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FOREWORD

These are the notes from a course of lectures given at The Institute for Advanced Study in the fall of 1975.

Following a suggestion of A. Borel, I have added a section (§2) with an outline of the material and have discussed

the applications to Artin L­functions in more detail (§3), including some which were discovered only after the

course was completed. I have also made corrections and other improvements suggested to me by him, and by T.

Callahan, A. Knapp, and R. Kottwitz. But on the whole I have preferred to leave the notes in their original, rude

form, on the principle that bad ideas are best allowed to languish, and that a good idea will make its own way in

the world, eventually discovering that it had so many fathers it could dispense with a mother.

R. P. Langlands
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1. INTRODUCTION

The problem of base change or of lifting for automorphic representation can be introduced in several ways.

It emerges very quickly when one pursues the formal principles expounded in the article [20] which can in fact

be reduced to one, viz., the functoriality of automorphic forms with respect to what is now referred to as the

L­group. This is not the place to rehearse in any generality the considerations which led to the principle, or its

theoretical background, for which it is best to consult [4]; but it is useful to review them briefly in the form which

is here pertinent.

Suppose that F is a non­archimedean local field and G is GL(2). If O is the ring of integers of F the Hecke

algebra H of compactly supported functions on the double cosets of G(F )//G(O) has a known structure. It

is in particular isomorphic to the algebra of functions on GL(2,C) obtained by taking linear combinations of

characters of finite­dimensional analytic representations. According to the definitions of [20], the L­group of G

over F is the direct product

LG =LGo × G(K/F ).

Here LGo, the connected component of LG, is GL(2,C), and K is simply a finite Galois extension of F , large

enough for all purposes at hand.

If K/F is unramified the Frobenius element Φ in G(K/F ) is defined and the Hecke algebra H is also

isomorphic to the algebra of functions on

LGo × Φ ⊆LG

obtained by restriction of linear combinations of characters of analytic representations of the complex Lie group

LG.

Suppose E is a finite separable extension of F . The group G obtained from G by restriction of scalars from

E to F is so defined that G(F ) = G(E). As a group over F it has an associated L­group, whose connected

component LG
o

is
∏

G(K/E)\G(K/F )
GL(2,C).

The group G(K/F ) operates on LG
o

via its action on coordinates. The L­group G is a semi­direct product

LG =L G
o
× G(K/F ).

If E/F and K/F are unramified the Hecke algebra HE of G(E) with respect to G(OE) is isomorphic to the

algebra of functions on

LG
o
× Φ ⊆L G
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obtained by the restriction of linear combinations of characters of finite­dimensional analytic representations of

LG.

At first this is a little baffling for Hecke algebras onG(E) andG(F ) are the same, while the first is isomorphic

to the representation ring ofGL(2,C) and the second to an algebra of functions on LG
o
×Φ. If f∨ and f

∨
represent

the same element of the Hecke algebra then

(1.1) f
∨
((g1, · · · , g`) × Φ) = f∨(g` · · · g2g1) ` = [E : F ].

The homomorphism

ϕ : (g × τ) → (g, · · · , g) × τ

of LG to LG takes LGo × Φ to LG
o
× Φ. It allows us to pull back functions from LG

o
× Φ to LGo × Φ, and

yields especially a homomorphism ϕ∗ : HE → H. To give an irreducible admissible representation π of G(F )

which contains the trivial representation of G(O) is tantamount to giving a homomorphism λ of H onto C, and

to give an irreducible representation Π ofG(E) which contains the trivial representation ofG(OE) is tantamount

to giving a homomorphism λ′ of HE onto C. We say that Π is a lifting of π if λ′ = λ ◦ ϕ∗.

The notion of lifting may also be introduced when E is simply a direct sum of finite separable extensions.

For example if E = F ⊕ · · · ⊕ F then

G(F ) = G(E) = G(F ) × · · · ×G(F )

and LG is the direct product

GL(2,C) × · · · ×GL(2,C) × G(K/F ).

We may define ϕ as before. The algebra HE is H⊗· · ·⊗H. It is easily verified that if f1 ⊗· · ·⊗ f` lies in HE then

ϕ∗(f1 ⊗ · · · ⊗ f`) is the convolution f1 ∗ · · · ∗ f`, and so the lifting of π, defined by the same formal properties as

before, turns out to be nothing but π ⊗ · · · ⊗ π.

Thus whenE is a direct sum of several copies ofF , the concept of a lifting is very simple, and can be extended

immediately to all irreducible, admissible representations. However whenE is a field, it is not at all clear how to

extend the notion to cover ramified π. Nonetheless class field theory suggests not only that this might be possible

but also that it might be possible to introduce the notion of a lifting over a global field.

The principal constraint on these notions will be the compatibility between the local and the global liftings.

If F is a global field and E is a finite separable extension of F then for each place v of F we define Ev to be

E ⊗F Fv. If π = ⊗vπv is an automorphic representation of G(A) ([3]), where A is the adèle ring of F , then the

automorphic representation Π of G(AE) will be a lifting of π if and only if Πv is a lifting of πv for all v. Since πv
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is unramified for almost all v and the strong form of the multiplicity one theorem implies that, in general, Π is

determined when almost all Πv are given, this is a strong constraint.

Proceeding more formally, we may define the L­groups LG and LG over a global field F too.

LG = GL(2,A) × G(K/F )

and

LG =

(∏
G(K/E)\G(K/F )

GL(2,A)

)
o G(K/F ).

We also introduce

ϕ : (g, τ) → (g, · · · , g) × τ

once again. If v is a place of F we may extend it to a place of K . The imbedding G(Kv/Fv) ↪→ G(K/F ) yields

imbeddings of the local L­groups

LGv = GL(2,C) × G(Kv/Fv) ↪→
L G, LGv ↪→

L G.

The restriction ϕv of ϕ to LGv carries it to LGv and is the homomorphism we met before. If Π(G/F ) is the set

of automorphic representations of G(A) and Π(G/F ) is the same set for G(A) = G(AE), the global form of the

principle of functoriality in the associate group should associate to ϕ a map

Π(ϕ) : Π(G/F ) → Π(G/F ).

The lifting Π of π would be the image of π under Π(ϕ). Since the principle, although unproved, is supported by

all available evidence we expect Π to exist.

The local form of the principle should associate to ϕv a map Π(ϕv) from Π(G/Fv), the set of classes of

irreducible admissible representations of G(Fv), to Π(G/Fv) and hence should give a local lifting. Whatever

other properties this local lifting may have it should be compatible with that defined above when Ev/Fv is

unramified and πv contains the trivial representation of G(O). Moreover, as observed already, local and global

lifting should be compatible so that if π = ⊗πv lifts to Π = ⊗Πv then Πv should be a lifting of π for each v.

The main purpose of these notes is to establish the existence of a lifting whenE/F is cyclic of prime degree.

It is worthwhile, before stating the results, to describe some other paths to the lifting problem. If H is the group

consisting of a single element then the associate group LH is just G(K/F ) and a homomorphism

ϕ :LH →LG

compatible with the projections of the two groups on G(K/F ) is simply a two­dimensional representation ρ of

G(K/F ). Since Π(H/F ) consists of a single element, all Π(ϕ) should do now is select a particular automorphic

representation π = π(ρ) in Π(G/F ).
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The local functoriality should associate to ϕv a representation πv = π(ρv), where ρv is the restriction of ρ

to the decomposition group G(Kv/Fv). We let Φv be the Frobenius at a place v at which Kv is unramified and

suppose

ϕv : Φv → tv × Φv.

The associated homomorphism ϕ∗
v of the Hecke algebra Hv of G at v into that of H at v, namely, to C is obtained

by identifying Hv with the representation ring of GL(2,C) and evaluating at tv. For such a v, πv = π(ρv)

is defined as the representation corresponding to this homomorphism. We may define π = π(ρ) globally by

demanding that π = ⊗πv with πv = π(ρv) for almost all v. This of course does not prove that it exists. It is

also possible to characterize π(ρv) for all v (§12 of [14]), although not in a truly satisfactory manner. Nonetheless

π(ρv) can now be shown to exist ([17]), but by purely local methods quite different from those of these notes,

where the emphasis is on the existence of π(ρ) globally.

These considerations can be generalized. If ρ is a continuous two­dimensional representation of the Weil

group WK/F by semi­simple matrices we may define ρv as the restriction of ρ to WKv/Fv
. For almost all v, ρv

factors through

WKv/Fv
→ Z → GL(2,C).

If tv is the image of a Frobenius element, that is, of 1 ∈ Z, and πv the representation of G(Fv) which contains the

trivial representation of G(Ov) and yields the homomorphism of Hv into C defined by evaluation at tv , we say

that π(ρv) = πv . We may, at least for irreducible ρ, define π = π(ρ) globally by the demand that π = ⊗πv and

πv = π(ρv) for almost all v. If π(ρ) exists its local factors πv can be characterized in terms of ρv.

If ρ is reducible the existence of π(ρ) is proved in the theory of Eisenstein series. If ρ is dihedral, by which I

shall mean, in spite of justified reproofs, induced from a quasi­character of the Weil group of a quadratic extension,

the existence of π(ρ) is implicit in the work of Hecke and of Maass. But nothing more was known when, late in

1966 or early in 1967, the principle of functoriality, and hence the existence of π(ρ), was first suggested by the

general theory of Eisenstein series. It was desirable to test a principle with so many consequences – for example,

the existence of π(ρ) implies the Artin conjecture for the Artin L­function L(s, ρ) – as thoroughly as possible.

Weil’s elaboration of the Hecke theory, which had been completed not long before, together with a careful analysis

([21]) of the factors appearing in the functional equation of the Artin L­functions, enabled one to show that the

existence of π(ρ) was implied by Weil’s form of the Artin conjecture ([14]), and to obtain at the same time a much

better understanding of the local maps ρv → π(ρv).

In retrospect it was clear that one could argue for the existence ofπ(ρ) by comparing the form of the functional

equation for the Artin L­functions on one hand and of the Euler products associated by Hecke and Maass to

automorphic forms on the other. This is especially so when F = Q and ρ∞ factors through

WC/R −→ G(C/R)
ρo
∞−→GL(2,C)
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with the second homomorphism taking complex conjugation to
(

1 0
0 −1

)
.

This argument is simple, can be formulated in classical terms, and resembles closely the argument which led Weil

to his conjecture relating elliptic curves and automorphic forms, and thus has the sanction of both tradition and

authority, and that is a comfort to many. The emphasis on holomorphic forms of weight one is misleading, but

the connection with elliptic curves is not, for, as Weil himself has pointed out ([33]), the consequent pursuit of his

conjecture leads ineluctably to the supposition that π(ρ) exists, at least when F is a function field.

Once the conjecture that π(ρ) existed began to be accepted, the question of characterizing those automorphic

representations π which equal π(ρ) for some two­dimensional representation of the Galois group arose. It seems

to have been generally suspected, for reasons which are no longer clear to me, that if F is a number field then

π is a π(ρ) if and only if, for each archimedean place v, πv = π(ρv), where ρv is a representation of G(Fv/Fv);

but there was no cogent argument for giving any credence to this suspicion before the work of Deligne and Serre

([6]) who established that it is correct if F = Q and π∞ = π(ρo
∞).

This aside, it was clear that one of the impediments to proving the existence of π(ρ) was the absence of a

process analogous to composition with the norm, which in class field theory enables one to pass from a field

to an extension, that is, to effect a lifting or a base change. The expectation that there will be a close relation

between automorphic L­functions on one hand and motivicL­functions on the other entails the existence of such

a process, for it implies that to any operation on motives must correspond an analogous operation on automorphic

representations, and one of the simplest operations on motives is to pass to a larger field of definition, or, as one

says, to change the base. For motives defined by a representation of a Galois group or a Weil group over F , base

change is simply restriction to the Galois or Weil group over E.

If F is a local field and ρ : WK/F → GL(2,C) an unramified two­dimensional representation of the local

Weil group we have already defined π(ρ). It must be observed that if E/F is unramified and σ the restriction of

ρ to WK/E then π(σ) is the lifting of π. Otherwise, base change for automorphic forms would be incompatible

with base change for motives. That π(σ) is the lifting of π follows from formula (1.1) and the definition of π(σ)

and π(ρ).

Although the lifting problem emerges from the general principle of functoriality in the L­group, some of its

historical roots and most of the sources of progress lie elsewhere. The initial steps were taken for F = Q and E

quadratic by Doi and Naganuma. It is instructive to review their early work ([7],[8]). We first recall the relevant

facts about L­functions associated to automorphic forms.

If ρ is any analytic representation of LG and π an automorphic representation it is possible ([20]) to introduce

an Euler product

L(s, π, ρ) =
∏

v
L(s, πv, ρ).
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To be frank it is at the moment only possible to define almost all of the factors on the right. For a few ρ it is

possible to define them all; for example, if ρ is the projection ρo of LG on its first factor GL(2,C) then L(s, π, ρ)

is the Hecke function L(s, π) studied in [14]. One basic property of these Euler products is that

L(s, π, ρ1 ⊕ ρ2) = L(s, π, ρ1)L(s, π, ρ2).

If ρ is a representation of LG and Π an automorphic representation ofG(A) we may also introduceL(s,Π, ρ)

([20]). These functions are so defined that if ϕ :L G →L G is defined as above and Π is the lifting of π then

L(s,Π, ρ) = L(s, π, ρ ◦ ϕ).

If ρ ◦ ϕ is reducible the function on the right is a product. An automorphic representation for G(A) is also

one for G(AE), because the two groups are the same. However, LGE , the associate group of GL(2) over E, is

GL(2,C) × G(K/E). Given a representation ρE of LGE we may define a representation ρ of LG so that

L(s,Π, ρ) = L(s,Π, ρE).

Choose a set of representations τ1, · · · , τ` for G(K/E)\G(K/F ) and let τiτ = σi(τ)τj(i) , with σi(τ) ∈ G(K/E).

Set

ρ(g1, · · · , g`) = ρE(g1) ⊕ · · · ⊕ ρE(g`)

and let

ρ(τ) : ⊕vi → ⊕ρE(σi(τ))vj(i) τ ∈ G(K/F ).

The role played by passage from ρ to ρ is analogous to, and in fact an amplification of, that played by

induction in the study of Artin L­functions. Suppose for example that ρ = ρo
E is the standard two­dimensional

representation of LGE , obtained by projection on the first factor, and Π is the lifting of π. IfE/F is cyclic of prime

degree, let ω be a non­trivial character of G(E/F ) and hence of G(K/F ) and let ρi be the representation of LG

defined by

ρi(g × τ) = ωi(τ)ρo(g).

Then

ρ ◦ ϕ =
⊕`−1

i=0
ρi

and

L(s,Π, ρo
E) = L(s,Π, ρ) = L(s, π, ρ ◦ ϕ) =

∏
L(s, π, ρi).

However, ω may also be regarded as a character of F×\IF and

L(s, π, ρi) = L(s, ωi ⊗ π).
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Take F to be Q and E to be a real quadratic field. Suppose G1 is the multiplicative group of a quaternion

algebra over E which splits at only one of its two infinite places. The L­groups of G1 and G over E are

the same. There is also associated to G1 a family of algebraic curves S which are defined over E and called

Shimura curves. The Hasse­Weil zeta function of S can be written as a quotient of products of the L­functions

L(s,Π1) = L(s,Π1, ρ
o
E) corresponding to automorphic representations ofG1(AE). It can happen that S not only

is connected and elliptic, so that the non­trivial part of its zeta­function is exactly L(s,Π1) for a certain Π1, but

also has a model defined over Q ([7]). Then the conjecture of Taniyama as refined by Shimura and Weil ([32])

affirms that there is an automorphic representation π of G(AQ) such that the interesting part of the zeta­function

of the model is L(s, π). Hence

L(s,Π1) = L(s, π)L(s, ω ⊗ π)

if ω is the character of Q×\IQ defined by E. This equation is tantamount to the assertion that Π1 is a lifting of π;

and the problem of lifting as posed by Doi and Naganuma was not from π to Π but from π to Π1, where G1 was

some quaternion algebra over E. However, if Π1 is any automorphic representation of G1(AE) there is always

(cf. [14], and especially the references therein to the work of Shimizu) an automorphic representation Π ofG(AE)

such that

L(s,Π) = L(s,Π1)

and the problem of lifting from π to Π1 becomes the problem of lifting from π to Π.

Following a suggestion of Shimura they were able to establish the existence of Π for a large number of π

by combining an idea of Rankin with the theory of Hecke ([8]), at least when F = Q and E is a real quadratic

field. Their idea was pursued by Jacquet ([13]) who removed the restriction on F as well as the restrictions on

π which are inevitable when working in the context of holomorphic automorphic forms. However, the method

was limited to quadratic extensions, and could establish the existence of a lifting, but could not characterize those

Π which were liftings.

The next step was taken by Saito ([27]), who applied what one can refer to as the twisted trace formula

to establish the existence of a lifting and to characterize them when E/F is cyclic of prime degree. This is in

fact not what he did, for he worked with holomorphic forms in the customary sense, without any knowledge

of representation theory; and the language of holomorphic forms seems to be inadequate to the statement of a

theorem of any generality much less to its proof. It is not simply that one can only deal with π = ⊗πv for which

πv belongs to the discrete series at each infinite place, although this alone precludes the applications of these

lectures, but rather that one is in addition confined to forms of low level. But Saito certainly does establish the

usefulness of the twisted trace formula, the application of which may have been suggested by some computations

of Busam and Hirzebruch.
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To carry over an idea in the theory of automorphic forms from a function­theoretic to a presentation­theoretic

context is seldom straightforward and usually demand new insight. What was needed to give suppleness and

power to the idea of Saito was the correct notion of a local lifting. This was supplied by Shintani, who sketched

his ideas during the U.S.­Japan seminar on number theory held at Ann Arbor in 1975, and has now published

them in more detail in [30]. It was Shintani who fired my interest in the twisted trace formula. It soon became

clear* that his ideas, coupled with those of Saito, could, when pursued along lines which he had perhaps foreseen,

be applied in a striking, but after this lengthy introduction no longer surprising, fashion to the study of Artin

L­functions. Before giving the applications, I describe the results on lifting yielded by a fully developed – but

only for GL(2) and only for cyclic extensions of prime degree! – theory. Moreover, only fields of characteristic

zero will be considered. This is largely a result of indolence.

* when reflecting upon these matters not long after the seminar at our cabin in the Laurentians
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2. PROPERTIES OF BASE CHANGE

So far all applications of the trace formula to the comparison of automorphic representations of two different

groups have been accompanied by local comparison theorems for characters, the typical example being provided

by twisted forms ofGL(2) ([14]). Base change for cyclic extensions is no exception, and, following Shintani, local

liftings can be defined by character relations.

Suppose F is a local field, and E a cyclic extension of prime degree `. The Galois group G = G(E/F ) acts

on G(E), and we introduce the semi­direct product

G′(E) = G(E) × G.

The group G operates on irreducible admissible representations of G(E), or rather on their classes,

Πτ : g → Π(τ(g))

and Π can be extended to a representation Π′ of G′(E) on the same space if and only if Πτ ∼ Π for all τ . Fix a

generator σ of G. Then Πτ ∼ Π for all τ if and only if Πσ ∼ Π. The representation Π′ is not unique, but any other

extension is of the form ω ⊗Π′, where ω is a character of G. There are ` choices for ω. It will be shown in §7 that

the character of Π′ exists as a locally integrable function.

If g lies in G(E), we form

Ng = gσ(g) · · ·σ`−1(g).

This operation, introduced by Saito, is easy to study. Its properties are described in §4. It is not the element Ng

which is important, but rather its conjugacy class in G(E), and indeed the intersection of that conjugacy class

with G(F ), which is then a conjugacy class in G(F ). We also denote an element of that class by Ng. The class of

Ng in G(F ) depends only on the class of g × σ in G′(E).

The representation Π of G(E) is said to be a lifting of the representation π of G(F ) if one of the following

two conditions is satisfied:

(i) Π is π(µ′, ν′), π is π(µ, ν), and µ′(x) = µ(NE/Fx), ν
′(x) = ν(NE/Fx) for x ∈ E×.

(ii) Π is fixed by G and for some choice of Π′ the equality

χΠ′(g × σ) = χπ(h)

is valid whenever h = Ng has distinct eigenvalues.

The representation π(µ, ν) associated to two characters of F× is defined on p. 103 of [14]. The characters

χπ′ , χΠ′ of π and Π′ are well­defined functions where Ng has distinct eigenvalues, so that the equality of (ii) is

meaningful. It should perhaps be underlined that it is understood that π and Π are irreducible and admissible,
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and that they are sometimes representations, and sometimes classes of equivalent representations. It is at first

sight dismaying the liftings cannot be universally characterized by character identities, but it is so, and we are

meeting here a particular manifestation of a widespread phenomenon.

We shall prove the following results on local lifting for fields of characteristic zero.

a) Every π has a unique lifting.

b) Π is a lifting if and only if Πτ ' Π for all τ ∈ G.

c) Suppose Π is a lifting of π and of π′. If π = π(µ, ν) then π′ = π(µ′, ν′) where µ−1µ′ and ν−1ν′ are characters

of NE×\F×. Otherwise π′ ' ω ⊗ π where ω is a character of NE×\F×. If ω is non­trivial then π ' ω ⊗ π if

and only if ` is 2 and there is a quasi­character θ of E× such that π = π(τ) with

τ = Ind(WE/F ,WE/E , θ).

d) If k ⊂ F ⊂ E and E/k, F/k are Galois and τ ∈ G(E/k) then the lifting of πτ is Πτ if the lifting of π is Π.

e) If ρ is reducible or dihedral and π = π(ρ) then the lifting of π is π(P ) if P is the restriction of ρ to WK/E .

f) If Π is the lifting of π and Π and π have central characters ωΠ and ωπ respectively then ωΠ(z) = ωπ(NE/F z).

g) The notion of local lifting is independent of the choice of σ.

The assertion (e) cries out for improvement. One can, without difficulty, use the results of §3 to extend it to

tetrahedral ρ, but it is not clear that the methods of these notes can, unaided, establish it for octahedral ρ. I have

not pursued the question.

Many of the properties of local liftings will be proved by global means, namely, the trace formula. For this

it is important that the map on characters χπ → χΠ′ which appears in the definition of local liftings is dual to a

map φ → f of functions. It is only the values of χΠ′ on G(E) × σ which matter, and thus φ will be a function

on G(E) × σ, or, more simply, a function on G(E). Since the χπ are class functions, it is not necessary – or

possible – to specify f uniquely. It is only its orbital integrals which are relevant, and these must be specified

by the orbital integrals of φ. But these will be integrals over conjugacy classes on G(E) × σ, a subset of G′(E).

As a step preliminary to the introduction of the trace formula, the map φ → f will be defined and introduced in

§6. Objections can be made to the arrow, because the map is in fact only a correspondence, but the notation is

convenient, and not lightly to be abandoned.

There are other local problems to be treated before broaching the trace formula, but before describing them

it will be best to recall the function of the trace formula. Let F be for now a global field and E a cyclic extension

of prime degree `. Let Z be the group of scalar matrices, and set

ZE(A) = Z(F )NE/FZ(AE).
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Let ξ be a unitary character of ZE(A) trivial on Z(F ).

We introduce the space Ls(ξ) of measurable functions ϕ on G(F )\G(A) which satisfy

(a)

ϕ(zg) = ξ(z)ϕ(g) for all z ∈ ZE(A)

(b) ∫

ZE(A)G(F )\G(A)

|ϕ(g)|2dg <∞.

G(A) acts on Ls(ξ) by left translations. The space Ls(ξ) is the direct sum of two mutually orthogonal invariant

subspaces: Lsp(ξ), the space of square­integrable cusp forms; and Lse(ξ), its orthogonal complement. The theory

of Eisenstein series decomposes Lse(ξ) further, into the sum of L0
se(ξ), the span of the one­dimensional invariant

subspaces of Ls(ξ), and L1
se(ξ). We denote by r the representation of G(A) on the sum of Lsp(ξ) and L0

se(ξ).

Suppose we have a collection of functions fv, one for each place v of F , satisfying the following conditions.

i) fv is a function on G(Fv), smooth and compactly supported modulo Z(Fv).

ii) fv(zg) = ξ−1(z)fv(g) for z ∈ NEv/Fv
Z(Ev).

iii) For almost all v, fv is invariant under G(OFv ), is supported on the product G(OFv )NEv/Fv

Z(Ev), and satisfies ∫

NEv/Fv Z(Ev)\G(OFv )NEv/Fv Z(Ev)

fv(g)dg = 1.

Then we may define a function f on G(A) by

f(g) =
∏

v
fv(gv),

where g = (gv). The operator

r(f) =

∫

NE/F Z(AE)\G(A)

f(g)r(g)dg

is defined and of trace class.

Let ξE be the character z → ξ(NE/F z) of Z(AE). We may also introduce the space Ls(ξE) of measurable

functions ϕ on G(E)\G(AE) satisfying

(a)

ϕ(zg) = ξE(z)ϕ(g) for all z ∈ Z(AE)

(b) ∫

Z(AE)\G(AE)

|ϕ(g)|2dg <∞.
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Once again we have a representation r of G(AE) on the sum of Lsp(ξE) and L0
se(ξE). But r now extends to a

representation of the semi­direct product

G′(AE) = G(AE) × G.

An element τ of G sends ϕ to ϕ′ with

ϕ′(h) = ϕ(τ−1(h)).

