficients of Ad(hn)
and Ad(h~1). The functions ¢; () are to be constructed as products ¢; (khn) = ¢} (k)¢?(h)¢3(n). Since
the coefficients g;(hn, h~"') are independent of k we need only require that {qﬁl( )} satisfy («), (5),

and (). This requirement is easily satisfied since K is the product of a vector group and a compact
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group. H is a vector group and the coefficients g;(nh, h—!) are exponential polynomials on H so we
need only require that {¢?(h)} satisfy (o) and (3) and that the derivatives of ¢?(h) go to zero faster
than any exponential polynomial uniformly in . N is a closed subset of the space of endomorphisms of
g and the functions g;(hn, h~') are polynomials in the coefficients of Ad(n). Thus the functions ¢ (n)
can be obtained as the restriction to N of a sequence of functions on a vector group which satisfies («)
and () and is such that the derivatives of the functions go to zero faster than any inverse polynomial
uniformly in q.

Now set;(§) = ¢:(g)1(g). Toestablish (i) it is sufficient to show that for any invariant differential

operator v on B

17— 00

(7) lim vA(7) /G/BO Vi(g7g~ " dg* = vA(F) /G/BO V(g9 )dg*

uniformly in 4 on any bounded subset (i.e. a subset with compact closure in B) of the set of regular
elements in B. A(#) is defined in the same manner as A;(5;). To obtain (i) from this relation it is

sufficient to set v = D; and to observe that A; (¥1)A~1(34,) is regular at ; = 1.

If M and N are the groups introduced on p. 212 of [2(g)] then
A7) / V(g7g~Hdg* = AF)EX)THH) / Y(knmAam ™ k™Y dkdmdn.
G/B° KxXMxN

Let S be a finite set of invariant differential operators on B and let ¢ be the maximum degree of
the operators in S. Let § belong to S and let D be a left-invariant differential operator on G. Then §
determines in an obvious fashion a left invariant differential operator on G which will be denoted ¢

Then
(D (knmim ™ k)| = [Ad(km)(8") D (knmim ™ k=)

< [[km|*e(D)|fnmym ™t~
and
|6(Dy(knmAm™ k1)) = 8(Dyy(knmym™ k™ 1))| < [[km|*e(D) [nmym ™|~
Moreover there is an increasing sequence {V;} of open sets in N x M which exhaust N x M, so that
the left side of the latter inequality is zero if (n,m) € V.

Recall that BY is the connected component of the identity of the centralizer in G of a Cartan
subalgebra j and that 6(j) = j. An examination of the form of the matrices of Ad(m~ym~!) and

Ad(n) with respect to a basis which diagonalizes j N p shows that ||[nmym™t|| = ||mym~1||. Thus
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lnmym == < |lmym = || =% |nmym =] =22 if ay + aa = . Now 7 may be written as 7, with

5_ € BNK and 4, € exp(j Np). Then
[mym ™| 2 [l I Hmy—m ™ 2 ew- (v Iy iml

Here w_(~y_) is the determinant of the restriction of I — Ad(v_) to m N p and ¢, ¢, and ¢ are positive

constants. Thus

e | lrmeym ™[~ < clw— (y-) |42 70 o170 Loz m e H e,

Consequently

(8) / |6(DY(knmAm ™ k™)) |dkdmdn
KXMxXN

is at most
(D) w_ (- )|tez—an) 7t e e / I / Il dn
M N

and
(9) / |6(Dy(knmAm ™ k1)) — §( Dy (knmAm ™ k1)) |dkdmdn
KXMXN

is at most
c(D)\w—(v—)\q(”‘a”Hﬁlllal_%/ [[m| 2=+ ||| =2 dmdn.
v/

Now it can be shown (cf. [2(g)], Cor. 1to Lemma 6) that the integral over N in (8) converges if as is
sufficiently large. Then, fixing a2, we can choose «; so large that the first integral converges. Moreover,
by the dominated convergence theorem, the integrals in (8) converge to zero as ¢ approaches infinity.

We conclude first of all that

o) =0) [ vigrg s

is defined on B’ = {# € Blw_(y_) # 0} and is the uniform limit on compact subsets of B’ of the
sequence {¢y, (7)}.
There is a finite set {vy,---,v,} of invariant differential operators on B such that any other v,

w
may be written as v = ) vju; where the u; are invariant under the Weyl group of g. ([2(f)], p.
j=1

101). For each u; there is a left-invariant and right-invariant differential operator 1; on G so that

u;di(Y) = ¢p,1i(7) ([2(M)], p. 155). Then

vt (3) = Y vion,Pi(3)-
j=1
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The right side is a sum of terms of the form
o() / §(D;(knmAm =k 1))dkdmdn.
KXMXN

¢(%) is a regular function on B; ¢ is one of a finite set of invariant differential operators on B; and
D is a left-invariant and right-invariant differential operator on G. As a consequence of the estimates
above the sequence {v¢1; (%)} converges uniformly on compact subsets of B’ and it must converge to
vg(7). So

