
The Volume of the Fundamental Domain for Some

Arithmetical Subgroups of Chevalley Groups

by

R.P. Langlands

Let gQ be a split semisimple Lie algebra of linear transformations of the finite dimensional vector
space VQ over Q. Let hQ be a split Cartan subalgebra of gQ and choose for each root α of hQ a root
vector Xα so that if [Xα,X−α] = Hα then α(Hα) = 2 and so that there is an automorphism θ of gQ
with θ(Xα) = −X−α. Let L be the set of weights of hQ and if λ ∈ L let

VQ(λ) = {v ∈ VQ | Hv = λ(H)v for all H ∈ hQ};

let H1, . . . ,Hp be a basis over Z of

{H | λ(H) ∈ Z if VQ(λ) �= 0}.

As usual, there is associated to gQ a connected algebraic group G of linear transformations of VC =
VQ ⊗ QC. If H is some lattice in VQ satisfying

(i) M =
∑

λ∈L M ∩ V (λ),
(ii) (Xn

α/n!)M ⊆ M for all α,
then we let GZ = {g ∈ G | gM = M}. Let ω be a left invariant form on GR of highest degree which
takes the value ±1 on (∧p

i=1H1) ∧ (∧α>0Xα) and let [dg] be the Haar measure associated to ω. Our
purpose now is to show the following.

If ξ(·) is the Riemann zeta function, Πp
i=1(t

2ai−1 + 1) is the Poincaré polynomial of GC, and
c is the order of the fundamental group of GC then

∫
GZ/GR

[dg] = cΠp
i=1ξ(ai).

The method to be used to find the volume of GZ\GR is not directly applicable to [dg]. So it is necessary
to introduce another Haar measure on the group GR. Let U be the connected subgroup of G whose Lie
algebra is spanned over R by {Xα −X−α, i(Xα +X−α), iHα | α a root} and let K = GR ∩U . Choose
an order on the roots and let N = NR be the set of real points on the connected algebraic subgroup
of GC with the Lie algebra

∑
α>0 CXα. Let AR be the normalizer of hC in GR. Let dn be the Haar

measure on N defined by a form which takes the value ±1 on ∧p
i=1Hi. Let dk be the Haar measure

on K such that the total volume of K is one. Let ρ = 1
2

∑
α>0 α and let ξ2ρ(a) be the character of AC

associated to 2ρ. Finally let dg be such that

∫
GR

φ(g)dg =
∫

N×AR×K

|ξ2ρ(a)|−1φ(nak)dn da dk.

If N− is the set of real points on the group associated to
∑

α<0 CXα define dn− in the same way
as we defined dn. It is easy to see that

∫
G

φ(g)[dg] =
∫

N

dn

∫
AR

da

∫
N−

dn−|ξ2ρ(a)|−1φ(nan−).
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Suppose φ(gk) = φ(g) for all g ∈ GR and all k ∈ K . Then∫
G

φ(g)dg =
∫

N×AR

dn da|ξ2ρ(a)|−1φ(na).

On the other hand, if n− = n(n−)a(n−)k(n−),∫
φ(g)[dg] =

∫
N−

dn−
{∫

A

da

∫
N

dn|ξ2ρ(a)|−1φ(nan(n−)a(n−)k(n−))
}

=
{∫

A

da

∫
N

dn|ξ2ρ(a)|−1φ(na)
}{∫

N−
|ξ2ρa(n−)|dn−

}
.

It follows from a formula of Gindikin and Karpelevich that the second factor equals

∏
α>0

π+ 1b

2 Γ(ρ(Hα)/2)
Γ((ρ(Hα) + 1)/2)

=
∏
α>0

π−ρ(Hα)/2Γ(ρ(Hα)/2)
π−(ρ(Hα)+1)/2Γ((ρ(Hα) + 1)/2)

=
∏′

α>0 π
−ρ(Hα)/2Γ(ρ(Hα)/2)∏

α>0 π
−(ρ(Hα)+1)/2Γ((ρ(Hα) + 1)/2)

,

since when α is simple ρ(Hα) = 1 and

π− 1
2 Γ(

1
2
) = 1.