We will consider functions φ on G(AE) defined by a collection φv , one for each place of F , satisfying

i) φv is a function on G(Ev), smooth and compactly supported modulo Z(Ev).

ii) φV (zg) = ξ−1
E (z)fv(g) for z ∈ Z(Ev).

iii) For almost all v, φv is invariant under G(OEv ), is supported on Z(Ev)G(OEv ), and satisfies

∫

Z(Ev)\Z(Ev)G(OEv )

φ(g)dg = 1.

Then φ(g) =
∏

v φv(gv), and

r(φ) =

∫

Z(AE)\G(AE)

φ(g)r(g)dg

is defined and of trace class.

We now introduce another representation, R, of G′(AE). If ` is odd, then R is the direct sum of ` copies of

r. The definition of R for ` even is best postponed to §11. The function of the trace formula is to show that, for

compatible choices of φ and f ,

(2.1) traceR(φ)R(σ) = trace r(f).

Here σ is the fixed generator of G(E/F ). The trace formula for the left side is somewhat different than the usual

trace formula, and is usually referred to as the twisted trace formula. It will be reviewed in §10.

The condition of compatibility means that φv → fv for all v. As we observed, the meaning of the arrow will

be explained in §6 for those v which remain prime in E. Its meaning for v which split will be explained later, in

the very brief §8. It is very important that when v does not ramify inE, φv lies in HEv , and fv is its image in HFv

under the homomorphism introduced in §1, then the relation φv → fv is satisfied. This was verified by Saito [27],

who had no occasion to mention that the homomorphism from HEv to HFv was just one of many provided by

the general theory of spherical functions and the formalism of the L­group. In §5 another verification is given; it

exploits the simplest of the buildings introduced by Bruhat–Tits.

The definition of the arrow φv → fv and the structure of the trace formula together imply immediately that

the two sides of (2.1) are almost equal. The difference is made up of terms contributed to the trace formula by the

cusps. There is a place for insight and elegance in the proof that it is indeed zero, but in these notes the proof is
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regarded as a technical difficulty to be bashed through somehow or other. The local information accumulated in

§5 and in §9, which is primarily technical and of interest only to specialists, allows us to put the difference of the

two sides of (2.1) in a form sufficiently tractable that we can exploit the fact that we are dealing with a difference

of two traces to establish equality.

This is the first step taken in §11. The equality (2.1) available, one chooses a finite set of places, V , including

the infinite places and the places ramifying in E, and for each v /∈ V an unramified representation Πv of G(Ev)

such that Πσ
v ∼ Πv. Let A be the set of irreducible constituents Π of R, counted with multiplicity, such that Πv

is the given Πv outside of V . By the strong form of multiplicity one, A is either empty or consists of a single

repeated element, and if Π ∈ A then Πσ ∼ Π. If Πσ ∼ Π then G′(AE) leaves the space of Π invariant, and so we

obtain a representation Π′ of G′(AE), as well as local representations Π′
v . Set

A =
∑

Π∈A

∏
v∈V

traceΠv(φv)Π′
v(σ).

Let B be the set of constituents π = ⊗vπv of r such that Πv is a lifting of πv for each v outside of V . Set

B =
∑

π∈B

∏
v∈V

traceπv(fv).

Elementary functional analysis enables us to deduce from (2.1) that A = B. This equality is local, although the

set V may contain more than one element, and we have no control on the size ofB. Nonetheless, when combined

with some local harmonic analysis, it will yield the asserted results on local lifting.

The necessary harmonic analysis is carried out in §7. Some of the results are simple; none can surprise a

specialist. They are proved because they are needed. The last part of §7, from Lemma 7.17 on, contains material

that was originally intended for inclusion in [18], and found its way into these notes only because they were

written first. It is joint work with J.­P. Labesse, and it was he who observed Lemma 7.17. Although [18] was

written later, the work was carried out earlier, and the methods are less developed than those of these notes. At

the time, one hesitated to strike out on a global expedition without providing in advance for all foreseeable local

needs. One could probably, reworking [18], dispense with some of the computations of §7. But little would be

gained.

A word might be in order to explain why the last part of §7 and the more elaborate definition of R when

` = 2 are called for. When [E : F ] = 2 there are two­dimensional representations ρ of the Weil group WF

induced from characters of the Weil group WE . These representations have several distinctive properties, which

we must expect to be mirrored by the π(ρ). For example, ρ can be irreducible but its restriction to WE will be

reducible. If F is global this means that the cuspidal representation π(ρ) becomes Eisensteinian upon lifting, and

this complicates the proofs.

In the course of proving the results on local lifting, we also obtain the existence of global liftings, at least for

a cyclic extension of prime degree `. If Π is an automorphic representation of G(AE) then, for each place v of F ,
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Π determines a representation Πv of G(Ev), and Π is said to be a lifting of π if Πv is a lifting of πv for each v. The

first properties of global liftings are:

A) Every π has a unique lifting.

B) If Π is isobaric in the sense of [24], in particular cuspidal, then Π is a lifting if and only if Πτ ∼ Π for all

τ ∈ G(E/F ).

C) Suppose π lifts to Π. If π = π(µ, ν) with two characters of the idèle class group ([14]), then the only other

automorphic representations lifting to Π are π(µ1µ, ν1ν), where µ1, ν1 are characters of F×NE/F IE\IF . If π is

cuspidal then π′ lifts to Π if and only if π′ = ω ⊗ π where ω is again a character of F×NE/F IE . The number

of such π′ is ` unless ` = 2 and π = π(τ) where τ is a two­dimensional representation of WE/F induced by a

character of E×\IE , when it is one, for π ∼ ω ⊗ π in this case.

D) Suppose k ⊂ F ⊂ E and F/k, E/k are Galois. If τ ∈ G(E/k) and Π is a lifting of π then Πτ is a lifting of πτ .

E) The central character ωπ of π is defined by π(z) = ωπ(z)I, z ∈ Z(A) = IF , and ωΠ is defined in a similar

fashion. If Π is a lifting of π then

ωΠ(z) = ωπ(NE/F z).

If Π is cuspidal then Π is said to be a quasi­lifting of π if Πv is a lifting of πv for almost all v. A property of

global liftings that has considerable influence on the structure of the proofs is:

F) A quasi­lifting is a lifting.

It is worthwhile to remark, and easy to verify, that the first five of these properties have analogues for

two­dimensional representations of the Weil groupWF of F if lifting is replaced by restriction toWE . The central

character is replaced by the determinant.
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3. APPLICATIONS TO ARTIN L-FUNCTIONS

Suppose F is a global field and ρ is a two­dimensional representation of the Weil group WK/F , K being

some large Galois extension. There are two possible definitions of π(ρ). If π(ρv) is characterized as in §12 of [14],

we could say that π = π(ρ) if π = ⊗πv and πv = π(ρv) for all v. On the other hand we could say that π = π(ρ)

if π is isobaric, in the sense of [24], and πv = π(ρv) for almost all v. The second definition is easier to work with,

for it does not presuppose any elaborate local theory, while for the first the relation

L(s, π) = L(s, ρ)

is clear. It will be useful to know that they are equivalent. The first condition is easily seen to imply the second. To

show that the second implies the first, we use improved forms of results of [5] and [14] which were communicated

to me by T. Callahan.

He also provided a proof of the following strong form of the multiplicity one theorem.

Lemma 3.1 Suppose π and π′ are two isobaric automorphic representations of GL(2,A). If πv ∼ π′
v for almost

all v then π ∼ π′.

If π is isobaric and not cuspidal then π = π(µ, ν), where µ, ν are two idèle class characters. An examination

of the associated L­functions L(s, ω ⊗ π) and L(s, ω ⊗ π′) shows easily that if πv ∼ π′
v for almost all v and

π = π(µ, ν) then π′ = π(µ′, ν′). Thus the lemma is quickly reduced to the case that π and π′ are cuspidal. It is

stronger than the theorem of Casselman ([5]) because it does not assume that πv ∼ π′
v for archimedean v, but the

proof is similar.

One has to observe that if v is archimedean and if for every character ωv of F×
v and some fixed non­trivial

character ψv of Fv the function of s given by

ε′(s, ωv ⊗ πv, ψv) =
L(1 − s, ω−1

v ⊗ πv)ε(s, ωv ⊗ πv, ψv)

L(s, ωv ⊗ πv)

is a constant multiple of ε′(s, ωv ⊗ π′
v, ψv) then πv ∼ π′

v . This is an archimedean analogue of Corollary 2.19 of

[14], and is a result of the formulae for ε′(s, ωv ⊗ πv, ψv) given in the proofs of Lemma 5.18 and Corollary 6.6 of

[14].

One needs in addition the following variant of Lemma 12.5 of [14].

Lemma 3.2 Suppose that we are given at each infinite place v of F a character χv of F×
v and, in addition, an

integral ideal A of F . Then there exists an idèle­class character ω which is such that ωv is close to χv for each

archimedean v and whose conductor is divisible by A.
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This lemma, whose proof will not be given, can also be used, in conjunction with the methods of §12 of [14],

to show that the second definition of π(ρ) implies the first. Again, if π(ρ) is not cuspidal then it is π(µ, ν) and ρ

must be the direct sum of the one­dimensional representations µ and ν.

There is one further property of liftings which is now clear.

G) If E/F is cyclic of prime degree, if π = π(ρ), Π is the lifting of π, and P the restriction of ρ to the Weil group

over E, then Π = π(P ).

Of course the definition of π(ρ) does not imply that it always exists. If ρ is irreducible and π = π(ρ) then

π is necessarily cuspidal and, since L(s, π) = L(s, ρ), the Artin L­function attached to ρ is entire, as it should

be. In this paragraph we take the results of global liftings announced in the previous paragraph for granted, and

see what can be deduced about the existence of π(ρ). The representation ρ is of course to be two­dimensional,

and we may as well assume that it is neither reducible nor dihedral. If ρ is a representation of WK/F the image

of K×\IK will then consist of scalar matrices, and passing to PGL(2,C) ' SO(3,C) we obtain a finite group

which will be tetrahedral, octahedral, or icosahedral. About the last I can say nothing. I consider the other two

in turn.

i) Tetrahedral type

There are three pairs of opposite edges so that we obtain a map of G(K/F ) into S3. Since we only obtain proper

motions of the tetrahedron the image must in fact be A3 ' Z3. The kernel defines a cyclic extension E of degree

3. The restriction P of ρ to WK/E must be dihedral, and so Π = π(P ) exists as an automorphic representation of

G(AE). If τ ∈ G(E/F ) has a representative u in WK/F then Πτ is clearly π(P τ ) if P τ is the representation, or

rather the class of representations, defined by

P τ (w) = P (uwu−1).

However, P and P τ are equivalent so Πτ ' Π and Π is a lifting of an automorphic representation π of G(A).

If ωρ = det ρ then ωρ and ωπ pull back to the same quasi­character of E×\IE . Thus there is a character ω of
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F×NIE \ IF such that ωρ = ω2ωπ . Replacing π by ω ⊗ π, we can arrange that ωρ = ωπ and that π lifts to π(P ).

This determines π uniquely. We write π = πps(ρ), which is to be read πpseudo(ρ).

(D.1)
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.......
............. ..............................................................................................................................................

..

SL(3,C)

PGL(2,C)

GL(3,C)
ϕ

GL(2,C)

It follows from (C) and (G) that if π(ρ) exists then it must be πps(ρ), but at the moment all we have in our

hands is πps(ρ), and the problem is to show that it is in fact π(ρ). This will be deduced from results of Gelbart,

Jacquet, Piatetskii­Shapiro, and Shalika (cf. [11]).

Consider the commutative diagram (D.1) in which the skewed arrow on the right is given by the adjoint

representation. Taking the product with G(K/F ), we obtain a diagram of L­groups with G1 = SL(2), H1 =

PGL(3), H = GL(3).

The representation σ = ϕ◦ρ is a representation of G(K/F ). Each of the one­dimensional subspaces defined

by an axis passing through opposite edges of the tetrahedron is fixed by G(K/E) and thus defines a character θ

of G(K/E). It is easy to see that σ = Ind(G(K/F ),G(K/E), θ).

(D.2) ....................

.................
...

...............................................................................................................................................................................................................

...........
...........
...........
...........
...........
...........
...........
...........
...........
.............
............ ....................................................................................................

..

ϕ

LG1

LH1

LH

LG

For each finite place v at which σv is unramified one attaches a conjugacy class in GL(3,C) to σv, namely

that of σv(Φ) if Φ is the Frobenius at v. Moreover one also attaches a conjugacy class {A(π1
v)} inGL(3,C) to each

unramified representation π1
v of GL(3, Fv) (cf. [3], [20], [26]). The representation is determined by the conjugacy

class, and one says that π1
v = π(σv) if {A(π1

v)} = {σv(Φ)}. The following instance of the principle of functoriality

is due to Piatetskii­Shapiro ([16]):

1) There is a cuspidal representation π1 of GL(3,A) such that π1
v = π(σv) for almost all v.

There is another instance of the principle due to Gelbart­Jacquet ([12]):

2) Let π = πps(ρ). Then there is a cuspidal representation π2 of GL(3,A) such that {A(π2
v)} = {ϕ(A(πv))}.

Recall that evaluation at the class {A(πv)} defines the homomorphism of the Hecke algebra into C associated to

πv .
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It is to be expected that π1 and π2 are equivalent, and this can indeed be established, using a criterion of

Jacquet–Shalika ([15]). Let π−1 be the contragredient of π1. All that need be verified is, in the notation of [15],

that

L(s, π1
v × π̃1

v) = L(s, π2
v × π̃−1

v )

for almost all v. The left side is

(3.1) det−1(1 − |$v|
sA(π1

v) ⊗ tA−1(π1
v)),

and the right side is

(3.2) det−1(1 − |$v|
sA(π2

v) ⊗ tA−1(π1
v)).

In general, if π1
v = π(σv) and σv is unramified then

det(1 − |$v|
sB ⊗ tA−1(π1

v)) =
∏

w|v
det(1 − |$v|

n(w)sBn(w))

if n(w) is the degree [Ew : Fv].

If v splits completely in E then ρv(Φ) is conjugate to A(πv). Since

{A(π1
v)} = {ϕ(ρv(Φ))}

and

{A(π2
v)} = {ϕ(A(πv))}

the equality of (3.1) and (3.2) is clear. If v does not split in E then n(w) = 3, and, by definition,

{A3(πv)} = {ρ3
v(Φ)}.

The equality is again clear.

To show that πps(ρ) is π(ρ) we have to show that

{A(πv)} = {ρv(Φ)}

even when v does not split in E. We have so chosen π that both sides have the same determinant. Thus we may

suppose that

{ρv(Φ)} =

{(
a 0
0 b

)}

and that

{A(πv)} =

{(
ξa 0
0 ξ2b

)}
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with ξ3 = 1. We need to show that ξ may be taken to be 1. Since π1 and π2 are equivalent,

{
ϕ(

(
a 0
0 b

)
)

}
=

{
ϕ(

(
ξa 0
0 ξ2b

)
)

}

in GL(3,C). This implies either that ξ = 1, and then we are finished, or that

a2 = ξb2.

From this equation we conclude that either a = ξ2b, which also leads to the desired conclusion, or a = −ξ2b,

which implies that ϕ(ρv(Φ)) has order 6 if ξ is not 1. Since the tetrahedral group contains no element of order 6,

the last possibility is precluded.

We have proved the following theorem.

Theorem 3.3 If F is a number field and ρ a two­dimensional representation of the Weil group of F of tetrahedral

type then the L­function L(s, ρ) is entire.

ii) Octahedral type. Rather than an octahedron I draw a cube in which I inscribe a tetrahedron. The subgroup of

G(K/F ) which takes the tetrahedron to itself defines a quadratic extension E of F .

The restrictionP of ρ toWK/E is of tetrahedral type; so Π = π(P ) exists. If τ ∈ G(E/F ) then Πτ = π(P τ ). Since

P τ ' P we conclude that Πτ ' Π. Hence Π is the lifting of exactly two automorphic representations π, π′ of

G(A), one of which can be obtained from the other by tensoring with the non­trivial character ω of F×NIE\IF .

We are no longer able to define πps(ρ) uniquely; we take it to be either of the two representations π, π ′.

We are only able to show that one of the πps(ρ) is in fact π(ρ) in very special cases. We will exploit a result of

Deligne­Serre. There is a general observation to be made first. Suppose E is a cyclic extension of arbitrary prime

degree ` and ρ a two­dimensional representation of the Weil group of F . Suppose in addition that the restriction

P of ρ to the Weil group of E is irreducible and that Π = π(P ) exists. Let π lift to Π, and suppose that π is π(ρ′)

for some ρ′, perhaps different from ρ.
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If P ′ is the restriction of ρ′ to the Weil group of E then P ′
w = Pw for almost all places of E and thus (see,

for example, Lemma 12.3 of [14]) P ′ = P . Consequently, ρ = ω ⊗ ρ′ and π(ρ) = ω ⊗ π exists, so that L(s, ρ) is

entire. Here ω is a characer of F×NE/F IE\IF .

Thus, for ρ of tetrahedral type and E the associated quadratic extension, we can conclude that one of π or π′

is π(ρ) if we can show that π is π(ρ′) for some ρ′. By the result of Deligne­Serre ([6]), this will be so if F = Q and

the infinite component π∞ of π is π(ρ′∞) where ρ′∞ = µ⊕ ν, µ, ν being two characters of R× with

µ(x) = ν(x)sgnx.

This is the condition that guarantees that the tensor product ofπwith some idèle class character is the automorphic

representation defined by a holomorphic form of weight one. We will not be able to show that π∞ has this form

unless we assume that ρ∞, the infinite component of ρ, has the same form as ρ′∞. Interpreted concretely this

means that the image of complex conjugation in the octahedral group is rotation through an angle of 180◦ about

some axis.

This axis passes either through the center of a face of the cube or through the center of an edge. If it passes

through the center of a face then complex conjugation fixes E, which is therefore a real quadratic field. If v is

either of the infinite places ofE, then π∞ is equivalent to Πv and Πv = π(Pv). Since Pv = ρ∞, the representation

π∞ satisfies the condition which allows us to apply the theorem of Deligne–Serre.

Theorem 3.4 Suppose ρ is a two­dimensional representation of the Weil group of Q which is of octahedral type.

If the image of complex conjugation is rotation through an angle of 180◦ about an axis passing through a vertex

of the octahedron or, what is the same, the center of a face of the dual cube, then L(s, ρ) is entire.

There is one other condition which allows us to conclude that π∞ is of the desired type. We continue to

suppose that the image of complex conjugation is rotation through an angle of 180◦ . If ωπ is the central character

of π and ωρ the determinant of ρ then η = ωπω
−1
ρ is of order two. Since its local component is trivial at all places

which split in E, it is either trivial itself or the quadratic character associated to the extension E. π∞ has the

desired form if and only if η∞ is trivial. If E is a real quadratic field then η∞ is necessarily trivial, and so we

obtain the previous theorem. If E is an imaginary quadratic field then η∞ is trivial if and only if η is; and η is

trivial if and only if ηv is trivial for some place of F which does not split in E.

Theorem 3.5 Suppose ρ is a two­dimensional representation of the Weil group of Q which is of octahedral type.

Suppose the image of complex conjugation is rotation through 180◦ about an axis passing through the center of

an edge. If for some place v which does not split in E, the quadratic field defined by the tetrahedral subgroup,

the local representation ρv is dihedral then L(s, ρ) is entire.
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It is clear that ηv = ωπvω
−1
π(ρv). However πv and π(ρv) have the same lifting toG(Ev). Thus, by property (c)

of local liftings,

π(ρv) = ω ⊗ πv

with ω of order two. We conclude that ωπ(ρv) = ωπv .
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4. σ–CONJUGACY

Suppose F is a field and E is a cyclic extension of prime degree `. Fix a generator σ of G = G(E/F ). If x

and y belong to G(E) we say that they are σ­conjugate if for some h ∈ G(E)

y = h−1xσ(h).

Then

yσ(y) · · ·σ`−1(y) = h−1xσ(x) · · · σ`−1(x)h.

We set

Nx = xσ(x) · · · σ`−1(x).

If u = Nx and v = h−1uh then v = Ny.

Lemma 4.1 If u = Nx then u is conjugate in G(E) to an element of G(F ).

Let F be an algebraic closure of F containing E. It is sufficient to verify that the set of eigenvalues of Nx,

with multiplicities, is invariant under G(F/F ), or even under those σ′ ∈ G(F/F ) with image σ in G. Acting on

the set with σ′ we obtain the eigenvalues of σ(u), and

σ(u) = x−1ux.

The invariance follows.

Suppose u = Nx lies in G(F ). Let Gu be the centralizer of u and let Gσ
x(E) be the set of all g in G(E) for

which

x = g−1xσ(g).

The matrix x belongs to Gu(E) and y → xσ(y)x−1 is an automorphism of Gu(E) of order `. It therefore defines

a twisted form Gσ
u of Gu. Clearly

Gσ
u(F ) = Gσ

x(E).

If M is the algebra of 2 × 2 matrices and Mu the centralizer of u, we may also introduce the twisted form Mσ
u of

Mu. Then Gσ
u is the group of invertible elements in M σ

u , and it follows readily from the exercise on p. 160 of [28]

that

H1(G, Gσ
u(E)) = {1}.

Lemma 4.2 If Nx and Ny are conjugate then x and y are σ­conjugate.

We reduce ourselves immediately to the case that u = Nx lies in G(F ) and Nx = Ny. If τ = σr belongs to

G set

cτ = yσ(y) · · ·σr−1(y)σr−1(x)−1 · · ·σ(x)−1x−1.
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Since Nx = Ny, cτ is well defined and

cσxσ(cτ )x−1 = cστ .

In other words τ → cτ defines a cocycle of G with values in Gσ
u(E). Therefore there is an h satisfying

yx−1 = cσ = h−1xσ(h)x−1

and

y = h−1xσ(h).

Occasionally in later paragraphs Nx will simply stand for an element of G(F ) which is conjugate to

xσ(x) · · · σ`−1(x), but for now it is best to retain the convention that

Nx = xσ(x) · · · σ`−1(x).

Lemma 4.3 Suppose

u =

(
a av
0 a

)

with v 6= 0. Then u = Nx for some x in G(E) if and only if a ∈ NE×. If u = Nx and h ∈ G(E) then h−1xσ(h)

is upper­triangular if and only if h itself is.

If u = Nx then x ∈ Gu(E) and has the form

(
b by
0 b

)
.

Consequently

Nx = Nb

(
1 tr y
0 1

)
.

The first assertion follows. To obtain the second we observe that if h−1xσ(h) is upper­triangular, then h−1uh is

also.

Lemma 4.4 Suppose

u =

(
a1 0
0 a2

)

with a1 = a2. Then u = Nx if and only if a1 and a2 lie in NE×. If y is upper­triangular then Ny is of the form

(
a1 v
0 a2

)

if and only if y = h−1xσ(h) with an upper­triangular h. If h−1xσ(h) is diagonal then h is of one of the two forms

(
α 0
0 β

)
or

(
0 α
β 0

)
.
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SinceGu is the group of diagonal matrices the first and last assertions are clear. Suppose y is upper­triangular

and

Ny =

(
a1 v
0 a2

)
.

Replacing y by g−1yσ(g) with g diagonal we may suppose that

y = x

(
1 v
0 1

)

perhaps with a different v. If

x =

(
b1 0
0 b2

)

then (
1 −w
0 1

)
x

(
1 σ(w)
0 1

)
= x

(
1 σ(w) − b−1

1 b2w
0 1

)
.

To complete the proof we need only verify the following supplementary lemma.

Lemma 4.5 If b ∈ E regard w → σ(w) − bw as a linear transformation of the vector space E over F . The

determinant of this linear transformation is (−1)`(Nb− 1).

To compute the determinant we may extend scalars to E. Since

E ⊗F E ' (E ⊕ · · · ⊕E)

and the linear transformation becomes

(x1, · · · , x`) → (x2 − bx1, x3 − σ(b)x2, · · · , x1 − σ`−1(b)x`),

we are reduced to calculating

∣∣∣∣∣∣∣∣∣∣∣∣∣

−b 1
−σ(b) 1

·
·

·
−σ`−2(b) 1

1 −σ`−1(b)

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Elementary row and column operations yield the desired result.

Lemma 4.6 Suppose u ∈ G(F ) has distinct eigenvalues which do not lie in F . Let E′ = F (u) be the centralizer

of u in M(F ).

(a) If E′ is isomorphic to E over F then u = Nx has a solution.

(b) IfE′ is not isomorphic toE over F and L = E′⊗F E then u = Nx has a solution if and only if u ∈ NL/E′L×.
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If T is the Cartan subgroup in which u lies and u = Nx then x ∈ T (E) = L×. The second statement is

therefore clear. If E′ is isomorphic to E then E′ ⊗F E is isomorphic to E′ ⊕ E′ with E′ imbedded as {(y, y)}.

Since σ acts as (y1, y2) → (y2, y1) every invariant is a norm.

Corollary 4.7 If F is a local field and u ∈ G(F ) has distinct eigenvalues which do not lie in F then u = Nx has a

solution if and only if detu ∈ NE/FE
×.

This follows from the previous lemma and local class field theory.

Lemma 4.8 Suppose u ∈ Z(F ) = F×. If ` is odd then u = Nx, x ∈ G(E), if and only if u ∈ NE×. If ` = 2 then

u = Nx always has a solution.

If u = Nx then u2 = detu ∈ NE×. This makes the first statement clear. If ` = 2 we may imbedE inM(F );

so the second statement follows from the proof of Lemma 4.6.