[0 (7) = vdps(7)] < lw- (-)|72 = e(v, 0)

on any fixed bounded subset of B’. Moreover lim ¢(v,4) = 0. The proof of (7) can now be completed
11— 00

by an argument essentially the same as that on pp. 208-211 of [2(g)]. There is no point in reproducing

it. If we show that
(10) | utgighas
G/GY

is absolutely convergent then a simple application of the dominated convergence theorem suffices to
establish (ii). Choose a maximal abelian subspace of g; N p and extend it to a Cartan subalgebra j; of
g1, thenj = j; + ais a Cartan subalgebra of g and 6(j) = j. We again introduce the groups M and N.
If n is the Lie algebra of N let ny = n N gy and let Ny be the connected group with Lie algebra n;. If
ny = (I — Ad(v))n then, according to Lemma 7.0 of [1], every element of N may be written uniquely
in the form exp(Y2)n, with ny € Ny and Y; € ny. Then if B is the connected group with Lie algebra
j N p every element of G may be written uniquely as g = kexp(X) exp(Y2)n1by with X € mNp, m
being the Lie algebra of M, and b, € By (cf. [2(h)], p. 215). Let ¢y(n1b) be a non-negative function
on N; B, such that

/ ¢0(n1b+)dn1db+ = 1,
N1BL

and set ¢(g) = || exp(X) exp(Y2)||Ppo(nib, ) if g = kexp(X) exp(Y2)n1b,. Here 3 is asuitably chosen

non-negative constant. Then a function may be defined on G/Gg by

¢(s9) = /GO $(99+)dgy;
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s?Y is the coset containing g. We shall show that if 3 is sufficiently large then ¢(33) is greater than some
fixed positive constant for all s9. It may be assumed that g = k exp(X) exp(Y2). If K, is the connected

group with Lie algebra € N g, and if gu = k" exp(X’) exp(Y5)nj ¥/, ,u € K, then

gzﬁ(sg) = / d(gunqby)dudnqdby
K.y XNl XB+

- / | exp(X") exp(Yy) | Pe 2105 du
K.

~

Suppose f1(z1) and fa(z2) are two non-negative functions of the variables z and z; and z; and 2z are
subject to some relation. We shall write f; > f if there is a positive constant ¢ and a non-negative
constant 3 such that cff(zl) = fa(z2) for all pairs (21, 22) satisfying the given relation. The assertion
will be proved if it is shown that || exp(X’) exp(Y3)| = e21(°8%%) If H, € jNp then 2p,(HT) is the
trace of the restriction of Ad(H ) to n;.

Since || exp(X) exp(Y)|| = || exp(X’) exp(Y3)n iV, || it is easily seen, after choosing a basis of g
which diagonalizes jNyp, that || exp(X) exp(Y')|| 2 || exp(X")V/, ||. If a_ is a maximal abelian subalgebra
of mNp then a_ + (j N p) is a maximum abelian subalgebra a, of p. Let X' = k_(H_)with H_ € a_
and k_ € M N K and let b, = exp(Hy) with H € jNp. If ais the restriction of a root to a, then

log || exp(X)V, || 2 |a(H- + Hy)l;

since the restrictions of the roots to a, span the space of linear functions on a,, there is a constant ¢ such

that for any linear function A
c| Al log [ exp(X"), || Z [A(H- + Hy)l.

Since a_ N (j Np) = {0} it is now clear that || exp(X)exp(Y2)|| = b/ || and || exp(X)exp(Y2)|| >

|| exp(X”)||. From thisone easily deducesthat || exp (X ) exp(Y2)| > || exp(Y5)n}||. Ifn] = exp(Y{)and

exp(Yy) exp(Y]) = exp(Y’)withY{ € nyand Y’ € nthenthefourvariables (Y/,Y3),Y’, (Ad(exp(Y7)), Ad(exp(Y3))
and Ad(exp(Y")) are polynomial functions of each other (cf.[2(h)], pp. 737-738 and the reference cited

there.) Consequently || exp(Y”) | > || exp(¥7) | and || exp(Y")]| - || exp(¥3)]l, sothat|| exp(X) exp(¥a)]| >

| exp(Y7)| and || exp(X) exp(Yz)| > || exp(Y3)||. However, if nf ¥/, u=t = u'b;'ny" then

kexp(X)exp(Ya)niby = k' exp(X') exp(Yy)u'

and the argument may be reversed. Consequently || exp(X") exp(Y”)|| = ||V, || = e2r1(°8 o),
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The absolute convergence of (10) will be established if it is shown that

/ [Y(g79~ ") |o(g)dg
G

converges. However this integral equals
/ [(kmnAn~tm = k™) |¢(kmnb.y ) dkdmdndb,..
KXMXNxB4

If n = exp(Y3)n, as before then dn = dY>dn, where dY5 is the Euclidean measure on n, and this

integral equals
/ [ (kmexp(Y2)7 exp(=Yz)m™ k™| [[mexp(Y2)||*dkdmdYs.
KXMXno

The integrand is less than or equal to

cl|(mexp(Yz)y exp(~Yz)y~tm” ymym ™| %||m||?|| exp(Y2)||”

which is at most
¢l exp(Y2)y exp(—Y2)y~ | [|m]]*** 7 lmym ™" || =2 || exp(Y2)||”

if ap + ag = a, a1, a5 = 0. 1t follows from Lemma 8 of [2(h)] that ||mym ™| = ||m| and from Lemma
2 of that paper that
[ exp(Ya)yexp(—Ya)y ™| = 1+ [ Y2

Thus if « is sufficiently large the integrand is less than or equal to a multiple of (1 + || Ya||) =7t ||m/|| =72
with 5, and (5 large. Consequently the integral converges. It should be observed that 7 is fixed so that

uniform estimates like that of Lemma 3 are not necessary.
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