The product in the numerator is taken over the positive roots which are not simple. By a well-known
result, the numbers, with multiplicities, in the set

{ρ(Hα) + 1 | α > 0}

are just the numbers ρ(Hα) with α positive and not simple, together with the numbers a1, . . . , ap. So if

ξ(s) = π−s/2Γ
(s

2

)
ξ(s),

we have to show that ∫
GZ/GR

dg =
cΠα>0ξ(ρ(Hα) + 1)

Π′
α>0ξ(ρ(Hα))

.

By the way, it is well to keep in mind that ρ(Hα) > 1 if α is not simple.
Let A be the connected component of AR and let M be the points of finite order in AR. Certainly

AR = AM . Moreover, by Iwasawa, G = NAK . If g = nak and a = expH , we set H = H(g).
If φ is an infinitely differentiable function with compact support on N\G such that φ(gk) = φ(g)

for all g in G and all k in K we can write φ as a Fourier integral.

φ(g) =
1

(2π)p

∫
Reλ=λ0

exp(λ(H(g)) + ρ(G(g))Φ(λ)|dλ|;

λ is the symbol for an element of the dual of hC; Φ(λ) is an entire complex-valued function of λ; and
dλ = dz1 ∧ . . . ∧ dzp with zi = λ(Hi). As in the lectures on Eisenstein series we can introduce

φ̂(g) =
∑

γ∈GZ∩NM\GZ

φ(γg).
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Our evaluation of the volume of GZ\GR will be based on the simple relation

(φ̂, 1)(1, ψ̂) = (1, 1)(Πφ̂,Πψ̂).

The inner products are taken in L2(GZ\GR) with respect to dg and Π is the orthogonal projection
on the space of constant functions. Since

(1, 1) =
∫

GZ\GR

dg,

it is enough to find an explicit formula for the other three terms. Now

(φ̂, 1) =
∫

GZ∩NM\GR

φ(g)dg

= µ(GZ ∩NM\NM)
∫

A

|ξ2ρ(a)|−1φ(a)da

= Φ(ρ)

since µ(GZ ∩NM\NM) = 1. To see the latter we have to observe that M ⊆ GZ and that, as follows
from results stated in Cartier’s talk, µ(GZ∩N\N) = 1. It is also clear that (1, ψ̂) = Ψ̄(ρ). The nontrivial
step is to evaluate

(Πφ̂,Πψ̂).

From the theory of Eisenstein series we know that

(φ̂, ψ̂ =
1

(2π)p

∫
Reλ=λ0

∑
s∈Ω

M(s, λ)Φ(λ)Ψ̄(−sλ̄)|dλ|.

Ω is the Weyl group, λ0 is any point such that λ0(Hα) > 1 for every simple root, and

M(s, λ) = Πα>0
ξ(1 + sλ(Hα))
ξ(1 + λ(Hα))

= Πα>0;sα<0
ξ(λ(Hα))

ξ(1 + λ(Hα))
.

In the lectures on Eisenstein series I introduced an unbounded self-adjoint operator A on the closed
subspace of L2(GZ\GR) generated by the functions φ̂ with φ of the form indicated above. Comparing
the definition of A with the formula for (φ̂, 1) we see that

(Aφ̂, 1) = (ρ, ρ)(φ̂, 1).

Since the constant functions are in this space A1 = (ρ, ρ) · 1. As a consequence, if E(x),−∞ < x < ∞,
is the spectral resolution of A the constant functions are in the range of E((ρ, ρ))−E((ρ, ρ) − 0) = E.
We show that this range consists precisely of the constant functions and compute (Eφ̂, ψ̂) = (Πφ̂,Πψ̂).

Suppose a > (ρ, ρ) > b and a− b is small. According to a well-known formula,

1
2
{(E(a)φ̂, ψ̂) + (E(a− 0)φ̂, ψ̂)} − 1

2
{(E(b)φ̂, ψ̂) + (E(b− 0)φ̂, ψ̂)}
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is equal to

(a) lim
δ↓0

1
2πi

∫
C(a,b,c,δ)

(R(µ,A)φ̂, ψ̂)dµ

if C(a, b, c, δ) is the following contour.

b + ic

b + i δ

b - i δ

b - ic

a + ic

a - ic

a + i δ

a - i δ

Recall that, if Reµ > (λ0, λ0),

(R(µ,A)φ̂, ψ̂) =
∑
s∈Ω

1
(2πi)p

∫
Reλ=λ0

1
µ− (λ, λ)

M(s, λ)Φ(λ)Ψ̄(−sλ̄)dλ.