If F is a global field and v a place of it we set Ev = E ⊗F Fv . G acts on Ev. Either Ev is a field and

G = G(Ev/Fv) or Ev is isomorphic to a direct sum of ` copies of Fv and σ acts as

(x1, · · · , x`) → (x2, · · · , x`, x1).

Then

G(Ev) = G(Fv) × · · · ×G(Fv).

If u = (u, · · · , u) lies inG(Fv) ⊆ G(Ev) and x = (u, 1, · · · , 1) then u = NX ; so at a place which splits inE every

element is a norm.

Lemma 4.9 Suppose F is a global field and u ∈ G(F ). Then u = Nx has a solution inG(E) if and only if it has a

solution in G(Ev) for each place v.

It is enough to show that the equation u = Nx can be solved globally if it can be solved locally. We know

that a ∈ F× lies in NE× if and only if it lies in NE×
v for all v. If u is conjugate to an upper­triangular matrix the

desired result follows from this and Lemmas 4.3, 4.4 and 4.8. Otherwise we apply Lemma 4.6.

Observe that if u ∈ F× then the number of places v for which u /∈ NE×
v is finite and even.

We close this paragraph with a simple lemma which will be used frequently below. Suppose S is an abelian

algebraic group over F , either a torus or the additive group Ga, and ω an invariant form of maximum degree on

it. Let T be the group over F obtained from S over E by restriction of scalars and let ν be an invariant form of

maximal degree on T . The two forms ω and ν and the exact sequences

(4.1) 1 −→ T 1−σ −→ T
N
−→S −→ 1

(4.2) 1 −→ S −→ T
1−σ
−→T 1−σ −→ 1
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yield forms µ1 and µ2 on T 1−σ.

Lemma 4.10 The forms µ1 and µ2 are equal, except perhaps for sign.

The lemma need only be verified over the algebraic closure F of F . So we may assume S is eitherGa or Gm

and T is either Ga × · · · ×Ga or Gm × · · · ×Gm. Suppose first that S is Ga. Then

T 1−σ =

{
(x1, · · · , x`)

∣∣∣∣
∑

xi = 0

}
.

We may suppose ω is dx and ν is dx1 ∧ · · · ∧ dx`. The pullback of dx to T is
∑
dxi and the restriction of dx1 from

T to S is dx. We may take x1, · · · , x`−1 as coordinates on T 1−σ. Then

µ1 = dx1 ∧ · · · ∧ dx`−1.

Pulling back µ1 from T 1−σ to T we obtain

d(x1 − x2) ∧ d(x2 − x3) ∧ · · · ∧ d(x`−1 − x`).

Multiplying by dx1 we obtain

(−1)`−1dx1 ∧ · · · ∧ dx`

so µ2 = (−1)`−1µ1. A similar computation can be made for Gm.
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5. SPHERICAL FUNCTIONS

In this paragraph F is a non­archimedean local field and O = OF is the ring of integers in F . We want to

study the algebra H of compactly supported functions on G(F ) spherical with respect to G(O). A is the group

of diagonal matrices and X∗, which is isomorphic to Z2, its lattice of rational characters. Set

X∗ = Hom(X∗,Z).

If $ is a generator of the prime ideal of O then the map γ → λ(γ), where λ(γ) ∈ X∗ is defined by

|λ(γ)| = |$|<λ,λ(γ)>

establishes an isomorphism of A(O)\A(F ) with X∗.

If

γ =

(
a 0
0 b

)

set

∆(γ) =
∣∣∣
(a− b)2

ab

∣∣∣
1/2

and, if ∆(γ) = 0, let

Ff (γ) = ∆(γ)

∫

A(F )\G(F )

f(g−1γg)dg.

If f ∈ H then Ff (γ) depends only on λ(γ); so we write Ff (λ). This function is invariant under permutation

of the two coordinates of λ, and f →measA(O)Ff (λ) defines an isomorphism of H with the subalgebra of the

group ring of X∗ over C, formed by the invariant elements. We may look at this in a slightly different way. X∗

may also be regarded as the lattice of rational characters of the diagonal matrices A(C) in GL(2,C), and every

element
∑
a(λ)λ of the group ring defines a function

t→
∑

a(λ)λ(t)

on A(C). The symmetric elements are precisely the functions obtained by restricting the elements of the repre­

sentation ring of GL(2,C) to A(C). Thus H is isomorphic to an algebra of functions on A(C). Let f∨ be the

function corresponding to f .

There are a number of distributions, which will arise in the trace formula, whose value on f we shall have

to be able to express in terms of f∨. We begin this paragraph by verifying the necessary formulae. Our method

of verification will be simply to check that both sides are equal for f = fλ, the characteristic function of a double

coset G(O)γG(O) with λ(γ) = λ. It is easy to verify that m(λ), the measure of G(O)γG(O), is measG(O) if

λ = (k, k) and is

q<α,λ>

(
1 +

1

q

)
measG(O)
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if λ = (k′, k), k′ > k. q is the number of elements in the residue field of O and α is the root for which

< α, λ >> 0, that is < α, λ >= k′ − k.

Lemma 5.1 If < α, λ > ≥ 0, then f∨
λ (t) is given by

m(λ) ·
q−

<α,λ>
2

1 + 1
q

{
1 − q−1α−1(t)

1 − α−1(t)
λ(t) +

1 − q−1α(t)

1 − α(t)
λ̃(t)

}
.

Here λ̃ is obtained from λ by permuting its two coordinates.

Taking |α(t)| < 1 and expanding the denominators in a Laurent expansion we find that this expression is

equal to

measG(O)λ(t) < α, λ >= 0

measG(O)q
<α,λ>

2 (λ(t) + λ̃(t)) < α, λ >= 1

measG(O)q
<α,λ>

2

{∑<α,λ>

j=0
λ(t)α−j(t) −

1

q

∑<α,λ>−1

j=1
λ(t)α−j(t)

}
< α, λ > ≥ 2.

To verify the lemma we have only to calculate Ffλ
(µ) explicitly.

Let λ(γ) = µ and choose δ in A(F ) with λ(δ) = λ. To make the calculation we use the building associated

by Bruhat and Tits to SL(2, F ). This building is a tree X, the vertices of which are equivalence classes of lattices

in F 2, two lattices being equivalent if one is a scalar multiple of the other. The vertices defined by latticesM1,M2

are joined by an edge if there are scalars α and β such that

αM1 ⊃
6=
βM2 ⊃

6=
$αM1.

If M0 is the lattice of integral vectors let p0 be the corresponding vertex. The action of G(F ) on lattices induces

an action on X. Every vertex of X lies on q + 1 edges. We associate to A an apartment A. This is a subtree whose

vertices are the points tp0, t ∈ A(F ), and whose edges are the edges joining two such points. The apartment A

is a line; every vertex lies on two edges. If p1, p2 are two points in X there is a g inG(F ) and a t inA(F ) such that

p1 = gtp0, p2 = gp0. If λ(t) = (k′, k) then |k′ − k| is uniquely determined, and is just the distance from p2 to p1.

We may also associate a simplicial complex X′ to GL(2, F ) = G(F ). The points are lattices, two lattices

M1 and M2 being joined by an edge if M1 ⊃
6=
M2 ⊃

6=
$M1 or M2 ⊃

6=
M1 ⊃

6=
$M2. We may define an apartment A′

and the type of an ordered pair (p′1, p
′
2). It is a λ = (k′, k), the pair, not the ordered pair, (k′, k) being uniquely

determined, so that the type is in fact a double coset. There is an obvious map p′ → p of X′ to X.

The type of (γp′, p′) depends only on the orbit underA(F ) to which p′ belongs. If τ(p1, p2) denotes the type

of (p1, p2) the integral ∫

A(F )\G(F )

fλ(g−1γg)dg
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is a sum over representatives of the orbits of A(F ) in X ′

∑
τ(γp′,p′)=λ

measGp′ ∩A(F )\Gp′ .

Here Gp′ is the stablizer of p′. We may choose the representatives p′ so that the closest point to p in A is p0. If p′0

is the vertex of X′ determined by the lattice of integral vectors and p′ = gp′0, let d(p′) be defined by

|det g| = |$|d(p′).

Any point p lifts uniquely to a p′ with d(p′) = dist(p, p0). We may also demand that the representatives p′ be

chosen so that d(p′) = dist(p, p0). Then A(F ) ∩ Gp′ will lie in A(O). The number of choices for representatives

satisfying the two conditions is [A(O) : A(O) ∩Gp′ ]. Since

measGp = measG(O)

the integral is equal to

(5.1)
measG(O)

measA(O)

∑
τ(γp′,p)=λ

1.

The sum is over all p′ for which, in addition to the condition τ(γp′, p′) = λ on the type of γp′, p′,

d(p′) = dist(p, p0) = dist(p,A).

This type of reduction will be used repeatedly, but without further comment, in the present paragraph.

We may suppose < α, µ > ≥ 0 and < α, λ > ≥ 0. We have to show that ∆(γ) times the sum appearing in

(5.1) is q
<α,λ>

2 if λ = µ, q
<α,λ>

2

(
1 − 1

q

)
if λ = µ+ nα, n > 0, and 0 otherwise.

There are two possibilities which have to be treated in different fashions. Suppose
∣∣ b
a

∣∣ 6= 1. Then we have

the following picture

......................... ......................... ......................... ......................... ......................... ......................... .........................

.........................

..................................................

.........................
.........................

.........................

......................... .........................
.......
.......
.......
.......
.......
...... ..........................................

.......
.......
.......
.......
.......
......

..........................................

.................................................
.......
.......
.......
.......
......

p γ p

p0 γ p0
A

The distance between p0 and γp0 is m′ −m if µ = (m′,m). If the distance of p from p0 is k then the type of γp, p

is 2k + m′ −m, provided d(p, p0) = d(p,A), and the type of (γp′, p′) is (m′ + k,m − k). If k = 0 there is one

choice for p and if k > 0 there are qk
(
1 − 1

q

)
. Since

∆(γ) =
∣∣∣
b

a

∣∣∣
1/2 ∣∣∣1 −

a

b

∣∣∣ =
∣∣∣
b

a

∣∣∣
1/2

= q
m′−m

2
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and

q
<α,λ>

2 = qk+ m′−m
2

if λ = (m′ + k,m− k) the required equality follows.

Before treating the second possibility we establish another lemma.

Lemma 5.2 Suppose
∣∣a

b

∣∣ = 1 and
∣∣1 − a

b

∣∣ = q−r . Then the points of X fixed by γ are precisely those at a distance

less than or equal to r from A.

Since G(F ) = A(F )N(F )K , with K = G(O) and

N(F ) =

{(
1 x
0 1

)
|x ∈ F

}

any point of X is of the form tnp0, t ∈ A(F ), n ∈ N(F ). Moreover γ fixes tnp0 if and only if it fixes np0; and

dist(tnp0,A) = dist(np0,A).

We may index the vertices of A by Z, the integer z corresponding to the vertex

pz =

(
1 0
0 $z

)
p0.

This vertex is fixed by n =

(
1 x
0 1

)
if and only if $zx ∈ O. If z is the smallest integer for which $zx ∈ O then

np0 = p0 for z ≤ 0. Otherwise

dist(np0,A) = dist(np0, pz) = dist(np0, npz) = z.

Pictorially,

p0 pz

np0

....................... ....................... ....................... ....................... ....................... ....................... .......................

.......................

.......................

.......................

.......................

........
........
........
........
......

........
........
........
........
......

........
........
........
........
......

........
........
........
........
......

Certainly γ fixes np0 if and only if n−1γn or γ−1n−1γn belongs to K . Since

γ−1n−1γn =

(
1 x

(
1 − b

a

)

0 1

)

the lemma follows.
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To complete the proof of the first lemma, we have still to treat the case that
∣∣ b
a

∣∣ = 1. Let
∣∣1 − a

b

∣∣ = r so that

∆(γ) = q−r

p0

.......................

.......................

.......

.......

.......

.......

.......

...

.......

.......

.......

.......

......

...

.......................

.......................

.........
.........
.........
.........
..

.........
.........
.........
.........
.........................

.......................

.........
.........

.........
.........

.

.........
.........

.........
.........

..

....................... ....................... ....................... ....................... ....................... ....................... ..............................................

γ pp

A

If the distance of p from p0 is k+ r with k > 0 then the type of (γp′, p′) is (m′ + k,m− k), withm′ now equal to

m. There are qk+r
(
1 − 1

q

)
possible such points. If the distance of p from p0 is less than or equal to r the type of

(γp′, p′) is (m′,m). There are

1 +
∑r

j=1
qj

(
1 −

1

q

)
= qr

such points. This gives the desired equality once again.

The group A0(C) of elements in A(C) whose eigenvalues have absolute value 1 is compact. We introduce

an inner product in the group ring of X∗ by setting

< f1, f2 >=

∫

A0(C)

f1(t)f2(t).

The total measure of the group is taken to be one.

Lemma 5.3 Suppose γ lies in Z(F ) and µ = λ(γ). If f belongs to H and

ϕγ(t) =
1 + 1

q

2 measG(O)

1 − α(t)

1 − q−1α(t)

1 − α−1(t)

1− q−1α−1(t)
λ∨(t)

then

f(γ) =< f∨, ϕγ > .

We verify this for f = fλ. If λ = (k′, k), k′ ≥ k and µ = (m,m) then both sides are 0 unless k′ + k = 2m.

If this condition is satisfied f∨(t)ϕγ(t) is constant with respect to elements

(
u 0
0 u

)

so that the integration may be taken with respect to

{(
z 0
0 1

)}
.

This gives

m(λ)

measG(O)

q
k−k′

2

2
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times
1

2πi

∫

|z|=1

{
1 − z

1 − q−1z
zk′−m +

1 − z−1

1 − q−1z−1
zk−m

}
dz

z
.

Since k′ ≥ m ≥ k this integral is seen by inspection to be 0 unless k′ = m = k when it is 2. These are the required

values.

Corollary 5.4 If f1 and f2 belong to H then

∫

G(F )

f1(g)f2(g)dg =
1 + 1

q

2 measG(O)

∫

A∨
0 (C)

f∨
1 (t)f

∨

2 (t)
1 − α(t)

1 − q−1α(t)
·

1 − α−1(t)

1 − q−1α−1(t)
.

Apply the previous formula for f = f1 ∗ f
∗
2 and γ = 1 with f ∗

2 (g) = f2(g
−1).

Let

ν(t) =
1 + 1

q

2
·

1 − α(t)

1 − q−1α(t)
·

1 − α−1(t)

1 − q−1α−1(t)
.

Then the family of function f∨
λ is orthogonal with respect to ν(t) and

∫

A0(C)

|f∨
λ (t)|2ν(t) = m(λ)measG(O).

Let

n0 =

(
1 1
0 1

)
.

Lemma 5.5 If a ∈ F×, n = an0, and µ = λ

((
a 0
0 a

))
, then

∫

Gn(F )\G(F )

f(g−1ng)dg

is equal to
1

measGn(O)

< f∨, µ >

1 − 1
q

.

Since {p′ ∈ A′|d(p′) = dist(p, p0)} is a set of representatives for the orbits of Gn(F ) in X′, the integral is

equal to

measG(O) ·
∑

p′∈A′

d(p′)=dist(p,p0)

τ(np′,p′)=λ

1

measGn(F ) ∩Gp′

when f = fλ. If µ = (m,m) this expression is 0 unless λ = (m+ k,m− k), k ≥ 0. If k = 0 the sum is

1

measGn(O)

∑∞

z=0

1

qz
=

1

measGn(O)
·

1

1 − 1
q

.

If k > 0 there is only one term in the sum and it equals

qk

measGn(O)
.
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Comparing with the explicit expansion of f∨
λ we obtain the lemma. For these calculations we of course rely on

the diagram

p0

.......................

.......................

.........
.........

.........
.........

..

.........
.........

.........
.........

..

n p

....................... ....................... ....................... ....................... ....................... ....................... ..............................................

p

If γ is any semi­simple element in G(F ) with eigenvalues a and b we may set

∆(γ) =
∣∣(a− b)2

ab

∣∣1/2

and

Ff (γ) = ∆(γ)

∫

T (F )\G(F )

f(g−1γg)dg

if T is the Cartan subgroup containing γ.

Lemma 5.6 If f belongs to H and T splits over the unramified quadratic extension F ′ then

Ff (γ) =

(
1 +

1

q

)
·
measGn(O)

measT (O)

∫

Gn(F )\G(F )

f(g−1ng)dg − 2
∆(γ)

q − 1

measG(O)

measT (O)
f(z).

Here z ∈ F is determined by |z| = |a| = |b|, and

n = zn0.

The group T (O) consists of all matrices in T (F ) whose eigenvalues are units.

The Bruhat–Tits buildings X and X′ over F may be regarded as subtrees of the buildings X(F ′) and X′(F ′)

over F ′. The torus T splits over F ′ and we may introduce the associated apartments AT (F ′) and A′
T (F ′). They

consist of all vertices fixed by T (O′) and the edges joining them. G(F ′/F ) operates on these buildings and,

because H1(G(F ′/F ), G(O′)) is trivial, X and X′ are formed by the fixed points of (F ′/F ). The intersection

X ∩ AT (F ′) consists of p0 alone and X′ ∩ A′
T (F ′) is formed by the points lying over p0.

.......................

.......................

.......
.......
.......
.......
.......
...

.......
.......
.......
.......
.......
...

.............................................................

............................................................

γ p

p0

....................... ....................... ....................... .............................................. .......................

p

AΥ(F )

The integral defining Ffλ
(γ) is equal to

measG(O)

measT (O)

∑
τ(γp′,p′)=λ

1



Base change 34

where p′ runs over those points for which not only τ(γp′, p′) = λ but also d(p′) = dist(p, p0). Since the closest

point to p in AT (F ′) is p0 and since the shortest path joining p to p0 must lie completely in X there are qr+m
(
1 + 1

q

)

such points if ξ = λ(z) + (m,−m), m > 0, and ∆(γ) = q−r, and there are

1 + (q + 1)
∑r−1

k=0
qk = qr ·

q + 1

q − 1
−

2

q − 1

if λ = λ(z), but none otherwise. The lemma follows upon comparison with the calculations for the proof of

Lemma 5.5.

Suppose the torus T splits over a ramified quadratic extension F ′. It is no longer X and X′ but their first

barycentric subdivisions X1 and X′
1 which are subcomplexes of X(F ′) and X(F ′). We may again introduce

AT (F ′) and A′
T (F ′) as well as the action of G(F ′/F ). There is exactly one point pT of AT (F ′) fixed by G(F ′/F )

and it is a vertex. If p is a vertex of X the closest point to it on AT (F ′) is pT . There can be at most two points on X

at a minimal distance from AT (F ′) and these two points must be a distance 1 apart in X, for every second point

on the path of shortest length joining them lies in X

.......................

.......................

.......

.......

.......

.......

.......

...

.......

.......

.......

.......

.......

..

p1 p2

pΥ

....................... ....................... ....................... ....................... ....................... ....................... ..............................................

..............................................

.........
.........
.........
.........
..

.........
.........

.........
.........

..

AΥ(F ′)

There must be at least two such points p1, p2, for the set of them is fixed by T (F ), and T (F ) contains an element

whose determinant has order 1, and which, as a consequence, fixes no point of X. Let δ be the distance of p3 from

pT in X(F ′).

Lemma 5.7 Suppose |det γ| = |$|2m+1 and set µ = (m+ 1,m). If

ϕγ(t) =
q

−δ−1
2

2 measT (O)

{
µ(t)

1 − q−1α(t)
+

µ̃(t)

1 − q−1α−1(t)

}

then

Ff (γ) =< f∨, ϕγ >

for f∨ in H. Here T (O) is the stabilizer of p′T in T (F ).

Observe that by Lemma 5.2,

∆(γ) = q−δ/2
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for γ must certainly interchange p1 and p2 and therefore p3 is a fixed point of γ at maximal distance from AT (F ′).

Arguing from a diagram

.......................

.......................

.......

......

.......

.......

.......

....

.......

.......

......

.......

.......

...

.......................

.........
.........
.........
.........
....
.........
.........
.........
.........

p2p1

....................... ....................... ....................... ....................... ....................... ....................... ..............................................

.......................

.......................

.......................

..............................................

..........................................................................

.........
.........
.........
.........
.

.........
.........

.........
.........

..

PT

γ pp

as usual we see that Ffλ
(γ) is 0 unless λ = (m+ 1 + r,m− r), r ≥ 0 when it is

∆(γ)
measG(O)

measT (O)
qr.

Moreover < f∨
λ , ϕγ > is 0 unless λ = (m+ 1 + r,m− r) when it is

measG(O)

2 measT (O)
qr− δ

2

times

1

2πi

∫

|z|=1

{
zr

1 − z−1
+

(1 − q−1z−1)

(1 − z−1)(1 − q−1z)
zr+1 +

(1 − q−1z)

(1 − z)(1 − q−1z−1)
z−r−1 +

z−r

1 − z

}
dz

z
.

This contour integral can be evaluated by shrinking the path a little and then integrating term by term. The first

two terms have no poles inside the contour of integration and yield 0; the last two integrals are evaluated by

moving the path to ∞, and each yields the residue 1 at z = 1. The lemma follows.

If |det γ| = |$|2m we may choose z ∈ F so that |z|F ′ = |a|F ′ = |b|F ′ .

Lemma 5.8 If |det γ| = |$|2m then

Ff (γ) = q
−δ−1

2
measGn(O)

measT (O)

∫

Gn(F )\G(F )

f(g−1ng)dg −
∆(γ)

q − 1

measG(O)

measT(O)
f(z)

with

n = zn0.

If ∆(γ) = q−α then α ≥ 0, 2α− δ− 1 is even, and γ fixes all points in X(F ′) at a distance less than or equal

to 2α from AT (F ′). If j − δ − 1 is even and non­negative there are

2q
j−δ−1

2

points in X whose distance from AT (F ′) is j. Certainly Ffλ
(γ) is 0 unless λ = (m+ r,m− r), r ≥ 0. If r > 0 it

is equal to
measG(O)

measT (O)
qr+−δ−1

2
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and if r = 0 it equals

measG(O)

measT (O)

∑ 2α−δ−1
2

j=0
qj =

measG(O)

measT (O)

q
−δ+1

2 − q−α

q − 1
.

.......................

.......................

.......

.......

.......

.......

.......

...

......

.......

.......

.......

......

....

............................................................

............................................................

p1

....................... .......................

.......................

..................................... .........
.........
.........
.........
..

.........
.........
.........
.........
.

p

γ p

p2

....................... ....................... ....................... ....................... ....................... ....................... ..............................................

PT

AT (F ′)

The factor 2 disappears because the orbits under T (F ) are twice as large as the orbits under T (O). The lemma

follows upon comparison with the proof of Lemma 5.5.

If

g = t

(
1 x
0 1

)
k

with t inA(F ) and k inG(O), we set λ(g) = 1 if x ∈ O and λ(g) = |x|−2 otherwise. Then `nλ(g) is 2`n|$| times

the distance of gp0 from A. If ∆(γ) 6= 0 set

A1(γ, f) = ∆(γ)

∫

A(F )\G(F )

f(g−1γg)`nλ(g)dg.

If

t =

(
t1 0
0 t2

)

lies in A(C) and f belongs to H we write

f∨(t) =
∑

j′,j

af (j′, j)tj
′

1 t
j
2.

Lemma 5.9 Let

γ =

(
a 0
0 b

)

and let λ(γ) = (m′,m) or (m,m′), m′ ≥ m. If m′ > m then

A1(γ, f) =
`n|$|

measA(O)

∑
j′+j=m′+m
|j′−j|>m′−m

(
1 −

1

qs

)
af (j′, j)

with 2s = |j ′ − j| − (m′ −m). If m′ = m then A1(γ, f) is equal to the sum of three terms:

`n|$|

measA(O)

∑
j′+j=m′+m

|j′−j|>0

(
1 −

1

qs

)
af (j′, j)

and (
1 − 1

q

)
`n∆(γ)

measA(O)

{
2af(m′,m) +

∑
j′+j=m′+m

|j′−j|>0

1

qs+1
af (j′, j)

}
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and, if ∆(γ) = q−α and z ∈ F× satisfies |z| = |$|m,

2`n|$|
measG(O)

measA(O)

∑α−1

j=0
jqj−2

(
1 −

1

q

)
f(z).

It is enough to verify these formulae for f = fλ. Suppose first that m′ > m. The integral appearing

in the definition of A1(γ, f) is equal to
measG(O)
measA(O) times the sum over all p′ for which τ(γp′, p′) = λ and

d(p′) = dist(p, p0) = dist(p,A) of 2`n|$|dist(p,A).

.......................

.......................

.......
.......
.......
.......
.......
...

.......
.......
.......
.......
.......
.. .......................

.......................

.......
.......
.......
.......
.......
...

.......
.......
.......
.......
.......
...

....................... ....................... ....................... ....................... ....................... ..............................................

pγ p

p0γ p0

The sum is empty unless λ = (m′ + r,m− r), r ≥ 0. However if this condition is satisfied it equals

2r

(
1 −

1

q

)
qr`n|ω|.

The sum appearing in the formula claimed for A1(γ, f) is also 0 unless λ has this form when, by the explicit

expansion of f∨(t), it equals

2

{(
1 −

1

q

)
+

(
1 −

1

q

)(
1+

1

q

)
+· · ·+

(
1−

1

q

)(
1+

1

q
+· · ·+

1

qr−2

)
+

(
1+

1

q
+· · ·+

1

qr−1

)}
qrmeasG(O)

which is easily shown by induction to be

2rqrmeasG(O).

If m′ = m we base our calculation on the diagram

.......................

.......................

.......

.......

.......

.......

.......

...

.......

......

.......

.......

.......

...

.......................

.......................

.........
.........
.........
.........
....
.........
.........
.........
.........

....................... ....................... ....................... ..............................................

.......................

.......................

.......................

..............................................

....................... ....................... .......................

..........................................................................

.........
.........
.........
.........
.

.........
.........

.........
.........

..

α

{

A1(γ, fλ) is certainly 0 unless λ = (m+ r,m− r), r ≥ 0. If this condition is satisfied it equals

2`n|$|(r + α)qr

(
1 −

1

q

)
measG(O)

measA(O)
, r > 0,

or

2q−α`n|$|
measG(O)

measA(O)

∑α

j=0
jqj

(
1 −

1

q

)
, r = 0.

The contribution

2`n|$|
measG(O)

measA(O)
rqr

(
1 −

1

q

)
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is accounted for by the first of the three summands in the lemma. The contribution

2`n|$|
measG(O)

measA(O)
αqr

(
1 −

1

q

)

by the second, and the remainder, which is 0 for r > 0 and

2`n|$|
measG(O)

measA(O)

∑α−1

j=0
jqj−α

(
1 −

1

q

)

for r = 0, by the third.

The purpose of this paragraph is not simply to consider the algebra H by itself, but rather to compare it

with the algebra HE of spherical functions on G(E), where E is an unramified extension of F of degree `. The

comparison can be motivated by the point of view exposed in [20].

We have already seen that H is isomorphic to the representation ring of GL(2,C). With G = G(E/F ) we

form the direct product

LG = GL(2,C) × G

which is the L­group of G. Let Φ be the Frobenius element in G. The representation ring of GL(2,C) is

isomorphic, by means of the map g → g ×Φ from GL(2,C) to GL(2,C) ×Φ ⊆LG, to the algebra H obtained by

restricting toGL(2,C)×Φ the representation ring of LG, which is the algebra of functions on LG formed by linear

combinations of characters of finite­dimensional complex analytic representations of LG. It is the isomorphism

of H with H which is now important.

We may regardG(E) asGE(F ) whereGE is obtained fromG by restriction of scalars. ItsL­group is formed

by setting

LGo
E =

∏
G
GL(2,C),

on which we let G act by right translations on the coordinates, and then taking the semi­direct product

LGE =LGo
E × G.

For simplicity index the coordinate g ∈LGo
E corresponding to Φj by j. Then

(h1, · · · , h`)
−1 · (g1, · · · , g`) × Φ · (h1, · · · , h`)

is equal to

(h−1
1 g1h2, h

−1
2 g2h3, · · · , h

−1
` g`h1) × Φ.

Taking h2 = g2h3, h3 = g3h4, · · · , h` = g1h1, and h1 = h we obtain

(h−1g1g2 · · · g`, h, 1, · · · , 1) × Φ.
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Thus conjugacy classes in LGE which project to Φ stand in a bijective correspondence with conjugacy classes

in GL(2,C). It follows easily that HE is isomorphic to the algebra of functions HE obtained by restricting the

representation ring of LGE to LGo
E × Φ.

The map of LG to LGE given by

g × τ → (g, · · · , g) × τ

yields a homomorphism HE → H and hence a homomorphism HE → H. It is this homomorphism which must

be studied. If φ in HE has Fourier transform φ∨, then maps to f , which is defined by

f∨(t) = φ∨(t`).

Fix σ ∈ G, σ 6= 1. We have observed that if γ ∈ G(F ), δ ∈ G(E), and γ = Nδ then Gσ
δ (E) equals Gσ

γ (F ),

whereGσ
γ is a twisted form of Gγ . We may therefore use the convention of [14] to transport Tamagawa measures

from Gγ(F ) to Gσ
γ (E).

Lemma 5.10 Suppose φ in HE maps to f in H. If γ = Nδ then

∫

Gσ
δ
(E)\G(E)

φ(g−1δσ(g))dg = ξ(γ)

∫

Gγ(F )\G(F )

f(g−1γg)dg.

Here ξ(γ) is 1 unless γ is central and δ is not σ­conjugate to a central element when it is ­1. Moreover if γ inG(F )

is the norm of no element in G(E) then

∫

Gγ(F )\G(F )

f(g−1γg)dg = 0.

We check this when φ = φλ, the characteristic function of the double cosetG(OE)tG(OE) = KEtKE , where

λ(t) = λ. X(E) and X′(E) are the Bruhat–Tits buildings over E. To prove the lemma we are unfortunately, but

probably inevitably, reduced to considering cases. Suppose first that δ is a scalar so that Gσ
δ (E) = G(F ).

Then ∫

Gσ
δ
(E)\G(E)

φ(g−1δσ(g))dg

is equal to the sum over representatives p′ = gp′0 of the orbits of G(F ) in X(E) for which the type of the pair

(δσ(p′), p′) is λ of
measG(OE)

measG(F ) ∩ gG(OE)g−1
.

We choose representatives p′ so that d(p′) = dist(p, p0) and so that dist(p, p0) = dist(p,X). The reduction used

repeatedly before shows that the integral is equal to

measG(OE)

measG(O)

∑
d(p′)=dist(p,p0)=dist(p,X)

τ(δσ(p′),p′)=λ

1.
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Ifλ(δ) = (m,m), this is 0 unlessλ = (m+r,m−r), r ≥ 0. Since δp = p, the type τ(δσ(p′), p′) isλ = (m+r,m−r)

if and only if dist(σ(p), p) = 2r.

....................... ....................... ....................... .............................................. .......................

.......................

.......................

.......................

.......................

.......................

.......................

.......
.......
.......
.......
.......
..

.......
.......
.......
.......
.......
...
.......
.......
.......
.......
.......
...

.......
.......
.......
.......
.......
..

.......
.......
.......
.......
.......
...
.......
.......
.......
.......
.......
..

X

p σ(p)

p0

Since X is the set of fixed points of σ in X(E), the paths from p0 to p and from p0 to σ(p) must start off in

different directions. In other words the initial edge of the path from p0 to p does not lie in X . This shows that

there are

q`r(1 − q1−`)

possibilities for the p′ or, what is the same, the p occurring in the above sum if r > 0 and just 1 if r = 0.

To complete the verification in this case we have to evaluate

∫

A0(C)

φλ(t`)ϕγ(t)

with ϕγ defined as in Lemma 5.3. Since λ(γ) = `λ(δ), the integral is certainly 0 unless λ = (m+ r,m− r). If this

condition is satisfied it equals
mE(λ)

2 measG(O)

1 + q−1

1 + q−`
q−r`

times

1

2πi

∫

|z|=1

{
1 − q−`z−`

1 − z−`
·

1 − z−1

1 − q−1z−1
·

1 − z

1 − q−1z
z`r +

1 − q−`z`

1 − z`
·

1 − z−1

1 − q−1z−1
·

1 − z

1 − q−1z
z−`r

}
dz

z
.

We have to show that this integral is

2
1 − q−`

1 + q−1

if r > 0 and

2
1 + q−`

1 + q−1

if r = 0.

Once we shrink the circle of integration a little, we may integrate term by term. The first term will have only

one pole inside the new circle, that at 0, where the residue is 0 if r > 0 and q1−` if r = 0. The second term we

write as

1

1 − z`
·

1 − z

1 − q−1z
·

1 − z−1

1 − q−1z−1

1

z

{(
1 −

z`

q`

)
z−`r −

(
1 −

1

q`

)}
+

1 − q−`

1 − z`
·

1 − z

1 − q−1z
·

1 − z−1

1 − q−1z−1
·
1

z
.
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The first summand is integratd by moving the path out. The residues are at q and ∞ and yield

1

1 − q`
· q − 1 ·

1 − q−1

1 − q−2

(
1 −

1

q`

)
+

{
0 r > 0

1
q`−1 r = 0 .

The second is integrated by moving in; the residues are at 0 and 1
q . They yield

1 −
1

q`
·

1

1 − q−`
·
1 − q−1

1 − q−2
·
q−1 − 1

q−1
+

(
1 −

1

q`

)
q.

If everything is put together the result follows.

Now suppose that γ is central but δ is not σ­conjugate to a central element. Then as we observed in the

previous paragraph ` = 2. Moreover since E is unramified

|det δ| = |$|2m+1

for some integer m. Let Σ be the map p → δσ(p) of X(E) to itself. Then Σ has no fixed points, for Σ : gp0 →

(δσ(g)g−1)gp0 and

|det(δσ(g)g−1)| = |$|2m+1.

Suppose p1 is a point for which dist(p1,Σp1) is a minimum. Since Σ2 is the identity, Σ defines an inversion

of the path of shortest length joining p1 to Σp1. It follows immediately that dist(p1,Σp1) = 1. I claim that if

dist(p2,Σp2) = 1 then p2 ∈ {p1,Σp1}. If not take the path of shortest length joining p2 to this set. Replacing p2

by Σp2 if necessary we may suppose the path runs from p2 to p1. Then Σ applied to the path joins Σp2 to Σp1,

and we obtain a non­trivial cycle
.........................................................................................................................................................................................................................................................................

.........
.........

.........
.........

.........
..........
.........
.........
.........
.........
.........
.........
..........
.........

.........
.........

.........
.........

.........
..........
..........
.........
..........
..........
..........
..........
....p2

p1

∑
p2

∑
p1

This is a contradiction.

The integral ∫

Gσ
δ
(E)\G(E)

φ(g−1δσ(g))dg

is equal to

measG(OE)

measGσ
δ (E) ∩Gp′

1

{ ∑

d(p′)−d(p′
1)=dist(p,p1)<dist(p,Σp1)

τ(p′,Σp′)=λ

1

}
.
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Here p′1 is any fixed lifting of p1 to X(E). The sum is empty unless λ = (m + 1 + r,m − r), r ≥ 0, when it is

equal

....................... .......................

.......................

..............................................

.......................

.......
.......
.......
.......
.......
..

.......
.......
.......
.......
.......
..

.......
.......
.......
.......
.......
..

.......
.......
.......
.......
.......
..

p
∑
p

∑
p1p1

to q`r. Since Gσ
δ (E) ∩Gp′

1
is a maximal compact subgroup of Gσ

δ (E), we can easily verify that (cf. p. 475 of [14])

measGσ
δ (E) ∩Gp′

1
=

measG(O)

q − 1
.

Since λ(γ) must be (2m+ 1, 2m+ 1), the integral

∫

A0(C)

φλ(t`)ϕγ(t) (` = 2)

is 0 unless λ = (m+ 1 + r,m− r). If this condition is satisfied this inner product is

mE(λ)

2 measG(O)
·
1 + q−1

1 + q−`
q−(r+1/2)` =

measG(OE)

2 meas (G(O)
·

(
1 +

1

q

)
q−(r+1/2)`

times

1

2πi

∫

|z|=1

{
1 − q−`z−`

1 − z−`
·

1 − z−1

1 − q−1z−1
·

1 − z

1 − q−1z
z`r+` +

1− q−`z`

1 − z`
·

1 − z−1

1 − q−1z−1
·

1 − z

1 − q−1z
z−`r−`

}
dz

z
(` = 2).

This integral has to be shown to equal

−2
q − 1

q + 1
.

This can be done much as before. Once the contour of integration is shrunk a little, the integral of the first

term becomes 0. The second term is written as

1

1 − z`
·

1 − z−1

1 − q−1z−1
·

1 − z

1 − q−1z

{(
1 −

z`

q`

)
z−`(r+1) −

(
1 −

1

q`

)}
+

1 − q−`

1− z`

1 − z−1

1 − q−1z−1
·

1− z

1 − q−1z
.

To integrate the first summand we move the path out. There is a residue at q which yields

1

1 − q`
·
1 − q−1

1 − q−2
· q(q − 1) ·

(
1 −

1

q`

)
= −

q − 1

q + 1
(` = 2).

For the second we move the path in; the residue at 1
q is

(
1

q
− 1

)
·
1 − q−1

1 − q−2
= −

q − 1

q + 1
.

If γ is central but is not a norm then ` is odd and λ(γ) = (m,m) with m prime to `. It follows immediately

that λ(t`) is always orthogonal to ϕγ , so that f∨(γ) = 0 if f is the image of φ.
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We next suppose that

γ = an0 = a

(
1 1
0 1

)
.

Then

µ = λ(

(
a 0
0 a

)
)0 = (m,m)

and γ is a norm if and only if ` divides m. It is clear that < f∨, µ >= 0 if ` does not divide m. Suppose then

γ = Nδ. We may write

δ = b

(
1 v
0 1

)
.

Then Gσ
δ (E) = Gγ(F ). We may choose as a set of representatives for the orbits of Gγ(F ) in X(E) the collection

{p′ = np′z}, where z ∈ Z, where p′z is defined to be that element of A′ which projects to pz in A and satisfies

d(p′z) = dist(pz, p0), and where

n =

(
1 x
0 1

)

with x running over E/F +$−zOE . Observe that

measGp′

measGp′ ∩Gγ(F )
= q−z measG(OE)

measGγ(O)
.

Moreover τ(Σp′, p′) is (k + r, k − r), k = m
` . with r equal to 0 if

order(σ(x) − x− v) ≥ −z

and equal to

−order(σ(x) − x− v) − z

otherwise.

Thus ∫

Gσ
δ
(E)\G(E)

φλ(g−1δσ(g))dg

is equal to 0 unless λ = (k + r, k − r). Since trace(σ(x) − x − v) = 1, the order of σ(x) − x − v is always less

than or equal to 0. If we assume, as we may, that order v = 0, then ord(σ(x) − x − v) is ord(σ(x) − x) if this is

negative and is 0 otherwise. If λ = (k, k) then the integral equals

measG(OE)

measGγ(O)

∑∞

z=0
q−z =

measG(OE)

measGγ(O)
·

1

1 − q−1
.

If λ = (k + r, k − r) with r > 0 then the integral is

measG(OE)

measGγ(O)

{
q(`−1)r · qr +

∑∞

z=−r+1
q−zq(`−1)r (1 − q1−`)

}

which equals
measG(OE)

measGγ(O)

1 − q−`

1 − q−1
· q`r.
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Since we can easily compute ∫

A0(C)

φ∨λ (t`)µ(t)

by using the explicit expansion of φ∨
λ , the required equality follows from Lemma 5.5.

We have still to treat the case that γ is regular and semi­simple. Let T be the Cartan subgroup containing γ.

If γ = Nδ then δ also belongs to T . If T isA then γ is a norm if and only if µ = λ(γ) = (m′,m) with bothm′ and

m divisible by `. Since ∫

A(F )\G(F )

f(g−1γg)dg = ∆(γ)−1Ff (γ)

this integral is certainly 0 if m′ and m are not both divisible by `. However if ` divides m′ and m and φ = φλ,

with λ = (k′, k), the integral equals

measG(O)

measA(O)
∆(γ)−1q

`
2 (k′−k) m′ = `k′,m = `k

and
measG(O)

measA(O)
∆(γ)−1q

`
2 (k′−k)(1 − q−`) m′ = `k′ − `r ≥ m = `k + `r, r > 0

but 0 otherwise.

The integral

(5.2)

∫

A(F )\G(E)

φλ(g−1δσ(g))dg

is equal to
measG(O)

measA(O)

∑
d(p′)=dist(p,p0)=d(p,A)

τ(Σp′,p′)=λ

1.

If m′ 6= m then ∆(γ) = q
m′−m

2 and the relevant diagram is

.......................

.......
.......
.......
.......
.......
..

.......................

.......
.......
........
.......
........

.......................

........
........
........
........
.....

.......................

.......................

.......
.......
.......
.......
.......
...
.......
.......
.......
.......
.......
..

....................... ....................... ....................... .............................................. ....................... ....................... .......................

σ(p)p
∑

(p)

If d(p, p0) = r then the type of (Σp′, p′) is (m′ + r,m− r). For a given r, there are

q`r(1 − q−`) r > 0

or

1 r = 0

possibilities for p or p′. The equality follows.
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Suppose m′ = m and ∆(γ) = q−α, α ≥ 0. Then γ fixes all points in X(E) which are at a distance at most α

from A, but no other points. We so choose δ that Nδ lies in G(F ) and take γ = Nδ. If, as usual, Σ : p → δσ(p)

then Σ`p = γp so that Σ fixes p only if γ does. Suppose Σ fixes p and dist(p,A) < α. Then γ fixes all points

which can be joined by p by an edge. If p = gp0 these are the points gkp1, k ∈ KE = G(OE), p1 being one of

the points in the apartment A adjacent to p0. Thus g−1γg ∈ G(OE) and has trivial image in G(κE), if κE is the

residue field of OE . Moreover

p0 = g−1p = g−1Σp = g−1δσ(g)p0;

so g−1δσ(g) ∈ KE . Since

(g−1δσ(g))σ(g−1δσ(g)) · · ·σ`−1(g−1δσ(g)) = g−1γg,

we conclude that g−1δσ(g) defines a cocycle of G inG(κE). But all such cocycles are trivial; so we may suppose,

upon replacing g by gk, that the image of g−1δσ(g) in G(κE) is 1. Then

Σ(gkp1) = g(g−1δσ(g)σ(k))p1 = gσ(k)p1.

This is equal to gkp1 if and only if k−1σ(k)p1 = p1. It follows that the number of points in X(E) which can be

joined to p by an edge and are fixed by Σ is the same as the number of points in X which can be joined to p0 by

an edge, namely q + 1.

The relevant diagram is now
....................... .......................

.......................

.......
.......
.......
.......
.......
..

........
........
........
........
.....

.......
........
.......
.......
........

....................... ....................... ....................... .............................................. ....................... ....................... .......................

p0

p
∑
p

A

The integral is certainly 0 unless λ =
(

m
` + r, m

` − r
)
, r ≥ 0. If λ has this form and r > 0 the value of the

integral is

measG(OE)

measA(O)

{
qα−1q`r(1 − q1−`) + qα

(
1 −

1

q

)
q`r

}
=

measG(OE)

measA(O)
qα+`r(1 − q−`r)

and if r = 0 it is
measG(OE)

measA(O)
qα.

This again yields the correct result.

We suppose next that T is not split over F but that it splits over E. Then ` = 2 and the equation γ = Nδ

can always be solved. If the eigenvalues of δ are a, b those of γ are aσ(b), bσ(a). Σ has exactly one fixed point in

AT (E) and this point is a vertex or not according as the order of the eigenvalues of γ is even or odd. If it is odd,

say 2m+ 1, then the diagram to be used is
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.......................

.......................

.......
.......
.......
.......
.......
...

.......
.......
.......
.......
.......
... .......................

.......................

.......
.......
.......
.......
.......
...

.......
.......
.......
.......
.......
...

....................... ....................... ....................... ....................... ....................... ..............................................

p

p1

∑
p1

∑
p

AT (E)

The integral (5.2) (with A replaced by T ), is 0, unless λ = (m+ 1 + r, m− r), r ≥ 0 when it is

(5.3)
measG(OE)

measT (O)
2q`r

for the only forbidden initial direction for the path from p1 to p is the edge joining p1 and Σp1. Define z ∈ F× =

Z(F ) by |z| = |aσ(b)| = |bσ(a)| the set

n = zn0.

If we appeal, as we shall now constantly have occasion to do, to the calculations made for γ a scalar or a scalar

times a unipotent we see that (5.3) equals ∆(γ)−1 times

(
1 +

1

q

)
measGn(O)

measT (O)

∫

Gn(F )\G(F )

f(g−1ng)dg −
2∆(γ)

q − 1

measG(O)

measT (O)
f(z)

if f is the image of φλ. Observe in particular that the integral appearing here is 0 because the order of z is odd.

In any case the desired equality follows from Lemma 5.6.

If the order of the eigenvalues is even, say 2m, then the diagram to be brought into play is:

.......................

.......................

.......

.......

.......

.......

.......

...

.......

.......

.......

.......

......

...

..............................................

.........
.........
.........
.........
..

.........
.........

.........
.........

..p

....................... ....................... ....................... ....................... ....................... ....................... .............................................. ....................... AT (E)

∑
p

Thus (5.2) is 0 unless λ = (m+ r,m− r), r ≥ 0. If ∆(γ) = q−α and λ is of this form then it equals

measG(OE)

measT (O)

{
(1 − q1−`)q`r

(
1 + (q + 1)

∑α−1

j=0
qj

)
+ q`r(q + 1)qα−`

}

or

(5.5)
measG(OE)

measT (O)

{
qα+`r ·

q + 1

q − 1
· (1 − q−`) −

2q`r(1 − q1−`)

q − 1

}

if r > 0, and

(5.6)
measG(OE)

measT (O)

{
1 + (q + 1)

∑α−1

j=0
qj

}
=

measG(OE)

measT (O)

{
−2

q − 1
+ qα ·

q + 1

q − 1

}

if r = 0. Our previous calculations show once again that this is equal to (5.4), so that we have only to appeal to

Lemma 5.6.
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Suppose that T does not split over E but that it does split over an unramified extension. Then ` is odd. If

the order of the eigenvalues of γ is m then γ is a norm if and only if ` divides m. It is clear from Lemma 5.6 and

the cases previously discussed that

(5.7)

∫

T (F )\G(F )

f(g−1γg)dg = 0

when f is the image of φλ, if ` does not divide m.

Suppose ` divides m. Let E′ be the quadratic extension over which T splits and let ∆(γ) = q−α. There is

one point, denoted p1, in AT (EE′) ∩ X(E)

.......................

.......

.......

.......

.......

.......

...

....................... ....................... ....................... .............................................. ....................... ....................... .......................

....................... .......................

.......
.......
........
.......
........

........
........
........
........
.....p

∑
p

p1
AT (EE′)

We can analyze the fixed points in Σ in X(E) and evaluate (5.2) as before. It is 0 unlessλ =
(

m
` + r, m

` − r
)
, r ≥ 0,

when it is given by (5.5) and (5.6).

It remains to treat the case thatT splits over a ramified quadratic extensionE′. We shall appeal to Lemmas 5.7

and 5.8 as well as to some of our previous calculations. We know that γ is a norm if and only if det γ ∈ NE/FE
×,

that is, if and only if the order of det γ is divisible by `.

The apartments AT (E′) and AT (EE′) are the same. Since this apartment is fixed by

G(EE′/F ), the vertices in X(E) closest to it lie in X. Let them be p1, p2 as before

.......................

.......

.......

.......

.......

.......

...

....................... ....................... ....................... .............................................. ....................... ....................... .......................

....................... .......................

.......
........
.......
........
.......

........
........
........
........
.....p1 p2

pT

AT (E′)

We have all the information needed to calculate (5.2) (with T replacing A) at our disposal. If the order of

det γ is odd, say 2m + 1, then Σ interchanges p1 and p2, and (5.2) is 0 unless λ = (m + 1 + r,m − r), r ≥ 0,

when it is
measG(OE)

measT (O)
q`r.

If ` = 2 this is
−1

q − 1

measG(O)

measT (O)
f(z)

if z ∈ F× and order z = 2m+ 1. Since the order of z is odd

∫

Gn(F )\G(F )

f(g−1ng)dg = 0
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for n = zn0; so we may conclude by an appeal to Lemma 5.8. If ` is odd we have to appeal to Lemma 5.7. This

forces us to evaluate

(5.8)
< f∨, ϕγ >

∆(γ)
.

If the order of det γ is 2m′ + 1 the inner product is certainly 0 unless λ = (k′, k) with `(k′ + k) = 2m′ + 1,

and this implies in particular that it is always 0 unless ` divides 2m′ +1. If ` divides 2m′ +1, so that we can solve

γ = Nδ, then `(2m+ 1) = 2m′ + 1 and m′ = `m+ (`−1)
2 . When these necessary relations between k′, k and m′

are satisfied the expression (5.8) is equal to

q
`r+`−1

2

2

measG(OE)

measT (O)

times

1

2πi

∫

|z|=1

{
1 − q−`z−`

1 − z−`

z`r+ `−1
2

1 − q−1z−1
+

1 − q`z−`

1 − z−`

z`r+ `+1
2

1 − q−1z
+

1− q−`z`

1 − z`

z−`r− `+1
2

1 − q−1z−1
+

1 − q−`z`

1 − z`
·
z−`r−

(`−1)
2

1 − q−1z

}
dz

z
.

We again shrink the contour a little and then integrate term by term. The first two integrals are 0. For the last two

we push the contours out to infinity. The only residues are at z` = 1 and they are independent of r ≥ 0. We may

therefore evaluate the last two integrals by setting r = 0 and shrinking the contour to 0. The third integral then

has residues at 1
q and 0, which yield altogether

1 − q−2`

1 − q−`
q

`+1
2 − q

`+1
2 = q−

`−1
2 .

The residue at 0 is easy to calculate because `−
(

`+1
2

)
= `−1

2 is positive, so that it is the same as the residue of

z−
`+1
2

z − q−1
.

The fourth has a residue only at 0 and there it is q−( `−1
2 ). The desired equality follows.

....................... ....................... ....................... ....................... ....................... ..............................................

.......................

.......................

.......................

.......................

.......................

.......................

.......................

.......

.......

.......

.......

.......

...
........
........
........
.......
.......

................................................................................................................