If w = (w1, . . . , wp) belongs to Cp let λ(w) be such that λ(Hαi
) = wi, where α1, . . . , αp are the simple

roots. Set
φp(w, s) = M(s, λ(w))Φ(λ(w))Ψ̄(−sλw̄)),
Qp(w) = (λ(w), λ(w)),

then (a) is equal to

1
c

∑
s∈Ω

lim
δ↓0

1
2πi

∫
C(a,b,c,δ)

dµ

{
1

(2πi)p

∫
Rew=w0

1
µ−Qp(w)

φp(w, s)dw1 . . . dwp

}

provided each of these limits exist.2 The coordinates of w0 must all be greater than one. We shall
consider the limits individually.

Let wq = (w1, . . . , wq) and define φq(wq; s) inductively for 0 � q � p by

φq(q1, . . . , wq; s) = Residue
wq+1=1

φq+1(w1, . . . , wq+1; s).

It is easily seen that φq(wq; s) has no singularities in the region defined by the inequalities Re wi >
1, 1 � i � q; that φq(wq; s) goes to zero very fast when the imaginary part of wq goes to infinity and its

2 The inner integral is defined for Reµ > Qp(w0). However, as can be seen from the discussion to
follow, the function of µ it defines can be analytically continued to a region containing C(a, b, c, δ).
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real part remains in a compact subset of this region; and that there is a positive number ε such that the
only singularities of φq(wq; s) in

{(w1, . . . , wq)
 |Re wi − 1| < ε, 1 � i � q}

lie on the hyperplanes wi = 1 and are at most simple poles. φ0(s) is of course a constant. Set
Qq(wq) = Qp(w1, . . . , wq, 1, . . . , 1).

Let us show by induction that the given limit equals

(b) lim
δ↓0

1
2πi

∫
C(a,b,c,δ)

dµ

{
1

2πi)q

∫
Re wq=wq

0

1
µ−Qq(wq)

φq(wq; s)dw1 . . . dwq

}

if wq
0 = (w0,1, . . . , w0,q) with w0,i > 1, 1 � i � q. Of course, the above expression is independent of

the choice of such a point wq
0 . Take wq

0 = (1 + u, . . . , 1 + u, 1 + v), with u and v positive but small,
and wq−1

0 = (1 + u, . . . , 1 + u). If Λ1, . . . ,Λq are such that Λi(Hαj) = δij , then (Λi,Λj) � 0. As a
consequence, if u is much smaller than v, then

Qq(1 + u, . . . , 1 + u, 1 − v) < (ρ, ρ).

Choose (b) to be larger than the number on the left. Also

Re Qq(wq) = Qq(Re wq) −Qp(Imw1, . . . , Imwq, 0, . . . , 0).

Thus there is a constant N such that if either Re wi = 1 + u, 1 � i � q − 1 and Re wq = 1 − v or
Re wi = 1 + u, 1 � i � p and |Re wq − 1| � v and |Imwq| > N , then

Re Qq(wq) < b− 1/N.

In (b) we may perform the integrations in any order. Integrate first with respect to wq . If C is the
indicated contour, the result is the sum of (b) with q replaced by q − 1 and

lim
δ↓0

1
(wπi)q

∫
Re wq−1=wq−1

0

dw1 . . . . . . dwq−1

∫
C

dwqφq(wq, s)

{
1

2πi

∫
C(a,b,c,,δ)

1
µ−Qq(wq)

dµ

}

which is obviously zero.

The contour C

1 - v + iN

1 - v - iN

1 + v - iN

1 + v + iN

1
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Taking q = 0 in (b) we get

lim
δ↓0

φ0(s)
2πi

∫
C(a,b,c,δ)

1
µ− (ρ, ρ)

dµ = φ0(s).

It is clear that φ0(s) is zero unless s sends every positive root to a negative root but that for the unique
element of the Weyl group which does this

φ0(s) =
Π′

a>0ξ(ρ(Hα))Φ(ρ)Ψ(ρ)
Πα>0ξ(ρ(Hα) + 1)

since sρ = −ρ. This is the result required.
Finally, I remark that although the method just described for computing the volume of Γ\G has

obvious limitations, it can be applied to other groups. In particular it works for Chevalley groups over
a numberfield.