......................................

pT

∑
p

p2p1

p

If the order of detγ is even, 2m′, but not divisible by ` then Lemma 5.8 together with some of the previous

calculations show that (5.7) is 0. Suppose γ = Nδ and order (det δ) = 2m. Then Σ fixes p1 and p2 and the
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integral (5.2) is 0 unless λ = (m + r,m − r), r ≥ 0. Let ∆(γ) = q−
δ−1
2 −α. Here α is necessarily integral. If

λ = (m+ r,m− r) with r > 0 the integral (5.2) equals
meas G(OE)
meas T (O) · times

q`r

(
1 −

1

q`−1

) (∑α=1

j=0
qj

)
+ q`r · qα = q`r · qα ·

1 − q−`

1 − q−1
−

q`r

q − 1
· (1 − q1−`).

If r = 0 it equals
measG(OE)
measT (O) times

∑α

j=0
qj =

qα

1 − q−1
−

1

q − 1
.

Our previous calculations show that these expressions equal

q
−δ−1

2

∆(γ)

measGn(O)

measT (O)

∫

Gn(F )\G(F )

f(g−1ng)dg −
1

q − 1

measG(O)

measT (O)
f(z)

if z ∈ F× and order z = m′. We have now merely to appeal to Lemma 5.8.

Lemma 5.10 is now completely proved but the tedious sequence of calculations is not quite finished. There

is one more lemma to be proved, but its proof will be briefer.

The function λ(g) was defined in the preamble to Lemma 5.9. If δ ∈ A(E) and Gσ
δ (E) ⊆ A(E) we set

A1(δ, φ) = ∆(γ)

∫

A(F )\G(E)

φ(g−1δσ(g)λ(g))dg

with γ = Nδ.

Lemma 5.11 Suppose φ maps to f . Then

`A1(γ, f) = A1(δ, φ).

Let

δ =

(
a 0
0 b

)

and let |a| = |$|m
′

, |b| = |$|m. Suppose first that m′ > m. The relevant diagram is

.......................

.......................

.......
.......
.......
.......
.......
...

.......
.......
.......
.......
.......
...

.......................

.......................

.......................

.......
.......
.......
.......
.......
...

.......
.......
.......
.......
.......
...

....................... ....................... ....................... ....................... ....................... ..............................................

p
∑
p

∑
p0p0

If φ = φλ then A1(δ, φ) is 0 unless λ = (m′ + r,m− r), r ≥ 0, when it is

2r∆(γ)`n|$|`
measG(OE)

measA(O)
q`r

(
1 −

1

q`

)
.

A1(γ, f) may be computed by combining the formula of Lemma 5.9 with the explicit expansion of φ∨
λ . This yields

2∆(γ)`n|$|
measG(OE)

measA(O)
q`r

∑
j+j′=m′+m
j′−j>m′−m

(
1 −

1

q`s

)
aφ(j, j′)
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if measG(OE)aφ(j, j′) = aφ(j, j′), for

∆(γ) = q
`
(

m′−m
2

)
.

The above sum is

(
1 −

1

q`

) (
1 −

1

q`

)
+ · · · +

(
1 −

1

q`

) (
1 −

1

q`(r−1)

)
+

(
1 −

1

q`r

)
= r

(
1 −

1

q`

)

as required.

Now take m′ = m. Let ∆(γ) = q−a

.......................

.......................

.......................

.......................

.......................

.......

......

.......

.......

.......

...

.........
.........
.........
.........
..

.........
.........
.........
.........
...........

.........
.........

.........
.

.........
.........

.........
.........

..

....................... ....................... ....................... ....................... ....................... ..............................................

p
∑
p

A1(δ, φλ) is 0 unless λ = (m+ r,m− r), r ≥ 0, when it is

(5.9) 2q−α`n|$|`
measG(OE)

measA(O)

{
rq`r

(
1 −

1

q`−1

)
+

α−1∑

j=1

(j+r)q`r

(
1 −

1

q`−1

)
qj

(
1 −

1

q

)
+(α+r)q`r+α

(
1 −

1

q

)}

if r > 0 and

(5.10) 2q−α`n|$|`
measG(OE)

measA(O)

∑α

j=0
jqj

(
1−

1

q

)

if r = 0. We sort this out and compare with the formula for A1(γ, f) given by Lemma 5.9

rq`r

{(
1−

1

q`−1

)
+

(
1 −

1

q`−1

)∑α−1

j=1
qj

(
1 −

1

q

)
+ qα

(
1 −

1

q

)}
= rq`r+α

(
1 −

1

q`

)
.

This yields the part corresponding to the first summand of the lemma.

The second summand of the lemma equals

(
1 −

1

q

)
α`n|$|

measG(OE)

measA(O)

times

2q`r

{∑r−1

s=0

1

q`s

(
1 −

1

q`

)
+

1

q`r

}
= 2q`r

and is therefore given by the term

αq`r+α

(
1 −

1

q

)

in the parentheses of (5.9) or by the last term of (5.10).

This leaves from (5.9)

2`n|$|`
measG(OE)

measA(O)
q`r

(
1 −

1

q`−1

)∑α−1

j=0
jqj−α

(
1 −

1

q

)
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and from (5.10)

2`n|$|`
measG(OE)

measA(O)

∑α−1

j=1
jqj−α

(
1−

1

q

)
.

We know from the calculations made in the proof of Lemma 5.10 that these two expressions are equal to the last

summand of Lemma 5.9.

We now have all the formulae for spherical functions that we need, but unfortunately for the wrong spherical

functions. Suppose ξ is an unramified character of NE/FZ(E) and H′ is the algebra of functions f ′ on G(F )

which are bi­invariant with respect to G(O), of compact support modulo NE/FZ(E), and satisfy

f ′(zg) = ξ−1(z)f ′(g) z ∈ NE/FZ(E).

Multiplication is defined by ∫

NE/F Z(E)\G(F )

f ′
1(gh

−1)f ′2(h)dh.

The map f → f ′ with

f ′(g) =

∫

NE/F Z(E)

f(zg) ξ(z)dz

is a surjective homomorphism from H to H′. There is a simple and obvious relation between the orbital integrals

of f and f ′ as well as betweenA1(γ, f) and A1(γ, f
′). For example

A1(γ, f
′) =

∫

NE/F Z(E)

A1(zγ, f) ξ(z)dz.

If ξE is the composite of ξ with the norm we may define H′
E in a similar manner. If φ′ ∈ H′

E then

φ′(zg) = ξ−1
E (z)φ′(g) for z ∈ Z(E). Moreover φ → φ′ with

φ′(g) =

∫

Z(E)

φ(zg) ξE(z)dz.

There is also a commutative diagram

H
′ −−−−→ H

′
Ey

y

H −−−−→ HE

If φ′ → f ′ then an analogue of Lemma 5.10 is valid.

∫

Z(E)Gσ
δ
(E)\G(E)

φ′(g−1δσ(g))dg =

∫

Gγ(F )\G(F )

f ′(g−1γg)dg.

To verify this we begin with

∫

Z(E)Gσ
δ
(E)\G(E)

∫

Z(F )\Z(E)

φ(z−1g−1δσ(g)σ(z))dzdg =

∫

Gγ(F )\G(F )

f(g−1γg)dg.
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Replace δ by δv, v ∈ Z(E) and hence γ by δNv. Both sides are then functions on Z1−σ(E)\Z(E). Multiply by

ξ−1(z) and integrate. The right side becomes

∫

Gγ(F )\G(F )

f ′(g−1γg)dg.

Because of Lemma 5.10, the left side is

∫

Z(E)Gσ
δ
(E)\G(E)

φ′(g−1δσ(g))dg.

In order that the analogue of Lemma 5.11 be valid, we must set

A1(δ, φ
′) = ∆(γ)

∫

Z(E)A(F )\G(E)

φ(g−1δσ(g))λ(g)dg.

It is not difficult to see that H′ is isomorphic to the algebra of functions on

{(
α 0
0 β

)
∈ A(C) | (αβ)` = ξ($)`

}

obtained by restriction from some f∨, f ∈ H. This enables us to speak of (f ′)∨. Every homomorphism H′ → C

is of the form

f ′ → (f ′)∨(

(
α 0
0 β

)
) (αβ)` = ξ($`).

We may also speak of (φ′)∨.
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6. ORBITAL INTEGRALS

The study of orbital integrals was initialed by Harish­Chandra in his papers on harmonic analysis on

semi­simple Lie groups; the same integrals on p­adic groups were afterwards studied by Shalika. Some basic

questions remain, however, unanswered. If they had been answered, much of this paragraph, which provides

the information about orbital integrals, and twisted orbital integrals, to be used later, would be superfluous. But

they are not and stop­gaps must be provided. No elegance will be attempted here; I shall simply knock together

proofs out of the material nearest at hand.

Let F be a local field of characteristic 0. If f is a smooth function with compact support on G(F ), T is a

Cartan subgroup of G over F , and γ is a regular element in T (F ) then we set

Φf (γ, T ) =

∫

T (F )\G(F )

f(g−1γg)dg.

The integral depends on the choice of measures onG(F ) and T (F ), measures which we always take to be defined

by invariant forms ωT and ωG. When it is useful to be explicit we write Φf (γ, T ;ωT , ωG). Since they complicate

the formulae we do not use the local Tamagawa measures associated to forms ω as on p. 70 of [23] but simply the

measures |ω|, which could be termed the unnormalized Tamagawa measures.

It was observed on p. 77 of [23] that the map γ → Ch(γ) = (trace γ, det γ) of G to the affine plane X is

smooth except at the scalar matrices. If a ∈ X is given then a two form µ on X which is regular and does not

vanish in some neighborhood of a may be used to define an invariant form µ′ on Gγ\G if γ is regular and Ch(γ)

is close to a. Set

Φf (γ, µ) =

∫

Gγ(F )\G(F )

f(g−1γg)|dµ′|.

If γ ∈ T is regular there is a form ωT (µ) such that

Φf (γ, µ) = Φf (T, γ;ωT (µ), ωG).

ωT (µ) depends on γ.

We shall call a function γa, T → Φ(γ, T ) = Φ(γ, T ;ωT , ωG) an HCS family if it satisfies the following

conditions.

(i) If ω′
T = αωT and ω′

G = βωG with α, β ∈ F× then

Φ(γ, T ;ω′
T , ω

′
G) =

∣∣∣∣
β

α

∣∣∣∣Φ(γ, T ;ωT , ωG).

(ii) If h ∈ G(F ), T ′ = h−1Th, γ′ = h−1γh, and if ωT ′ is obtained from ωT by transport of structure then

Φ(γ′, T ′;ωT ′ , ωG) = Φ(γ, T ;ωT , ωG).
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(iii) For each T, γ → Φ(γ, T ) is a smooth function on the set of regular elements in T (F ) and its support is

relatively compact in T (F ).

(iv) Suppose z ∈ Z(F ) and a = Ch(z). Suppose µ is a two­form on X which is regular and non­zero in a

neighborhood of a. There is a neighborhood U of a and for each T two smooth functions Φ′(γ, T ;µ) and

Φ′′(γ, T ;µ) on

TU (F ) = {γ ∈ T (F )|Ch(γ) ∈ U}

such that

Φ(γ, T ;ωT (µ), ωG) = Φ′(γ, T, µ) − meas(T (F )\G′(F ))Φ′′(γ, T ;µ).

Here G′ is the multiplicative group of the quaternion algebra over F . In the exceptional case that T is split,

when G′ may not exist, the function Φ′′(γ, T ;µ) is not defined and we take

meas(T (F )\G′(F )) = 0.

Otherwise we regard T as a subgroup ofG′. The measure on T is to be |ωT (µ)| and that onG′ is given by the

conventions on pp. 475–478 of [14]. If F is archimedean,X belongs to the center of the universal enveloping

algebra and XT is its image under the canonical isomorphism of Harish­Chandra [25] then the restriction of

XT Φ′(γ, T, µ) to Z(F ) must be independent of T .

Lemma 6.1. The collection {Φ(γ, T} is an HCS family if and only if there is a smooth function f with compact

support such that

Φ(γ, T ) = Φf (γ, T )

for all T and γ. Then for z ∈ F× = Z(F )

Φ′(z, T, µ) = Φf (n, µ)

with

n = z

(
1 1
0 1

)

and, if T is not split,

Φ′′(z, T, µ) = f(z).

If F is archimedean, X belongs to the center of the universal enveloping algebra of the Lie algebra of T and XT

is its image under the canonical isomorphism of Harish­Chandra then

XT Φ′(z, T ;µ) = ΦXf (n, µ)

and

XT Φ′′(z, T ;µ) = Xf(z).
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If F is non­archimedean this is simply Lemma 6.2 of [23]. I observe however that in the formula for aT (γ)

on p. 81 of [23] the function ξ(z) should be replaced by

ξ(z)

|det γ|
1/2
p

.

In addition the discussion there is complicated by an infelicitous choice of measures.

That the family {Φf (γ, T )} satisfies conditions (i)–(iv) when F is archimedean is also well known but

condition (iv) is usually formulated somewhat differently when T is not split. To reduce (iv) to the form usual

for a T which is not split we remark first that if it is valid for one choice of µ then it is valid for all. Choose µ to be

the standard translation invariant form dx1dx2 on X . A simple calculation shows that ωT (µ) is, apart perhaps

from sign, the form ηγ on p. 79 of [23]. Thus if

T =

{(
a b
−b a

)}

and

ωT =
dadb

a2 + b2

then

Φ(γ, T ;ωT (µ), ωG) = 2|β|Φ(γ, T ;ωT , ωG)

for

γ =

(
α β
−β α

)
.

Moreover if we take measures with respect to ωT rather than ωT (µ) then meas(T (F )\G′(F )) must be replaced

by

2|β|meas(T (F )\G′(F )).

The measure is now a constant.

Condition (iv) says simply that for any integer n ≥ 0

2|β|Φ(γ, T ;ω′
T , ωG) =

∑n−1

k=0
ϕk(α) · βk +

∑n−1

k=1
ψk(α)|β|k +O(|β|n)

near β = 0. The coefficients are smooth functions of α. Since the left side is in any case an even function of β, this

relation says simply that its derivatives of even order with respect to β are continuous and that its derivatives of

odd order are continuous except for a jump at β = 0 which is continuous in α. All this is well known [31] as are

the additional properties of the family {Φf(γ, T )}.

If F is C and

T (C) =

{(
ez1+z2 0

0 ez1−z2

) ∣∣∣∣∣z1, z2 ∈ C

}
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then the image of the center of the universal enveloping under the canonical isomorphism is generated by

∂
∂z1

, ∂
∂z1

, ∂2

∂z2
2
, ∂2

∂z2
2

. Moreover there is a function c(α) on Z(C) such that

f(α) = c(α)
∂2

∂z2∂z2
Φ′(α, T ;µ) α ∈ Z(C).

We must still verify that if {Φ(γ, T )} is an HCS family then there is a smooth function f with compact

support such that {Φ(γ, T )} = {Φf (γ, T )}. The field F may be supposed archimedean. If on each T the function

γ → Φ(γ, T ) is 0 near Z(F ) we may proceed as in the proof of Lemma 6.2 of [23] to establish the existence of f .

We must reduce the general problem to that case.

It is simpler to treat the real and complex fields separately. Suppose F = R and

A =

{(
α 0
0 β

)
|α, β ∈ R×

}

B =

{(
α β
−β α

)
|α, β ∈ R, α2 + β2 6= 0

}
.

If ϕA and ϕB are functions on A and B which satisfty ϕA(t̃) = ϕA(t), ϕB(t̃) = ϕB(t), and ϕA(z) = ϕB(z) for

z ∈ Z(R) there is a function ψ on X

(6.1) ϕA(t) = ψ(Ch t) ϕB(t) = ψ(Ch t).

If

t = α

(
eu 0
0 e−u

)

then

Ch t = (α2, 2α coshu)

and if

t = α

(
cos θ sin θ
− sin θ cos θ

)

then

Ch t = (α2, 2α cos θ).

Thus ψ is smooth on {(x1, x2)|x1 6= 0} if and only if ϕA and ϕB are smooth and

d2n

dθ2n
ϕB(z) = (−1)n d2n

du2n
ϕA(z) z ∈ Z(R).

If

(6.2) ϕA(t) = Φ(t, T ;ωT (µ), ωG) A = T (R)
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(6.3) ϕB(t) = Φ(t, T ;ωT (µ), ωG) B = T (R)

and {Φ(γ, T )} is an HCS family this is so if and only if XT Φ′′(γ, T ;µ) vanishes on Z(R) for all X in the center

of the universal enveloping algebra.

Since the map t→ Ch t is smooth away from Z a simple argument involving a partition of unity establishes

that if XT Φ′′(γ, T, µ) vanishes on Z(R) for all X , so that the function ψ defined by (1) is smooth, then there is a

smooth compactly supported f such that {Φ(γ, T )} = {Φf(γ, T )}.

This granted we argue as follows. Given an HCS family {Φ(γ, T )} there is ([29]) an f in the Schwartz space

such that

{Φ(γ, T )} = {Φf (γ, T )}.

We may suppose that

{x ∈ R×|x = det g for some g with f(g) 6= 0}

is relatively compact in R×. We write f = f1 + f2 where f1 is compactly supported and f2 vanishes near Z(R).

Replacing Φ(γ, T ) by Φ(γ, T )− Φf1(γ, T ), we obtain a family to which the argument above can be applied.

If F is C let

A =

{(
α 0
0 β

)
|α, β ∈ C×

}
.

Then

Ch : α

(
ez 0
0 e−z

)
→ (α2, 2α cosh z).

Here z = x+ iy lies in C. If ϕ is a smooth function on A satisfying ϕ(t̃) = ϕ(t) we define ψ by

(6.4) ψ(Ch t) = ϕ(t)

ψ is smooth if and only if the formal Taylor expansion of ϕ about z = 0 has the form

∑∞

n=0
Pn(x2 − y2, xy;α)

where Pn(x2 − y2, xy;α) is a polynomial of degree n in x2 − y2, xy whose coefficients are smooth functions of

α. We may also write

Pn(x2 − y2, xy;α) = Qn(z2, z 2;α).

It is easily seen that the expansion of y has this form if and only if

∂2

∂z∂z

∂2m

∂z2m

∂2n

∂z2nϕ

vanishes on Z(C) for every choice of m and n.
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This allows us to proceed as before. We choose f in the Schwartz space of G(C) so that {Φ(γ, T )} =

{Φf (γ, T )} ([29]), then write f = f1 + f2, where f1 has compact support and f2 vanishes near Z(C), and replace

Φ(γ, T ) by Φ(γ, T )− Φf1(γ, T ). If T (C) = A and

ϕ(t) = Φ(t, T ;ωT (µ), ωG)

then the function ψ defined by (6.4) is smooth; so we may exploit the smoothness of t → Ch t away from Z(C)

once again.

The purpose of this paragraph is however not the study of orbital integrals by themselves but the comparison

of orbital integrals with twisted orbital integrals. Let E by a cyclic extension of prime degree ` and σ a fixed

generator of G(E/F ). If φ is a smooth, compactly supported function in G(E) and δ lies in G(E) we consider

∫

Gσ
δ
(E)\G(E)

φ(g−1δσ(g))dg.

That these integrals converge will be manifest shortly.

It is clear that, sufficient care being taken with regard to measures, the integral depends only on Nδ. If

γ = Nδ lies in G(F ) then Gσ
δ (E) = Gσ

γ (F ) and the principles of §15 of [14] may be used to carry measures from

Gγ(F ) to Gσ
δ (E). Such a transfer is implicit in some of the formulae below.

We define a Shintani family {Ψφ(γ, T )} associated to φ. For this we have to fix for comparison a form ωo
G

on G over F as well as a form ωE
G on G over E, and we define Ψφ(γ, T ;ωT , ωG) at first only for this one choice.

We extend the definition to other forms by Property (i) of an HCS family. If γ in T (F ) is regular we set

Ψφ(γ, T ;ωT , ω
0
G) = 0

if γ = Nδ has no solution. If it does we set

Ψφ(γ, T ;ωT , ω
0
G) =

∫

Gσ
δ
(E)\G(E)

φ(g−1δσ(g))dg.

Since Gσ
δ (E) = T (F ), we may take the measure on it to be that defined by ωT . The measure on G(E) is that

defined by ωE
G .

IfG′ is the group overF obtained fromG overE by restriction of scalars then g → Ch(Ng) may be regarded

as a morphism from G′ to X over F . Indeed over F

G′ ' G× · · · ×G

and

N(g1, · · · , g`) = (g1g2 · · · g`, g2 · · · g`g1, · · · , g`g1, · · · g`−1).
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Hence

Ch(Ng) = Ch(g1 · · · g`).

It is clear that this morphism is smooth off the locusNg ∈ Z . Thus if δ ∈ G(E) andNδ /∈ Z(F ) we may associate

to a two­form µ on X which is regular and non­zero in a neighborhood of Ch(Nδ) a measure on Gσ
δ (E)\G(E)

and hence

Φφ(δ, µ) =

∫

Gσ
δ
(E)\G(E)

φ(g−1δσ(g)).

We introduced earlier the form ωT (µ) on T . It is independent of ωG. If ϕ is the restriction of Ch to T then at

γ

ωT (µ) =
ϕ∗µ

det((1 − Ad γ−1)t\g)

because under the map (t, g) → (g−1tg) of T × T\G to G the vector (X,Y ) in t × t\g, a tangent vector at (t, 1),

is sent to

X + (1 − Ad γ−1)Y.

If E is any finite extension of F and ψ the character on F used to define measures we may define ψE on E

by

ψE(x) = ψ(traceE/Fx).

If Y is a non­singular variety over E, y1, · · · , ym local coordinates on Y , and a1, · · · , a` a basis of E over F then

we may introduce local coordinates yij on Y ′, the variety over F obtained from Y by restriction of scalars, by the

partially symbolic equations

yi =
∑

j
yijaj.

If ωE is a form of maximal degree on Y given locally by

ωE = e(y1, · · · , ym)dy1 ∧ · · · ∧ dym

we define ω′ on Y ′ by

ω′ = NE/F e(y1, · · · , ym)(det a
λj

i )mdy11 ∧ · · · ∧ dy1` ∧ dy21 ∧ · · · .

Here {λj} are the imbeddings of E into F and the norm is defined in an algebro­geometrical sense. ω′ is not

necessarily defined over F . But it is invariant up to sign under G(F/F ) and hence the associated measure |ω′|

on Y ′(F ) = Y (E) is well defined. It is equal to that associated to ωE .

These remarks apply in particular to our cyclic extension E and ωE
G . The form ω′

G obtained from it, the

form µ, and the morphism Ch(Ng) together define, for each δ in T (E) with γ = Nδ regular, a form ω ′
T (µ) on T

satisfying

Ψφ(γ, T, ω′
T (µ), ω0

G) = Φφ(δ, µ).
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This elaborate introduction of ω′
T (µ) is pretty much in vain because ω′

T (µ) is independent of ωE
G or ω′

G and equals

ωT (µ), except perhaps for sign.

To see this begin by choosing a section of G′ → T\G′ so that the Lie algebra g′ becomes t ⊕ t\g′. We may

also write

t\g′ = t\t′ ⊕ m

with m ' t′\g′. The quotient t\t′ may be identified with t′1−σ . We write

ω′
G = ω1 ∧ ω2 ∧ ω3

where ω1 is a form on t, ω2 a form on t′1−σ, and ω3 a form on m. If s is a section of

....................
......................................................................

............
.......

....................T ′ T
N

which takes γ to δ, then the map of T × T\G′ to G′ given by (t, g) → g−1s(t)σ(g) has the following effect

on the tangent space t ⊕ t\g′ = t ⊕ t′1−σ ⊕ m at (δ, 1). If m is chosen to be invariant under the adjoint action of

T ′ the vector (x, y, z) is sent to

(x, y, z − Adδ−1σ−1(z)).

The section s is not rational, but analytic or formal, according to one’s predilections.

The form ω1 ∧ ω2 is constructed from ω1, ω2 and the sequence

1 −→ T −→ T ′ 1−σ
−→T ′1−σ −→ 1.

By Lemma 4.10 we may also construct it starting from

1 −→ T ′1−σ −→ T ′ N
−→T −→ 1.

Therefore pulling ω1 ∧ ω2 ∧ ω3 back to T × T\G′ we obtain

det((1 − Adγ−1)|t\g)ω1 ∧ ω2 ∧ ω3.

We conclude that if

ϕ∗(µ) = λω1

at γ then

det((1 − Adγ−1)t\g)ω
′
T (µ) = λω1

there as well. Our assertion follows.

These cumbersome remarks out of the way, we may state the principal lemma of the paragraph.
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Lemma 6.2 A Shintani family is an HCS family. An HCS family {Φ(γ, T )} is a Shintani family if and only if

Φ(γ, T ) = 0 whenever the equation γ = Nδ has no solution. Moreover if {Φ(γ, T )} = {Ψφ(γ, T )} then the

function Φ′(γ, T, µ) satisfies

Φ′(z, T, µ) =






0, z /∈ NS(E),

Φφ(δ, µ), z

(
1 1
0 1

)
= Nδ,

for z ∈ F× = Z(F ). If T is not split, the value of Φ′′(z, T, µ) is 0 if the equation z = Nδ has no solution.

Otherwise it is

ξ(γ)

∫

Gσ
δ
(E)\G(E)

φ(g−1δσ(g))dg.

Here ξ(γ) is 1 if δ is σ­conjugate to a scalar and ­1 if it is not.

We begin by establishing the asserted properties of a Shintani family. They have only to be established when

φ has small support about a given δ. If Nδ is not central there is no problem for g → Ch(Ng) is then smooth at

δ. Suppose Nδ is central.

It is convenient to treat two cases separately, that for which δ is σ­conjugate to a central element and that for

which it is not. When treating the first, one may suppose that δ itself is central and then, translating if necessary,

that it is 1. Choose an analytic section s of G′(F ) → G(F )\G′(F ). The map of G(F ) × G(F )\G′(F ) to G′(F )

given by (g, w) → s(w)−1gσ(s(w)) yields an analytic isomorphism in a neighborhood of the identity. If φ has

support in such a neighborhood and δ lies in its intersection with G(F ) then

Ψφ(Nδ, T ) = Φf (δ, T )

if

f(δ) =

∫
φ(s(w)−1δσ(s(w))),

the integral being taken over a small neighborhood of the trivial coset, G(F ) itself. It is therefore manifest that

{Φφ(γ, T )} is an HCS family. If z ∈ Z(F ) lies close to 1 then

f(z) =

∫

G(F )\G′(F )

φ(g−1zσ(g))dg

and if

ε = z

(
1 1
0 1

)

then

Ψφ(ε`, µ) = Φf (ε, µ)

and Nε = ε`. The asserted formulae for Φ′(z, T, µ) and for Φ′′(z, T, µ) follow.

Before we discuss the case that δ is notσ­conjugate to a scalar we comment on the manner in which one shows

that an HCS family {Φ(γ, T )} for which Φ(γ, T ) = 0 when γ /∈ NT (E) is a Shintani family. One can localize the
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problem and, once again, the only difficulty occurs for a family which is supported in a small neighborhood of a

point in Z(F ). If this point lies in NZ(E) we may suppose it is 1. If

Φ′(γ, T ) = Φ(γ`, T )

then {Φ′(γ, T )} is again an HCS family and hence there is an f such that

Φ′(γ, T ) = Φf (γ, T ).

We may suppose that the support off consists of elements whose conjugacy class passes close to 1. Employing

a partition of unity and then conjugating we may even suppose that f itself is upported in a small neighborhood

of 1. Suppose a is a function on G(F )\G′(F ) satisfying

∫

G(F )\G′(F )

α(w)dw = 1.

If w ∈ G(F )\G′(F ) and h ∈ G(F ) set

φ(s(w)−1hσ(s(w))) = α(w)f(h).

Then

Ψφ(δ`, T ) = Φ(δ`, T )

for δ close to 1. Since extraction of `th roots in a neighborhood of 1 is a well defined operation, we conclude that

Ψφ(γ, T ) = Φ(γ, T )

for all γ.

Suppose now that z = Nδ is central but that δ is not σ­conjugate to a central element. Then ` = 2 and

Gσ
δ (E) = {y|δσ(y)δ−1 = y}

is the multiplicative group of a quanternion algebra. If u ∈ Gσ
δ (E) then

N(uδ) = uδσ(u)σ(δ) = u2z.

It follows that if u is close to 1 then

Gσ
uδ(E) ⊆ Gu(E)

if Gu is the centralizer of u. Since

Gσ
uδ(E) = {y|uδσ(y)δ−1u−1 = y}
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we conclude that

Gσ
uδ(E) ⊆ Gσ

δ (E).

This time we take s to be a section of G′(F ) → Gσ
δ (E)\G′(F ) and set

f(h) =

∫
φ(s(w)−1hσ(s(w))), h ∈ Gσ

δ (E),

so that

Ψφ(zu2, T ) = Φf (u, T ).

The family {Φf(δ, T )} is an HCS family not forG(F ) but forGσ
δ (E) = Gσ

z (F ). Since this group is the multiplica­

tive group of a quanternion algebra the properties of HCS families for it are trivial to establish. The principal

points to observe are that there is no longer a split Cartan subgroup, that Φ′(γ, T, µ) does not occur, and that

Φ(γ, T ;ωT (µ), ωG′) = meas(T (F )\G′(F ))Φ′′(γ, T ;µ).

This said, one proceeds as before, and completes the proof of the lemma.

Lemma 6.2 allows us to associate to any smooth compactly supported φ on G(E) a smooth compactly

supported f on G(F ) for which

{Φf (γ, T )} = {Ψφ(γ, T )}.

The function f is not uniquely determined but its orbital integrals are, and this is enough for our purposes. The

correspondence φ → f , which was introduced by Shintani, plays an important role in these notes. It is however

essential to observe that if E is unramified and φ is spherical then f may be taken to be the image of φ under the

homomorphism of the previous paragraph. In particular if φ is the characteristic function of G(OE) divided by

its measure then f may be taken to be the characteristic function of G(O) divided by its measure.

It should come as a surprise to no­one when I now confess that the map φ → f has been defined for the

wrong class of functions. If ξ is a given character of NZ(E) we shall want φ to satisfy

φ(zg) = ξ(Nz)−1φ(g) z ∈ Z(E)

and f to satisfy

f(zg) = ξ(z)−1f(g) z ∈ NZ(E).

All we need do is start from the original φ and f and replace them with

φ′(g) =

∫

Z(E)

φ(zg)ξ(Nz)dz

and

f ′(g) =

∫

NZ(E)

f(zg)ξ(z)dz.
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The calculations at the end of the preceding paragraph show that if {Φφ′(γ, T )} and {φf ′(γ, T )} are defined in

the obvious way then

Φφ′(γ, T ) = Φf ′(γ, T ).

This and the other relations between orbital integrals of f ′ and φ′ which are deducible from Lemma 6.2 will play

a central role in the comparison of Paragraph 11.
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7. CHARACTERS AND LOCAL LIFTING

F is again a local field and E a cyclic extension of degree `. σ is a fixed generator of G. If Π is an irreducible

admissible representation of G(E) then Π may or may not be equivalent to Πσ : g → Π(σ(g)). We shall be

concerned only with those Π for which Πσ ' Π. Then Π extends to a representation Π′ of G′(E) = G(E) × G.

Π′ is not unique, but any other extension is of the form ω ⊗ Π′, where ω is a character of G.

We may introduce the character of Π′ along the lines of §7 of [14]. It is a distribution. We shall not be able

to prove completely the following proposition until we have some of the results of Paragraph 11. If we had not

thrown methodological purity to the winds, we would be bound to find a purely local proof for it.

Proposition 7.1. The character of Π′ exists as a locally integrable function.

A good deal of this paragraph will be taken up with the proof of this proposition, although one case will be

postponed until §11, appearing there as Lemma 11.2. In addition, we will begin the study of local base change,

especially for the representations π(µ, ν) and the special representations (σ(µ, ν). They are, of course, both rather

easy to handle. The last part of the paragraph is devoted to a computational proof of Lemma 7.17, which yields

part of assertion (c) of §2.

Since the character of Π is a function and since σ is an arbitrary generator of G, it is enough to show that the

character is a function on G(E) × σ.

Let η = (µ, ν) be the quasi­character of the groupA(E) of diagonal matrices and consider the representation

ρ(η) = ρ(µ, ν) introduced in Chapter 1 of [14]. If µσ = µ, νσ = ν then ρ(η) may be extended to a representation

of G′(E), which we still denote ρ(η), by setting

ρ(σ, η)ϕ(g) = ϕ(σ−1(g)) ϕ ∈ B(η).

B(η) is introduced on p. 92 of [14].

For our purposes it is best to suppose that µν = ξE onE×. If σ is smooth, satisfies φ(zg) = ξ−1
E (z)σ(g), z ∈

E× = Z(E), and has compact support modulo Z(E), we may set

ρ(φ, η) =

∫

Z(E)\G(E)

φ(g)ρ(g, η)dg.

We may choose the Haar measure on K so that

∫

Z(E)\G(E)

h(g)dg =

∫

K

∫

N(E)

∫

Z(E)\A(E)

h(tnk)dtdndk.

Then the kernel of ρ(φ, η)ρ(σ, η), which is a function on K ×K , is equal to

∫

Z(E)\A(E)

∫

N(E)

φ(k−1
1 tnσ(k2))η(t)

∣∣∣∣
α

β

∣∣∣∣
1/2

dtdn
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if

t =

(
α 0
0 β

)
.

The trace of ρ(φ, η)ρ(σ, η) is obtained by integrating over the diagonal.

If γ ∈ G(F ) has distinct eigenvalues a, b we set

∆(γ) =

∣∣∣∣
(a− b)2

ab

∣∣∣∣
1/2

F

.

It is easily seen that if δ ∈ A(E), γ = Nδ, and ∆(γ) 6= 0 then

∆(γ)

∫

Z(E)A(F )\G(E)

φ(g−1δσ(g))dg =

∣∣∣∣
a

b

∣∣∣∣
1/2 ∫

K

∫

Z(E)A(F )\A(E)

∫

N(E)

φ(k−1t−1δσ(t)nσ(k))dndtdk.

Thus if we denote the left hand side by Fφ(δ),

traceρ(φ)ρ(σ) =

∫

Z(E)A1−σ(E)\A(E)

η(t)Fφ(t)dt.

Since Fφ(t) = Fφ(t̃) if

t̃ =

(
β 0
0 α

)

this may be written ∫

Z(E)A1−σ(E)\A(E)

η(t) + η̃(t)

2
Fφ(t)dt.

We may extend the definition of Fφ to other tori, and there is an obvious, and easily verified, analogue of the

Weyl integration formula ∫

Z(E)\G(E)

φ(g)dg

is equal to
1

2

∑∫

Z(E)T 1−σ(E)\T (E)

{∫

Z(E)T (F )\G(E)

φ(g−1tσ(g))dg

}
∆(Nt)2dt

or
1

2

∑∫

Z(E)T 1−σ(E)\T (E)

Fφ(t)∆(Nt)dt.

The sum is over a set of representatives for the conjugacy classes of Cartan subgroups over F . We deduce the

following lemma.

Lemma 7.2. The character χρ(η) of ρ(η) is a function on G(E) × σ. If γ = Nδ is regular but not conjugate to an

element of A(F ) then χρ(η)(δ × σ) = 0. If δ is σ­conjugate to t and γ = Nδ is regular then

χρ(η)(δ × σ) =
η(t) + η̃(t)

∆(γ)
.
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If η = ησ then there exist µ′, ν′ such that µ(x) = µ′(Nx), ν(x) = ν′(Nx). If φ → f is defined as in the

previous paragraph, the following corollary is clear.

Corollary 7.3. If η ′(µ′, ν′) then

traceρ(φ, η)ρ(σ, η) = traceρ(f, η′)

and

χρ(η)(δ × σ) = χρ(η′)(γ)

if γ = Nδ.

If Π = π(µ, ν) with µ(x) = µ′(Nx), ν(x) = ν′(Nx) then Πσ ' Π. We take Π′ = π′(µ, ν) to be the restriction

of ρ(η) to the subquotient of B(η) on which π(µ, ν) acts. We see that if ρ(µ, ν) is irreducible, then it is a lifting of

ρ(µ′, ν′) according to either of the criteria of §2. Notice that there are `2 choices for µ′, ν′.

Lemma 7.4 Suppose F is non­archimedean.

(a) If µν−1(x) 6≡ |x| and µν−1(x) 6≡ |x|−1 then

traceπ′(φ;µ, ν)π′(σ;µ, nu) = traceπ(f ;µ′, ν′)

and, if γ = Nδ is regular,

χπ′(µ,ν)(δ × σ) = χπ(µ′,ν′)(γ).

(b) If µν−1(x) ≡ |x|−1 and µ′ν′−1(x) ≡ |x|−1 the same equalities are valid.

The only cases not covered by the lemma are those for which π(µ, ν) is finite­dimensional while π(µ′, ν′) is

infinite­dimensional, when the equalities no longer hold. This is the reason that we have also had to introduce

the criterion (i) of §2 for a local lifting. Observe that π(µ′, ν′) then ceases to be unitary. The first part of the lemma

is clear for, with the assumptions imposed there, π(µ, ν) = ρ(µ, ν), π(µ′, ν′) = ρ(µ′, ν′).

If the conditions of the second hold, then

π(g;µ, ν) = µ(detg)|detg|
1/2
E , g ∈ G(E),

π(σ;µ, ν) = 1,

π(g;µ′, ν′) = µ′(detg)|detg|
1/2
F , g ∈ G(F ).

The first of the desired equalities is clear; the other follows from the Weyl integration formulae. It is by the way

implicit in the lemma that the characters appearing there are functions.

Lemma 7.5. Suppose F is archimedean. If π(µ, ν) and π(µ′, ν′) are both infinite­dimensional or both finite­

dimensional then the equalities of the previous lemma are again valid.
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This again follows from the corollary if both representations are infinite­dimensional. To check the remaining

case we observe that F will be R and E will be C. There is a finite­dimensional analytic representation ρ ofG(C)

on a space V and a character χ of C× such that

π(g;µ, ν) ' χ(detg)ρ(σ(g)) ⊗ ρ(g).

Since χ(z) = χ(σ(z)) there is no harm in supposing it is 1. If λ−1 is the highest weight of the contragredient to ρ

and w a highest weight vector then

uσ ⊗ v → (σ(w) ⊗ w)(ρ(σ(g))σ(u) ⊗ ρ(g)v)

maps V into B(µ, ν) if, as we may assume µ(x)|x|1/2 = λ(xσ(x))ν(x)|x|−1/2 = λ(xσ(x)). The absolute value is

taken in the number­theoretical sense. Then π′(σ;µ, ν) corresponds to σ(u) ⊗ v → σ(v) ⊗ u.

If ρ(g) = (ρij(g)) then a matrix form of π′(g × σ;µ, ν) is

ρi′,j(σ(g)) ⊗ ρi,j′(g).

Setting i = j, i′ = j′ and summing we conclude that

traceπ′(g × σ;µ, ν) = trace ρ(gσ(g)).

Since π(g, µ′, ν′) is either ρ(g) or sign(detg)ρ(g) the lemma follows.

The next lemma is an immediate consequence of Corollary 7.3 and Lemma 7.4.

Lemma 7.6. Suppose F is non­archimedean and σ(µ, ν) is a special representation. Let µν−1(x) = |x|E . Define

σ′(σ;µ, ν) to be the restriction of ρ(σ;µ, ν) to the subspace of B(µ, ν) on which σ(µ, ν) acts. If µ′ν′−1(x) = |x|F

then

traceσ′(φ;µ, ν)σ′(σ;µ, ν) = traceσ(f, µ′, ν′)

and if γ = Nδ is regular

χσ′(µ,ν)(δ × σ) = χσ(µ′,ν′)(γ).

We see that σ(µ, ν) is a lifting of σ(µ′, ν′). There are now only ` choices for the pair (µ′, ν′).

If Π = σ(µ, ν) then Πσ ' Π only if µσ = µ, νσ = ν. However if Π = π(µ, ν) then Πσ is also equivalent to Π

if µσ = ν, νσ = µ that is if η̃ = ησ . If ησ 6= η this can only happen for ` = [E : F ] = 2, as we now suppose. If

ησ = η̃ we can define an operator R(η) : B(η) → B(ησ) as on p. 521 of [14]. Formally (and with a better choice

of the ε­factor than in [14])

R(η)ϕ(g) = ε(0, µν−1, ψE)
L(1, µν−1)

L(0, µν−1)

∫

E

ϕ(

(
0 1
−1 0

) (
1 x
0 1

)
g)dx.
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ψE is a non­trivial additive character of E of the form x → ψF (tracex) and dx is the Haar measure self­dual

with respect to ψE . If ψF is replaced by ψF (ax), a ∈ F×, then ε(0, µν−1, ψE) is multiplied by

|a|
−1/2
E

µ(a)

ν(a)
= |a|−1/2.

Since dx is replaced by |a|1/2dx, the expression as a whole is unchanged and R(η) is well defined.

Lemma 7.7. (a) If η = ησ = η̃ then R(η) is the identity.

(b) If ησ = η̃ and ρ(σ, ησ) : B(ησ) → B(η) replaces ϕ(g) by ϕ(σ−1(g)) then ρ(σ, ησ)R(η), which takes B(η) to

itself, is of order two.

Since

ρ(σ, ησ)R(η)ρ(σ, ησ)R(η) = ρ(σ, ησ)ρ(σ, η)R(ησ)R(η)

and

ρ(σ, ησ)ρ(σ, η) = 1

the assertion (b) is implied by the following lemma.

Lemma 7.8. Let E be an arbitrary local field. Suppose η = (µ, ν) and

|$E| < |µ($E)ν−1($E)| < |$E |
−1

then R(η̃) and R(η) are defined and

R(η̃)R(η) = 1.

If ω is a quasi­character of E×, the map ϕ → ϕ′ with ϕ′(g) = ω(detg)ϕ(g) takes B(µ, ν) to B(ωµ, ων). It

sends R(η)ϕ to R(ωη)ϕ′; so for the purposes of the lemma we may suppose ν = 1. I also observe that if ψE is

replaced by x → ψE(ax), a ∈ E× then ε(0, µν−1, ψE) is multiplied by

|a|
−1/2
E

µ(a)

ν(a)

and ε(0, νµ−1, ψE) is multiplied by

|a|
−1/2
E

ν(a)

µ(a)
.

Thus R(η̃)R(η) is not affected and if η = η̃ neither is R(η).

First take E to be non­archimedean and µ to be unramified. Suppose µ($E) = |$E |
s, Re s > 0. Let ϕ0 be

defined by

ϕ0(

(
1 x
0 1

) (
α 0
0 β

)
k) = µ(α)

∣∣∣∣
α

β

∣∣∣∣
1/2

.
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The factor ε(0, µ, ψE) is, almost by definition, equal to

|a|s+1/2

if a−1OE is the largest ideal on which ψE is trivial. Then

∫

OE

dx = |a|−1/2.

The integrand of ∫

E

ϕ0(

(
0 1
−1 0

) (
1 x
0 1

)
)dx

is 1 if x ∈ OE . Otherwise

(
0 1
−1 0

) (
1 x
0 1

)
=

(
x−1 0
0 x

) (
1 −x
0 1

) (
−1 0
− 1

x −1

)

and the integrand equal |x|−1−s. The integral equals

|a|−1/2

{
1 +

∑∞

n=1
q−s

(
1 −

1

q

)}
= |a|−1/2 L(s, 1E)

L(1 + s, 1E)
= |a|−1/2L(0, µ)

L(1, µ)
.

Consequently

R(η)ϕ0(1) = |a|sϕ0(1) = |a|s.

This relation may be analytically continued.

Any function ϕ is equal to

(ϕ− ϕ(1)ϕ0) + ϕ(1)ϕ0.

Thus to check that R(η)ϕ(1) can be analytically continued for all ϕ, we need only check it when ϕ(1) = 0. The

factor

ε(0, µ, ψE)
L(1, µ)

L(0, µ)

is certainly well defined if |µ($E)| < |$E |
−1. Moreover if ϕ(1) = 0 there is an N such that

ϕ

(
−1 0
− 1

x −1

)
= 0

for |x| > N and ∫
ϕ(

(
0 1
−1 0

) (
1 x
0 1

)
)dx =

∫

|x|≤N

ϕ(

(
0 1
−1 0

) (
1 x
0 1

)
)dx.

The right side is well defined for any µ. We conclude that R(η) is indeed defined for Re s > −1.

It is clear that R(η)ϕ0 is a multiple of ϕ0, for ϕ0 is, up to a constant factor, the only function invariant under

KE . Therefore R(η)ϕ0 = |a|sϕ0. If µ = 1, then s = 0 and R(η)ϕ0 = ϕ0. Since R(η) then intertwines B(η) with
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itself and B(η) is irreducible, R(η) = 1. This is the first part of the lemma. If Re s < 1 then R(η̃) is also defined

and R(η̃)R(η) which again intertwines B(η) with itself is a scalar. Since

R(η̃)R(η)ϕ0 = ϕ0

the scalar is 1.

Now suppose µ is ramified. The factor

ε(0, µ, ψE)
L(1, µ)

L(0, µ)
= ε(0, µ, ψE)

is well defined for all such µ. If

ϕ

(
−1 0
− 1

x −1

)
= ϕ(−1)

for|x| > N , then ∫
ϕ(

(
0 1
−1 0

) (
1 x
0 1

)
)dx =

∫

|x|≤N

ϕ(

(
0 1
−1 0

) (
1 x
0 1

)
)dx.

The right side is meaningful for all values of |µ($E)|. For this µ we only wish to prove the second part of the

lemma. For the sake of symmetry we put ν back in. We may also suppose that OE is the largest ideal on which

ψE is trivial.

If |$E | < |µ($E)ν−1($E)| < |$E |
−1 then Propositions 3.2 and 3.4 of [14] give us two isomorphisms

A : W (µ, ν;ψE)
∼
−→B(µ, ν)

B : W (µ, ν;ψE) = W (ν, µ;ψE)
∼
−→B(ν, µ).

Suppose W ∈W (µ, ν;ψE) and AW = ϕ, BW = ϕ′. We shall show that

(7.1) W (

(
a 0
0 1

)
) ∼ |a|1/2µν(−1){ε(0, µν−1, ψE)µ(a)ϕ(1) + ε(0, νµ−1, ψE)ν(a)R(η)ϕ(a)}

as a→ 0. Interchanging ν and µ we can also infer that

W (

(
a 0
0 1

)
) ∼ |a|1/2µν(−1){ε(, νµ−1, ψE)ν(a)ϕ′(1) + ε(0, µν−1, ψE)µ(a)R(η̃)ϕ′(1)}

as a→ 0. We conclude that

R(η)ϕ = ϕ′

and that

ϕ = R(η̃)R(η)ϕ.

Hence

R(η̃)R(η) = 1.
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To verify (1) we take W = WΦ as on p. 94 of [14]. (There is a misprint there. The measure used to define

θ(µ1, µ2; Φ) should be d×t rather than dt.) We may suppose that

Φ(αx, α−1y) = µ−1ν(α)Φ(x, y)

if |α| = 1. Then Φ(0, 0) = 0 and Φ(x, y) is 0 for x, y close to 0. If N is sufficiently large WΦ(

(
a 0
0 1

)
) is equal to

|a|1/2µ(a)

∫

1
N ≤|t|≤N

µν−1(t)Φ(at, t−1)d×t+ |a|1/2µ(a)

∫

|t|>N

µν−1(t)Φ(at, t−1)d×t

for all a. Fix N . When |a| is small this expression equals

(7.2) |a|1/2µ(a)

∫

E×

νµ−1(t)Φ(0, t)d×t+ |a|1/2ν(a)

∫

E×

Φ(t, 0)d×t.

According to the definition of A, ϕ is equal to fΦ∼ with

fΦ∼(1) =

∫
Φ∼(0, t)µν−1(t)|t|d×t =

∑∞

n=−∞
Φ∼(0, $n

E)|$E |
nµν−1($n

E).

However, by the definition on p. 94 of [14]

Φ∼(0, $n
E) =

∫
Φ(0, y)ψE(y$n

E)dy

=
∑∞

m=−∞
(1 − |$E |)|$E |

mΦ(0, $m)

∫

|t|=1

µν−1(t)ψE(t$m+n
E )d×t.

If r is the order of the conductor of µν−1 the integral appearing here is 0 unless m+ n = −r when it equals

ε(0, νµ−1, ψE)
µν−1($r)|$|r

1 − |$|
.

Thus

Φ∼(0, $n
E) = ε(0, νµ−1, ψE)|$E |−nΦ(0, $−n−r)µν−1($r)

and

fΦ∼(1) = ε(0, νµ−1, ψE)
∑

n
µν−1($n)Φ(0, $−n)

= ε(0, νµ−1, ψE)

∫

E×

νµ−1(t)Φ(0, t)d×t.

Since, under the conditions imposed on ψE ,

ε(0, νµ−1, ψE)ε(0, µν−1, ψE) = µν−1(−1)

we may substitute in the first term of (7.2) to obtain the first term of (7.1).
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Lemma 3.2.1 of [14] gives

µν(−1)ε(0, νµ−1, ψE)R(η)ϕ(1)

as

lim
N→∞

∫

|x|≤N

{∫
WΦ(

(
a 0
0 1

)
)ν−1(a)|a|−1/2ψE(ax)da

}
dx.

Interchanging the order of integration we see from (7.2) that this equals

∫

E×

Φ(t, 0)dt.

In other words, the second term of (7.2) is equal to the second term of (7.1) as required.

As a convenient, but in the long run unsatisfactory, expedient, we prove Lemma 7.8 for archimedean fields

by appealing to the theory of Eisenstein series. E will be momentarily a global field, either Q or an imaginary

quadratic field. If µ∞, ν∞ are arbitrary characters of E×
∞, there are characters µ, ν of E×\IE such that µ, ν

restricted toE×
∞ are µ∞, ν∞. Here IE is the group of idèles. We introduceM(η) = M(µ, ν; 0) as on p. 513 of [14]

M(η) =
L(1, νµ−1)

L(1, µν−1)
⊗v R(ηv).

Here
L(1, νµ−1)

L(1, µν−1)
= lim

s→0

L(1 + s, νµ−1)

L(1 − s, µν−1)
.

From the theory of Eisenstein series

M(η̃)M(η) = 1.

Since the map η → η̃ interchanges µ and ν and

L(1, µν−1)

L(1, νµ−1)

L(1, νµ−1)

L(1, µν−1)
= 1

we conclude that

⊗vR(η̃v)R(ηv) = 1.

Applying our result for non­archimedean fields we conclude that

R(η̃∞)R(η∞) = 1.

The first part of Lemma 7.1 must unfortunately still be proved directly. We revert to our earlier notation. We

also suppose once again that ν = 1. Since we are dealing with the first part of the lemma, µ will also be 1. More

generally let µ(x) = |x|s, Res > 0. We may suppose that

ψE(x) = e2πix, E = R

ψE(x) = e2πiRex, E = C.
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Then dx is the usual Haar measure on E. Define ϕ0 by

ϕ0(

(
1 x
0 1

) (
α 0
0 β/cr

)
k) = µ(α)

∣∣∣∣
α

β

∣∣∣∣
1/2

.

Once again we need only show that

R(η)ϕ0(1) = 1.

If F = R, then, taking the definition of the L­functions and ε­factors into account [21],

R(η)ϕ0(1) =
Γ
(

1+s
2

)

π1/2Γ
(

s
2

)
∫ ∞

−∞

(1 + x2)
(s+1)

2 dx = 1

and if F = C,

R(η)ϕ0(1) =
1

π

Γ(1 + s)

Γ(s)

∫ ∫
(1 + x2 + y2)−s−1dxdy = 1.

We conclude from the second part of Lemma 7.7 that if ησ = η̃ then Π = π(µ, ν) may be extended to a

representation Π′ of G′(E), a representation we shall sometimes denote τ(η), by setting

Π′(σ) = τ(σ, η) = ρ(σ, ησ)R(η).

Appealing to the first part of the lemma we see that this is consistent with our previous choice of Π′ if ησ = η.

Observe also that if η is unramified and ησ = η̃ then η = η̃. The following assertion is the part of Lemma 7.1

which will not be verified until §11, as Lemma 11.2.

(1) The character of τ(η) is a locally integrable function.

The following assertion is also part of that lemma.

(2) If η = (µ, µσ) and if r = Ind(WE/F ,WE/E , µ) then ρ(η) is a lifting of π(τ).

The only representations of G(E) we have not yet considered are the absolutely cuspidal Π. Choose such a

Π for which Πσ ' Π and extend Π in any way to Π′.

Lemma 7.9 If Π is absolutely cuspidal then the character χΠ′ exists as a locally integrable function and is

smooth on {g ∈ G(E)|Ng is regular and semi­simple}.

Moreover if Π is unitary

1

2

∑′ 1

measNZ(E)\T (F )

∫

Z(E)T 1−σ(E)\T (E)

|χΠ′(t× σ)|2∆(Nt)2dt =
1

`
.

The sum is over a set of representatives of the conjugacy classes of non­split Cartan subgroups over F .

We shall imitate the proofs of Proposition 7.4 and Lemma 15.4 of [14]. In particular, it suffices to consider

unitary Π. Then Π′ is also unitary. Suppose f is a locally constant function on G′(E) = G(E) ×G with compact

support. Set

Π′(f) =

∫

G′(E)

f(g)Π′(g)dg.
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Since Π′ is a square­integrable representation of G′(E) we may apply Lemma 7.4.1 of [14] to conclude that

traceΠ′(f) = d(Π′)

∫

Z(E)\G′(E)

{∫

G′(E)

f(g)(Π′(g−1hg)u, u)dh

}
dg.

Here u is a unit vector in the space of Π′ and d(Π′) the formal degree.

We introduce a subset Ĝ′(E) of G′(E) whose complement has measure 0 and a function ξ(g) on it. If

g ∈ G(E) then g ∈ Ĝ′(E) if and only if g has distinct eigenvalues a, b. We set

∆E(g) =

∣∣∣∣
(a− b)2

ab

∣∣∣∣
1/2

E

and let ξ(g) = ∆E(g)−1. If τ ∈ G, τ 6= 1, and g ∈ G(E) then g × τ ∈ Ĝ′(E) if and only if gτ(g) · · · τ`−1(g) has

distinct eigenvalues. If gτ(g) · · · τ `−1(g) is conjugate to h in G(F ) we set ξ(g) = ∆(h)−1. We define ξ(g) to be 0

on the complement of Ĝ′(E) in G′(E).

Lemma 7.10. The function ξ(g) is locally integrable on G′(E).

That it is locally integrable on G(E) follows from Lemma 7.3 of [14]. It suffices then to show that it is

locally­integrable on G(E) × σ. Since any compactly supported locally constant function φ is dominated by a

spherical function, it follows from the results on Paragraph 3 that

∑∫

T 1−σ(E)\T (E)

|Fφ(t)dt <∞

if

Fφ(δ) = ∆(Nδ)

∫

T (F )\G(E)

φ(g−σδg)dg.

The sum is over a set of representatives for the conjugacy classes of Cartan subgroups of G over F .

Take φ to be the characteristic function of a compact open set. By the Weyl integration formula, or rather the

variant appropriate when Z(E)\G(E) is replaced by G(E),

∫

G(E)×σ

ξ(g × σ)φ(g)dg

is equal to
1

2

∑∫

T 1−σ(E)\T (E)

Fφ(t)dt

and is therefore finite.

Define T ′
r as on p. 254 of [14], except that F is to be replaced by E. We have only to show that

lim
r→∞

∫

T ′
r×g

(Π′(g−1hg)u, u)dg
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converges on Ĝ′(E) and that the convergence is dominated by a constant times ξ(h). It is easily seen that

ξ(τ(h)) = ξ(h)

for all τ ∈ g. It is therefore enough to verify the assertion for the sequence

∫

T ′
r

(Π′(g−1hg)u, u)dg.

For h in G(E), where Π′ is Π, this has been done in [14]; so we replace h by h× σ, with the new h in G(E), and

the first u by v = Π′(σ)u and consider

(7.3) ϕr(h) =

∫

T ′
r

(Π(g−1hσ(g))v, u)dg.

Let G̃σ(E) be the set of all h inG(E) for which the eigenvalues ofNh do not lie in F . We need the following

analogue of Lemma 7.4.2 of [14].

Lemma 7.11. Let C ′
1 be a compact subset of G̃σ(E) and let C′

2 be a compact subset of G(E). The image in

Z(E)\G(E) of

X = {g ∈ G(E)|g−1C′
1σ(g) ∩ Z(E)C′

2 6= φ}

is compact.

Let

C1 = {Nh|h ∈ C ′
1}

C2 = {Nh|h ∈ C ′
2}.

If g ∈ X then

g−1C1g ∩ Z(E)C2 6= φ.

Since C1 and C2 are compact we have only to apply Lemma 7.4.2.

We may choose C ′
2 so that (Π(g)v, u) is supported by Z(E)C′

2. Then for h in C ′
1

∫

T ′
r

(Π(g−1hσ(g))v, u)dg

becomes constant as soon as r is so large that T ′
r contains Z(E)\X . Moreover

∣∣∣∣∣

∫

T ′
r

(Π(g−1hσ(g))v, u)dg

∣∣∣∣∣ ≤
∫

Z(E)\G(E)

|(Π(g−1hσ(g))v, u)|dg
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and the right side is equal to

(7.4) meas(Z(E)\Z(E)Gσ
h(E))

∫

Z(E)Gσ
h
\G(E)

|(Π(g−1hσ(g))v, u)|dg.

To estimate this we may replace the integrand by a positive spherical function φ, invariant under Z(E), which

dominates it, and h by any σ­conjugate element. Thus we may suppose h lies in T (E), where T is one of

the representatives for the conjugacy classes of Cartan subgroups of G over F . It follows from the lemmas of

Paragraph 5 that (7.4) is bounded by c(φ)ξ(h × σ) for all h ∈ G̃σ(E).

It remain to consider the behaviour of the sequence (7.3) on the set of h for whichNh has distinct eigenvalues

in F . If k ∈ G(OE) then

ϕr(k
−1hσ(k)) = ϕr(h)

so we need only consider h of the form

(7.5)

(
α 0
0 β

) (
1 x
0 1

)
.

If h is constrained to lie within a compact subset C3 of G(E) then α, β are constrained to lie in a compact subset

of E× and x in a compact subset of E. If C3 lies in G̃σ(E) then in addition

∣∣∣∣1−N
(

β
α

) ∣∣∣∣ remains bounded away

from 0. We are going to show that there is a constant c such that

|ϕr(h)| ≤ c

∣∣∣∣1 −N

(
β

α

) ∣∣∣∣
−1

= cξ(h× σ)

for all h in C3 of the form (7.5) and that if C3 ⊂ G̃σ(E) then {ϕr(h)} converges uniformly on C3 to a locally

constant function. Lemma 7.9 will follow.

As on p. 269 of [14], we are immediately led to the consideration of auxiliary sequences

ϕi
r(h) =

∫ (
Π(

(
γ y
0 1

)−1

hσ(

(
γ y
0 1

)
)vi, ui)

)
|γ|−1

E d×γdy.

The integral is taken over those γ and y for which

(7.6)

(
γ y
0 1

)

lies in Tr .

The product (
γ y
0 1

)−1

hσ(

(
γ y
0 1

)
)

is equal to (
γ−1σ(γ)α 0

0 β

) (
1 σ(γ)−1(x+ σ(y) − α−1βy)
0 1

)
.
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We set

u′i = Π(

(
1 −σ(γ)−1x
0 1

) (
α−1σ(γ)−1γ 0

0 β−1

)
)ui,

so that the integrand becomes

(7.7) (Π

(
1 σ(γ)−1(σ(y) − α−1βy)
0 1

)
vi, u

′
i)|γ|

−1
E .

We shall first integrate with respect to y. To do this we must find those values of γ and y for which the matrix

(7.6) is in Tr. Let |γ| = |$E |
m, |y| = |$E |

n, and let the elementary divisors of (7.6) be $j
E , $

k
E , j ≤ k. We list

the possible values of j and k below, together with the condition that the matrix belongs to Tr.

(i) m ≥ n, n ≥ 0 then j = 0, k = m, 0 ≤ m ≤ r,

(ii) m ≥ 0, n ≤ 0 then j = n, k = m− n, 0 ≤ m− 2n ≤ r,

(iii) m ≤ 0, n ≤ m then j = n, k = m− n, 0 ≤ m− 2n ≤ r,

(iv) m ≤ 0, n ≥ m then j = m, k = 0, −r ≤ m ≤ 0.

Thus the matrix belong to Tr if and only if −r ≤ m ≤ r and m− r ≤ 2n.

To evaluate the integral of (7.7) with respect to y, we take Π in the Kirillov form. Then ui is a locally constant

function onE× with compact support; so is v′i and it is bounded by a constant which does not depend on α, β, γ,

or x. The inner product appearing in (7.7) is equal to

∫

E×

ψE

(
a

σ(γ)
(σ(y) − α−1βy)

)
vi(a)u′i(a)d

×a.

Let b′ be the smallest integer greater than or equal to m−r
2 . The integral with respect to y is equal to

(7.8) |$E |
b′
∫

{a‖ρ(a)− β
α a|≤|$E|−b}

vi(aσ(γ))u′i(aσ(γ))d×a ρ = σ−1.

Here b is equal to b′ if the largest ideal on which ψE is trivial is OE . If this ideal is ($s
E) then b′ − b = s.

Let ε be a small positive number. Since α and β are constrained to vary in a compact set there is an integer e

such that

(7.9)

∣∣∣∣1 −N

(
β

α

) ∣∣∣∣ ≥ ε

and ∣∣∣∣ρ(a) −
β

α
a

∣∣∣∣ ≤ |$E |
−b

implies

|a| ≤ |$E |
−e−b.
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Choose an integer d so that the support of each ui is contained in

|$E |
−d ≥ |a| ≥ |$E |

d.

The integral (7.8) is certainly 0 unless −e− b ≤ d−m or m− b ≤ d+ c. Then

m+ r

2
≤ d+ e+ 1.

Since m + r ≥ 0 this gives a bound on the number of possibilities for m which is independent of r. Since the

integral appearing in (7.8) is clearly bounded by

{sup |ui(a)|} {sup |v′i(a)|}

∫

|$E |−d≥|a|≥|$E|d
d×a

and

|$E |
b|γ|−1

E = O(|$E |−
m+r

2 )

there is no difficulty bounding |ϕr(h)| on the set of h inC3 for which (7.9) is satisfied. To show that the limit exists

and yields a locally constant function we replace γ by γ$−r
E so that m now satisfies 0 ≤ m ≤ 2(d+ c+ 1). Then

|γ|−1
E |$E |

b is replaced by |γ|
−1/2
E if m is even and by |γ|

−1/2
E |$E |

1/2 if m is odd. The integration with respect

to γ becomes an integration over a compact set which does not depend on r. The integral of (7.8) appears in the

integrand. Replacing a by a
σ(γ) in it, we obtain

∫

{a‖ρ(a)− β
α

γ
σ(γ)

a|≤|γ|
1/2

E
|$E |−s}

vi(a)u′i(a)da

where s is 0 or 1
2 according as m is even or odd. Mutliplying by |γ|

−1/2
E |$E |

s and then integrating with respect

to γ, we obtain a locally constant function of h.

We have still to estimate ϕr(h) when N
(

β
α

)
is close to 1. We may write

β

α
= λ

ζ

σ(ζ)

with λ ∈ F×. Let |ζ| = |$E |
c. We may so choose ζ and λ that c remains uniformly bounded. We also choose λ

close to 1. Change variables in the integral of (7.8) so that it becomes

(7.10)

∫

|ρ(a)−λa|≤|$E |−b−c

vi(aσ(ζ(γ))u′i(aσ(ζγ))d×a.

Write a = a1 + a2 with a1 ∈ F, tracea2 = 0. Since λ varies in a neighborhood of 1 there is an integer f ≤ 0

such that |1 − λ|E = |$E |
e, with some integer e, and |ρ(a) − λa| ≤ |$E |

−b−c together imply

(i) |a1| ≤ |$E |
−b−c−e+f

(ii) |a2| ≤ |$E |
−b−c+f .
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The integral (7.10) may be estimated by a constant times the measure of the intersection of the set defined by (i),

(ii), and

(iii) |$E |
d−m−c ≤ |a| ≤ |$E |

−d−m−c.

If |$F |E = |$E |
g, where g is 1 or `, this measure is not affected if I replace m bym− zg, and r by r+ zg, z ∈ Z.

Thus I may work with a finite set of m – but at the cost of letting r vary. What I want is that d−m− c should be,

for all practical purposes, constant. Then, for purposes of estimation, the multiplicative Haar measure may be

replaced by an additive one. Moreover b now differs from −m+r
2 , which does not change, by a bounded constant.

The set is clearly empty unless

−b− c− e+ f ≤ d−m− c

or

m− b ≤ e− f + d.

Taking the relations betweenm, r, b′, b and s into account, we conclude that

0 ≤ m+ r ≤ 2(e− f + d+ s+ 1).

Because of (iii) the absolute value |a1| remains bounded, independent of r, and, because of (ii), the absolute

value |a2| is now bounded by a constant times |$E |
m+r

2 . Thus the measure of the set may be estimated by a

constant times |$E |
(m+r)(`−1)

2` .

Since |γ|−1
E |$E |

b, with the original b, is bounded by a constant times |$E |
−

(m+r)
2 , the absolute value ofϕr(h)

is bounded by a constant times

∑

0≤k≤2(e−f+d+s+1)

|$E |
− k

2` = O
(
|1 − λ|

1
`

E

)

Since

|1 − λ|
1
`

E = |1 − λ|F

and

1 −N

(
β

α

)
= 1 − λ`

while, because λ is close to 1,

|1 − λ`|F = |`(1 − λ)F

the proof of the first assertion of Lemma 7.9 is completed.

The proof of the second will be briefer. Let ζ be a primitive `th root of unity and let ω be the character of

G′(E) which is 1 on G(E) and takes σ to ζ . The representations Π′
i = ωi ⊗ Π′, 0 ≤ i < `, are inequivalent. If u

is a unit vector,

φ(g) = d(Π′)(Π′(g)u, u)
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and

Π′
i(φ) =

∫

Z(E)\G′(E)

φ(g)Π′
i(g)dg

then

traceΠ′
i(φ) =

{
1, i = 0,
0, 1 ≤ i < `.

Thus

1 =
∑`−1

i=0
ζ−itraceΠ′

i(φ) = `

∫

Z(E)\G(E)×σ

φ(g)χΠ′ (g)dg.

By the Weyl integration formula the right­hand side is equal to

1

2

∑
T

∫

Z(E)T 1−σ(E)\T (E)

χΠ′(t× σ)

{∫

Z(E)T (F )\G(E)

φ(g−1tσ(g))dg

}
∆(Nt)2dt.

The sum is over a set of representatives for the conjugacy classes of Cartan subgroups ofG overF . IfT is non­split

the inner integral equals
1

measZ(F )\T (F )

∫

Z(E)\G(E)

φ(g−1tσ(g))dg.

Since ∫

Z(E)\G(E)

φ(g−1tσ(g))dg =

∫

Z(E)\G(E)

φ(g−1τ(t)σ(g))dg

for all τ ∈ g this expression equals

1

`measZ(F )\T (F )

∫

Z(E)\G′(E)

φ(g−1(t× σ)g)dg

or
1

measNZ(E)\T (F )

∫

Z(E)\G′(E)

φ(g−1(t× σ)g)dg

and the proof of the first part of the lemma has shown us that the integral appearing here is equal to χΠ′(σ × t).

If T is split the inner integral is equal to

∫

KE

∫

Z(E)T (F )\T (E)

∫

N(E)

φ(k−1n−1s−1tσ(nsk) × σ)
∣∣α
β

∣∣−1
dndsdk.

Here

s =

(
α 0
0 β

)
.

Setting

n1 = n−1t(σn)σ(t)−1

and changing variables in the usual way, we deduce from Proposition 2.22 of [14] that the integral is 0. The

assertion of the lemma follows.

We shall also need a relation of orthogonality.
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Lemma 7.12 Suppose Π1,Π2 satisfy

Πi(z) = ξ(z) z ∈ Z(E)

and

Πσ
i ' Πi.

Extend Πi to Π′
i, a representation of G′(E) = G(E) × G. Suppose moreover that Π2 is absolutely cuspidal, that

Π1 is unitary, and that χΠ′
1

exists as a locally integrable function. Then

1

2

∑′ 1

measNZ(E)\T (F )

∫

Z(E)T 1−σ(E)\T (E)

χΠ′
1
(t× σ)χΠ′

2
(t× σ)∆(Nt)2dt

is equal to 0 if Π1 is not equivalent to Π2.

Just as above we take

φ(g) = d(Π′
2)(Π

′
2(g)u, u) g ∈ G′(E)

with a unit vector u. Since the proof of Proposition 5.21 of [14], and therefore the proposition itself, is valid in the

present situation

(ωi ⊗ Π′
1)(φ) = 0

for each i. Therefore
1

`

∑`−1

i=0
ζ−itrace(ωi ⊗ Π′

1)(φ) = 0.

The left­hand side is equal to ∫

G(E)×σ

χΠ′
1
(g)φ(g)dg.

Applying the Weyl integration formula and proceeding as before, we obtain the lemma.

We are not yet in a position to show that Π is the lifting of a π. However, there are some further lemmas

toward that end which we can prove now. The map t→ Nt imbedsZ(E)T 1−σ(E)\T (E) intoNE/FZ(E)\T (F )

and is measure­preserving. Let ω be a non­trivial character of NE/FE
×\F×.

Lemma 7.13 If π is square­integrable then

1

2

∑′ 1

measNZ(E)\T (F )

∫

Z(E)T 1−σ(E)\T (E)

|χπ(Nt)|2∆(Nt)2dt =

{
1 π ' ω ⊗ π
1
` π 6' ω ⊗ π.

The sum is again over a set of representatives for the conjugacy classes of non­split Cartan subgroups over F .

If T is anisotropic then

{Nt|t ∈ T (E)} = {s ∈ T (F )|ω(det s) = 1}.

Thus, if πi = ωi ⊗ π,
1

`

∑`−1

i=0
χπi(s)
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is 0 outside of this set and equal to χπ(s) on it. Applying the orthogonality relations for characters of G(F )

(Proposition 15.4 of [14]) to this function, we obtain the lemma.

The same argument shows that if π1 and π2 are square­integrable and π1 ' ωi ⊗ π2 for no i then

1

2

∑′ 1

measNZ(E)\T (F )

∫

Z(E)T 1−σ(E)\T (E)

χπ1(Nt)χπ2(Nt)∆(Nt)2dt = 0.

Now we take a set of representatives T for the conjugacy classes of all Cartan subgroups of G over F . We

want to introduce a collection S of functions on

X =
⋃

T
NT (E)

or rather on the regular elements therein. We introduce, for the sole purpose of defining this collection, an

equivalence relation ∼ on the set of classes of irreducible admissible representations ofG(F ). We write π(µ, ν) ∼

π(µ′, ν′) if for some i and j, µ′ = ωiµ, ν′ = ωjν and if π(µ, ν), π(µ′, ν′) are both infinite­dimensional or both

finite­dimensional. If π is square integrable we write π ∼ π′ if π′ = ωi ⊗ π for some i. It is clear that χπ and χπ′

agree on X if π ∼ π′. S will be the collection of χπ , with π varying over the equivalence classes.

If π(µ, ν) is finite­dimensional let σ(µ, ν) be the representation complementary to π(µ, ν) in ρ(µ, ν). The

representation π(µ, ων) is infinite­dimensional and

(7.10) χπ(µ,ν) + χσ(µ,ν) = χπ(µ,ων)

on X .

Lemma 7.14 Every linear relation amongst the function in S is a consequence of the relations (7.10).

If this were not so there would be a relation which did not involve the χπ, π finite­dimensional. The

orthogonality relations then show that it involves no χπ, π square­integrable. Therefore it involves only the

χπ(µ,ν), π(µ, ν) infinite­dimensional, and the explicit expression for χπ(µ,ν) in terms of µ, ν shows that the

relation must be trivial.

There is one simple point which needs to be observed.

Lemma 7.15 If π(µ, ν) is finite­dimensional then π(µ, ων) is not unitary.

First take R = R. By Lemma 5.11 of [14]

µν−1ω−1 : t → tp

where p is a non­zero integer. Therefore

µ−1νω−1 : t→ t−p
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and π(µ, ων) can be unitary only if µ−1 = ων, ων −1 = µ. Then

µµ : t→ tp

and p is even. The space of π = π(µ, ων) then contains a vector v invariant under SO(2,R). Standard formulae

for spherical functions [31] show that the matrix coefficient (π(g)u, u) must be unbounded. This is incompatible

with unitarity.

Now take F to be non­archimedean. Then

µν−1ω−1 : x→ |x|±1ω−1(x)

and

µ−1νω−1 : x→ |x|∓1ω−1(x).

Consequently π(µ, ων) can be unitary only if µ−1 = µν, ων −1 = µ. Then

µµ : x→ |x|±1ω−1(x).

This, fortunately, is a patent impossibility.

Lemma 7.16 Choose for each representation Π of G(E) invariant under G an extension Π′ to G′(E). Then the

restrictions of the characters χ|p′ to G(E) × G are linearly independent.

Copying the proof of Lemma 7.1 of [14], one shows that the characters of the irreducible admissible repre­

sentations of G′(E) are linearly independent. If Π′
i = ω′ ⊗ Π′ as before then

1

`

∑
i
ω−i(σ)χΠ′

i
(g)

is 0 except for g ∈ G(E) × σ, when it equals χΠ′(g).

The most important fact about local lifting which remains to be proved is

(3) If π is an absolutely cuspidal representation of G(F ) then π has a lifting in the sense of criterion

(ii) of §2. It is independent of σ.

This will be proved in §11. See especially Proposition 11.5. I observe now that the results of this paragraph,

including Lemma 7.17, which is to follow, imply, when taken together with the assertions (1), (2), and (3), the

results (a)­(g) of §2, except for (e), which appears as Lemma 11.8.

It follows from (3) and Lemma 7.6 that every representation π has a lifting. Moreover it follows from Lemma

7.16 that it only has one lifting that satisfies (ii). Thus the unicity of the lifting could fail only if π had one lifting

in the sense (i) and another in the sense (ii). By Corollary 7.3 and Lemmas 7.4 and 7.5 this could only happen if

π = π(µ, ων) with µν−1(x) ≡ |x|±1. Since π is a principal series representation and its lifting in the sense (i) is
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special, this lifting cannot also be a lifting in the sense (ii). It follows from Lemmas 7.4 and 7.9 that a lifting in the

sense (ii) cannot be cuspidal, and from Lemma 7.14 that it cannot be a π(µ′, ν′). So π has no lifting in the sense

(ii), and the unicity is established.

By definition Π can be a lifting only if Πτ ∼ Π for all τ ∈ g. If this condition is satisfied then, by Corollary

7.3 and Lemmas 7.4 and 7.5, Π is a lifting except perhaps when it is cuspidal. That it is a lifting when it is cuspidal

follows from (3), Lemmas 7.9 and 7.12, and the completeness of the characters of square­integrable representations

of G(F ), a consequence of Lemma 15.1 of [14]. The property (c) follows from Lemma 7.14 and 7.17; and (d) is

a formality, as is (f). In so far as (g) is not an immediate consequence of the definitions and the unicity, it is a

consequence of (3) and Lemma 7.6.

In our scheme for proving the results of these notes, the following lemma plays a critical role. It is a shame

that our proof is so uninspired.

Lemma 7.17 Suppose π is an irreducible, admissible representation ofG(F ) and π ' ω⊗π. Then ` = 2 and there

is a quasi­character θ of E× such that π = π(τ) with

τ = Ind(WE/F ,WE/E , θ).

Moreover if π = π(τ) then π ' ω ⊗ π.

Suppose π = π(µ, ν). Then ω ⊗ π = π(ωµ, µν). Thus π ' ω ⊗ π if and only if µ = ων, ν = ωµ; so ω2 = 1

and ` = 2. If ` = 2 and θ(x) = µ(Nx), then π(τ) = π(µ, ωµ) ([14], Theorem 4.6 together with the remarks on

p.180). If F is non­archimedean and π = σ(µ, ν) then π 6' ω ⊗ π. (This follows readily from Proposition 3.6 of

[14]). If F is R every square­integrable representation is a π(τ) for some τ , and it follows from Theorem 5.11 of

[14] that π(τ ' ω ⊗ π(τ).

Suppose finally that F is non­archimedean and π is absolutely cuspidal. We may as well suppose also that

π is unitary. Let

G+(F ) = {g ∈ G(F )|ω(det g) = 1}.

We begin by remarking that if π ' ω ⊗ π then the restriction of π to G+(F ) is reducible. Indeed suppose the

restriction were irreducible. There is an operator A on the space of π such that

Aπ(g)A−1 = ω(det g)π(g) g ∈ G(F ).

The irreducibility and the admissibility of the restriction of π to G+(G) together imply that A is a scalar. We

deduce a contradiction, viz.,

Aπ(g)A−1 = π(g) g ∈ G(F ).

We also see immediately that ` must be 2, for if ` is odd ω is not trivial on Z(F ).
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Take ` = 2 and let π+ be one of the irreducible components of the restriction of π to G+(F ). Let π act on V .

Define a G(F )­invariant map from the space of r = Ind(G(F ), G+(F ), π+) to V by

ϕ →
∑

G+(F )\G(F )
π(g−1)φ(g).

If π+ extended to a representation π′ of G(F ) then π′ 6' ω ⊗ π′,

r = π′ ⊕ (ω ⊗ π′)

and π ' π′ or π ' ω ⊗ π′. This is impossible if π ' ω ⊗ π.

Choose h in G(F ) with ω(deth) = −1 and set π−(g) = π+(h−1gh). We conclude that if π ' ω ⊗ π then

π+ 6' π− and the restriction of π toG(F ) is π+ ⊕ π−. A straightforward imitation of the proof of Proposition 7.4

of [14] shows that the characters of π+ and π− exist as locally­integrable functions on G+(F ). For a t in G+(F )

with distinct eigenvalues we define

χ+
π (t) = χπ+(t) − χπ−(t).

Let T be the Cartan subgroup to which t belongs. If T is split or the quadratic extension determined by T is not

isomorphic to E there is an s ∈ T (F ) with ω(det s) = −1. Then

χπ−(t) = χπ+(s−1ts) = χπ+(t)

and

χ+
π (t) = 0.

I observe that the function χ+
π can be defined for any π for which π ' ω⊗ π, provided that χπ+ , χπ− are known,

for some reason or another, to exist as functions. It is only determined up to sign.

Choose a Cartan subgroup T so that the corresponding quadratic extension is isomorphic to E. The

orthogonality relations for G+(F ) yield the following lemma.

Lemma 7.18 Suppose π is unitary and absolutely cuspidal and the function χ+
π′ is defined. Suppose also that the

restrictions of π and π′ to Z(F ) are the same. If π is not equivalent to π′ then

∫

Z(F )\T (F )

χ+
π′(t)χ+

π (t)∆(t)2dt = 0.

If w lies in the normalizer of T in G(F ) but not in T (F ) then

χ+
π (wtw−1) = ω(detw)χ+

π (t)
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and the standard theory of crossed products shows that ω(detw) = ω(−1). Fix a regular t0 in T (F ) with

eigenvalues a0, b0. The ordering a0, b0 determines an order of the eigenvalues a, b of any t in T (F ). If θ is a

quasi­character of E, which we identify with T (F ), we set

χθ(t) = λ(E/F, ψ)ω

(
a− b

a0 − b0

)
θ(t) + θ(wtw−1)

∆(t)
.

Hereψ is a fixed non­trivial character ofF and λ(E/F, ψ) is defined as in [21]. We extendχθ to a locally integrable

function on G(F ) by setting χθ(g) = 0 unless g = h−1th with t regular in T (F ) when we set

χθ(g) = ω(deth)χθ(t).

Lemma 7.17 is now a consequence of the completeness theorem for characters of Z(F )\T (F ) and the following

lemma.

Lemma 7.19 Suppose

τ = Ind(WE/F ,WE/E , θ)

and π ' π(τ). Then π ' ω ⊗ π, and χ+
π exists as a function and is equal to ±χθ.

This is the lemma with the embarrassing proof. For F = R satisfactory proofs are available; but they are

not elementary. A quick proof which is neither satisfactory nor elementary can be obtained along the following

lines. It follows from the results of §5 of [14] that if π = π(τ) then π ' ω ⊗ π, and it follows from general results

of Harish­Chandra that χ+
π is defined as a function. To compute it one has to find χπ+ and χπ− on the regular

elements of the non­split Cartan subgroup. For this it is enough to know the K­type of π+ and π− and that is

given in §5 of [14]. No more need be said.

For non­archimedean fields it is possible to deduce the lemma from known formulae for the characters. Since

it is harder to prove these formulae than to prove the lemma, and since no satisfactory proof of it, elementary or

otherwise, is available, it is perhaps not entirely profitless to run through a verification by computation.

According to Theorem 4.6 of [14], in which the quasi­character θ is denoted ω and π(τ) is denoted π(ω), the

representationπ(τ) restricted toG+(F ) is reducible. Soπ(τ) ' ω⊗π(τ). We may takeπ+ to be the representation

π(θ, ψ) of that theorem. To show that χπ+ and χπ− exist as functions, all we need do is show that the distribution

χπ+ − χπ− is a function, for this is already known to be true for χπ . I observe that the proof of the lemma which

will now be given is also valid for completions of function fields.

As in [14] we realize π+ = π(θ, ψ) on a space V+ of functions on F+. We need a representation of π+(g) as

an integral operator when g is (
a b
c d

)
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and c 6= 0. We may write (
a b
c d

)
=

(
1 a

c
0 1

) (
0 1
−1 0

) (
−c −d
0 b− ab

c

)
.

This allows us to effect the transformation ϕ→ π+(g)ϕ in three steps. The first is to replace the function ϕ by

u→ ωθ

(
ad− bc

−c

)
ψ

(
cdu

ad− bc

)
ϕ

(
c2u

ad− bc

)
.

In general the transformation

π+(

(
0 1
−1 0

)
)

sends ϕ to ϕ′ with

ϕ′(u) = λ(E/F, ψ)θ(x)|x|
1/2
E

∫

E

ψE(xȳ)θ−1(y)|y|
−1/2
E ϕ(Ny)dy.

Here Nx = u,

ψE(w) = ψ(traceE/Fw), w ∈ E,

and the bar denotes the non­trivial automorphism of E over F . The measure on E is also to be self­dual with

respect to ψE .

The map y → Ny together with the measures on E and F self­dual with respect to ψE and ψ yields a

measure on

{y|Ny = u}.

We set

J(u, v) = λ(E/F, ψ)θ(u)|u|F

∫

Ny=uv

ψE(y)θ−1(y)|y|
−1/2
E

and then

ϕ′(u) =

∫

F+

J(u, v)φ(v)dv.

Observe that ∫

Ny=uNx

f(y) =

∫

Ny=u

f(xy).

Thus the second step takes us to the function

u→ ωθ

(
ad− bc

−c

)∫

F+

J(u, v)ψ

(
cdv

ad− bc

)
ϕ

(
c2v

ad− bc

)
dv

and the third to the function

u→ ωθ

(
ad− bc

−c

)
ψ
(au
c

) ∫

F+

J(u, v)ψ

(
cdv

ad− bc

)
ϕ

(
c2v

ad− bc

)
dv.

Changing variables we see that π+(g) is an integral operator with kernel

∣∣∣∣
ad− bc

c2

∣∣∣∣ωθ
(
ad− bc

−c

)
ψ
(au
c

)
ψ

(
dv

c

)
J

(
u,
ad− bc

c2
v

)
.
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If f is a locally constant function on G+(F ) with a support which is compact and does not meet the group

of triangular matrices then

π+(f) =

∫

G+(F )

f(g)π+(g)dg

is an operator of trace class and is defined by a kernel

F (u, v) =

∫

G+(F )

∣∣∣∣
ad− bc

c2

∣∣∣∣ωθ
(
ad− bc

−c

)
ψ

(
au+ dv

c

)
J

(
u,
ad− bc

c2
v

)
f(g)dg.

At the cost of multiplying π by a one­dimensional representation, I may suppose that θ is a character. Then there

is an inner product on V+ with respect to which the operators π+(g) are unitary. On S(F+) this must be the inner

product of Proposition 2.21.2 of [14]. If ϕ is orthogonal to S(F+) then

(π+(

(
1 x
0 1

)
)ψ − ψ, ϕ) = 0

for all ψ and all x. As a consequence

π+(

(
1 x
0 1

)
)ϕ = ϕ

for all x. This we know to be impossible. We conclude that if EN is the orthogonal projection on the space of

functions supported by
{
x ∈ F+|

1

N
≤ |x| ≤ N

}

then ENϕ is equal to ϕ on this set and to 0 off it, and

traceπ+(f) = lim
N→∞

traceENπ
+(f)EN .

The kernel of ENπ
+(f)EN is F (u, v) if 1

N ≤ |u|, |v| ≤ N and 0 otherwise. The trace is obtained by integrating

the kernel along the diagonal.

The trace of ENπ
+(f)EN is obtained by taking the integral over G+(F ) of the product of the expression

λ(E/F, ψ)f(g) with

∣∣∣∣
ad− bc

c2

∣∣∣∣ωθ
(
ad− bc

−c

)∫

1
N ≤|u|≤N

ψ

(
u(a+ d)

c

)
θ(u)|u|F

{∫

Ny=
(ad−bc)u2

c2

ψE(y)θ−1(y)|y|
−1/2
E

}
du.

If α = det g and β = trace g this may be written

|α|
θ(α)

ω(−c)

∫

1
N|c|

≤|u|≤ N
|c|

ψ(−βu)θ(u)|u|F

{∫

Ny=αu2

ψE(y)θ−1(y)|y|
−1/2
E

}
du.

It is understood that, in addition to the constraints explicitly given,

ω(−cu) = 1.



Base change 90

The representation π− is π(θ, ψ′) where ψ′(x) = ψ(ex) with ω(e) = −1. It follows readily that

χπ+(f) − χπ−(f)

is equal to the limit as N approaches infinity of the integral over G+(F ) of the product of f(g) with

λ(E/F, ψ)|α|
θ(α)

ω(−c)

∫

1
N|c|

≤|u|≤ N
|c|

ψ(−βu)θ(u)|u|F

{∫

Ny=αu2

ψE(y)θ−1(y)|y|
−1/2
E

}
du.

There is now no constraint on the value of ω(−cu).

Since we may confine the integration with respect to g to a region in which |c| is bounded below by a positive

constant and since f has compact support, the lower limit in the integration with respect to u may be taken to be

0. A change of variables in the inner integral yields

λ(E/F, ψ)
|α|θ(α)

ω(−c)

∫

Ny=α

{∫

|u|≤ N
|c|

ψ(u(try − β))du

}
θ−1(y)|y|

−1/2
E = λN (g).

We may suppose that N is approaching infinity through powers of |$|, where $ is a uniformizing parameter.

The inner integral is 0 if |try − β| > |c| |$|−n

N and

N

|c|
|$|

n
2

otherwise. Here$−nOF is the largest ideal on which ψ is trivial.

Let E = F (δ) and let y = a+ bδ. If r = trace y, s = Ny then

∣∣∣∣∣

∂r
∂a

∂r
∂b

∂s
∂a

∂s
∂b

∣∣∣∣∣ = −b(δ − δ̄)2.

We may as well suppose that the largest ideal on which ψ is trivial is simply OF . The self­dual measure on E is

|(δ − δ̄)2|
1/2
F dadb which equals

drds

|(y − ȳ)2|
1/2
F

.

If the support of f does not meet the set of matrices with equal eigenvalues, that is, the set where β2 = 4α, then

for N large and |c| bounded the relations

Ny = α, |tr y − β| ≤
|c|

N
, f(g) 6= 0, y ∈ E,

imply

|(y − ȳ)2|F = |(tr y)2 − 4Ny|F = |(tr y)2 − β2 + β2 − 4α| = |β2 − 4α|.
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We conclude that λN (g) remains bounded on the support of f . If the Cartan subgroup in which g lies is not

conjugate to T then λN (g) is 0 for large N . Otherwise it is

(7.11)
λ(E/F, ψ)θ(α)

ω(−c)∆(g)
{θ−1(y) + θ−1(ȳ)}

if g is conjugate to y, because

|α|1/2 = |y|
−1/2
E

and

∆(g) =
|β2 − 4α|1/2

|α|1/2
.

Notice that

θ(α)θ−1(y) = θ(ȳ) θ(α)θ−1(ȳ) = θ(y).

Suppose g = t lies in T (F ). We have identified T (F ) with E×; but how, for the identification is not

canonical? It does not matter for only the sign of χθ(t) is affected. We may for example send a+ bδ to

(
a ub
b a+ bv

)

if δ2 = u+ vδ. If g corresponds to y = a+ bδ the lower left­hand entry c of g is b and

−b =
y − ȳ

δ̄ − δ
.

Thus if we choose t0 to correspond to δ̄ then (7.11) is equal to χθ(t).

If θ does not factor through the norm map then π is absolutely cuspidal and χπ+ , χπ− are known to exist as

functions; so the lemma is proved for such a θ. For a θ which factors through the norm we choose a θ1 which

agrees with it on F× but does not so factor. To distinguish the two possibilities we write λN (g, θ) and λN (g, θ1).

If we can show that there is a locally integrable function λ(g) such that

lim
N→∞

∫

G+(F )

f(g)λN (g, θ)dg =

∫

G+(F )

f(g)λ(g)dg

when the support of f does not meet the group of triangular matrices we can conclude that λ(g) = χθ(g)

(provided the imbedding and t0 are chosen as above) and that χπ+ − χπ− is a function outside the set of scalar

matrices, and equals χθ there. Since we know that

lim
N→∞

∫

G+(F )

f(g)λN (g, θ1)dg =

∫

G+(F )

f(g)χθ1(g)dg

it is enough to establish the existence of a locally integrable η for which

lim

∫

G+(F )

f(g)(λN (g, θ) − λN (g, θ1))dg =

∫

G+(F )

f(g)η(g)dg.
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For this it is sufficient to show that

(7.12) N

∫

Ny=α

χN (trace y − β)|θ−1(y) − θ−1
1 (y)| |y|

−1/2
E

remains bounded as α varies in a compact subset C of F× and β in a compact subset of F . Here χN is the

characteristic function of

{u| |u| ≤ N}.

Clearly there is a constant ε ∈ 0 such that

Ny ∈ C θ−1(y) − θ−1
1 (y) 6= 0,

imply

|(y − ȳ)2|
1/2
F ≥ ε.

It follows that the expression (7.12) is at most 2
ε for α ∈ C .

We can now assert that the difference between the distribution χ+
π = χπ+ −χπ− and the distribution defined

by the function χθ is concentrated on the scalar matrices. Therefore it is of the form

f → a

∫

Z(F )

ξ(z)f(z)dz

if

π(z) = ξ(z), z ∈ Z(F ).

Here a is a constant. Since the distribution χπ = χπ+ +χπ− exists as a function, we infer that a locally integrable

function ζ satisfying

traceπ+(f) =
a

2

∫

Z(F )

ξ(z)f(z)dz +

∫

G+(F )

f(g)ζ(g)dg

exists. Let

Kn =

{(
a b
c d

)
∈ G(O)|a − 1 ≡ d− 1 ≡ b ≡ c (modωn)

and let fn(g) be 0 unless g = zk, z ∈ Z(O), k ∈ Kn when fn(g) = ξ−1(z). The function fn is well defined for n

large, and, since χπ exists as a locally integrable function

lim
n→∞

traceπ(fn) = 0.

However

traceπ(fn) ≥ traceπ+(fn) ≥ 0

and

lim
n→∞

traceπ+(fn) =
a

2

∫

Z(O)

dz.

It follows that a is 0.
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8. CONVOLUTION

Suppose F is a local field and E is a direct sum of ` copies of F on which the group G of order ` acts

by cyclic permutation. The correct notion of the lifting of an irreducible admissible representation of G(F ) to

G(E) = G(F )× · · · ×G(F ) is patent: the representation π lifts to Π = π ⊗ · · · ⊗ π. But there are some auxiliary

constructions to be clarified.

The associate group LG of G× · · · ×G is a direct product

GL(2,C) × · · · × GL(2,C) × G(K/F ).

There is an obvious homomorphism of LG to LG

ϕ : g × τ → (g, · · · , g) × τ.

The corresponding homomorphism of Hecke algebras takes a function φ of the form

φ(g1, · · · , g`) = f1(g1)f2(g2) · · · f`(g`)

to the convolution

f = f1 ∗ · · · ∗ f`.

For our purposes it is simplest to consider only functions, spherical or not, of the form

φ : (g1, · · · , g`) → f1(g1) · · · f`(g`)

and to define the map φ → f , which will play the same role as those introduced in Paragraphs 5 and 6, by the

convolution product

f = f1 ∗ · · · ∗ f`.

It is implicit that the factors of G have been ordered. The order is not important provided that σ : (g1, · · · , g`) →

(g2, · · · , g`, g1) is a generator of G.

If

δ = (δ1, · · · , δ`)

then

Nδ = (δ1 · · · δ`, δ2 · · · δ`δ1, · · · , δ`δ1 · · · δ`−1)

is conjugate to

Nδ = (δ1 · · · δ`, δ1 · · · δ`, · · · , δ1 · · · δ`) = (γ, · · · , γ)

which lies in G(F ), if G(F ) is identified with the set of fixed points of G in G(E).
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The integral ∫

Gσ
δ
(E)\G(E)

φ(h−1δσ(h))dh

when written out in full becomes

∫

Gσ
δ
(E)\G(E)

f1(h
−1
1 δ1h2) · · · f`−1(h

−1
`−1δ`−1h`)f`(h

−1
` δ`h1)dh.

We introduce new variables by

g1 = h1, g2 = h−1
2 δ2 · · · δ`h1, · · · , g`−1 = h−1

`−1δ`−1δ`h1, g` = h−1
` δ`h1.

Then Gσ
δ (E) becomes

{(g, 1, · · · , 1)|g ∈ Gγ(F )}

and the integral itself becomes

∫

Gγ(F )\G(F )×G(F )×···×G(F )

f1(g
−1
1 γg1g

−1
2 )f2(g2g

−1
3 ) · · · f`(g`)dg1 · · · dg`

which is ∫

Gγ(F )\G(F )

f(g−1γg)dg.

Suppose π is an irreducible admissible representation of G(F ) on V and let Π = π ⊗ · · · ⊗ π. We extend Π

to a representation Π′ of G(E) × G by letting

Π′(σ) : v1 ⊗ · · · ⊗ v` → v2 ⊗ v3 ⊗ · · · ⊗ v` ⊗ v1.

We choose a basis {vi} for V so that

traceπ(f) =
∑

πii(f)

if f is a compactly supported smooth function on G(F ). The matrix of

Π(φ)Π′(σ) = (π(f1) ⊗ · · · ⊗ π(f`))Π
′(σ)

with respect to the basis {vi1 ⊗ · · · ⊗ vi`
} is

πi1j2(f1)πi2j3 (f3) · · ·πi`j1(f`)

and its trace is
∑

πi1i2(f1)πi2,i3(f3) · · ·πi`i1(f`) = traceπ(f1 ∗ · · · ∗ f`) = traceπ(f).

Here f is the image of φ.
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Since the character of π is a locally integrable function χπ the trace of Π(σ)Π′(σ) is equal to

∫

G(F )

f1(g1g
−1
2 )f2(g2g

−1
3 ) · · · f`(g`)dg1 · · ·dg`.

If we change variables this integral becomes

∫

G(F )

φ(g1, · · · , g`)χπ(g1 · · · g`)dg.

Thus χΠ′ is a locally integrable function on G(E) × σ and χΠ′(g × σ) is χπ(h) if h is Ng and has distinct

eigenvalues.

It will be important to know the range of the map φ → f . It is clear that it is surjective if F is non­

archimedean, that is, every smooth compactly supported f is the image of some smooth compactly supported

φ. If F is archimedean we can apparently obtain all smooth f if we only demand that φ be highly differentiable

and in addition allow finite linear combinations of the simple functions φ(g) = f1(g1) · · · f`(g`) ([8], [19]). This

is adequate, for the twisted trace formula will be valid for a function φ which is sufficiently differentiable. This

will have to be the meaning attached to smooth in Paragraphs 10 and 11.

If ξ is a character of F× or Z(F ) the observations of this paragraph are also valid for a function φ =

(f1, · · · , f`) with fi satisfying

fi(zg) = ξ−1(z)fi(g) z ∈ Z(F ).

One has merely to define convolution suitably.
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9. THE PRIMITIVE STATE OF OUR SUBJECT REVEALED

The derivation of the trace formula is such that it yields an expression for the trace, an invariant distribution,

as a sum of terms of which some are not invariant and are not well understood. In many of the applications of the

formula these terms have appeared with coefficient 0 and could be ignored. In the application we now have in

mind they are not so easily suppressed. It is however possible to circumvent most of the difficulties they cause,

but not all. Our ruse succeeds only if accompanied by some insight or hard work. The former failing we resort

to the latter.

It is convenient to choose the forms defining the Tamagawa measures on N and Z\A to be

dn = dx, n =

(
1 x
0 0

)
,

dt =
b

a
d
(a
b

)
, t =

(
a 0
0 b

)
.

The maximal compact subgroup K of G(F ) will be chosen to be G(O) if F is non­archimedean and to be the

standard orthogonal or unitary group if F is archimedean. We choose the measure dk on K so that

∫

Z(F )\G(F )

h(g)dg =

∫

Z(F )\A(F )

∫

N(F )

∫

K

h(ank)dadndk.

Let λ(g) be the function on A(F )\G(F ) obtained by writing g = ank, a ∈ A(F ), n ∈ N(F ), k ∈ K and

setting λ(g) = λ(n), with λ(n) defined as on p.519 of [14]. If γ ∈ A(F ) and ∆(γ) 6= 0 set

A1(γ, f) = ∆(γ)

∫

A(F )\G(F )

f(g−1γg)`nλ(g)dg.

We are interested in f which are smooth, satisfy

f(zg) = ξ−1(z)f(g), z ∈ NE/FZ(E),

and have compact support moduloNE/FZ(E). We shall write
A1(γ,f)

2 as the sum ofA2(γ, f) andA3(γ, f) where

f → A2(γ, f) is an invariant distribution and where A3(γ, f) extends, for each f , to a continuous function on

A(F ) whose support is compact modulo NE/FZ(E).

If

γ =

(
a 0
0 b

)

then
A1(γ, f)

2
= −∆(γ)

∫

K

∫

|x|>1

f(k−1γ

(
1
(
1 − b

a

)
x

0 1

)
k)`n|x|dxdk

which in turn equals

−

∣∣∣∣
a

b

∣∣∣∣
1/2 ∫

K

∫

|x|>
∣∣1− b

a

∣∣ f(k−1γ

(
1 x
0 1

)
k)

(
`n|x| − `n

∣∣∣∣1 −
b

a

∣∣∣∣
)
dxdk.
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Suppose first that F is non­archimedean. If
∣∣1 − b

a

∣∣ > 1 set b(γ, f) and c(γ, f) = 0. Otherwise set

b(γ, f) =

∣∣∣∣
a

b

∣∣∣∣
1/2

f(a)

∫

K

∫

|x|≤|1− b
a |

(
`n|x| − `n

∣∣∣∣1 −
b

a

∣∣∣∣
)
dxdk

=

∣∣∣∣
a

b

∣∣∣∣
1/2
∣∣∣∣∣1 −

b

a

∣∣∣∣∣f(a)

∫

K

∫

|x|≤1

`n|x|dxdk

and

c(γ, f) = −

∣∣∣∣
a

b

∣∣∣∣
1/2

|$| `n |$|

∫

Gn(F )\G(F )

f(g−1ng)dg,

with

n = a

(
1 1
0 1

)
.

As usual, $ is a uniformizing parameter for F . Define ω(x, γ) by

ω(x, γ) =

{
−`n|x| |x| >

∣∣1 − b
a

∣∣
−`n

∣∣1 − b
a

∣∣ |x| ≤
∣∣1 − b

a

∣∣ ≤ 1
.

We define A2(γ, f) to be

`n

∣∣∣∣1 −
b

a

∣∣∣∣F (γ, f) + b(γ, f) + c(γ, f).

It clearly yields an invariant distribution. Then A3(γ, f) must be

∣∣∣∣
a

b

∣∣∣∣
1/2 ∫

K

∫

F

f(k−1γ

(
1 x
0 1

)
k)ω(x, γ)dxdk − b(γ, f)− c(γ, f).

If f is given and if we then choose γ so that
∣∣1 − b

a

∣∣ is very small, the value of A3(γ, f) is

−

∫

K

∫

F

f(k−1a

(
1 x
0 1

)
k)`n|x|dxdk −

|$| `n |$|

1 − |$|

∫

K

∫

F

f(k−1a

(
1 x
0 1

)
k)dxdk

so thatA3(γ, f) clearly extends to all ofA(F ) as a smooth function. The factor 1−|$| appears in the denominator

because we use the Tamagawa measures of [12].

We let β(g) be the function on G(F ) defined by

β(

(
1 x
0 1

) (
c 0
0 d

)
k) =

∣∣∣∣
c

d

∣∣∣∣.

Departing from the notation on p. 520 of [14], we define the function θ(a, s, f) to be

1

L(1 + s, 1F )

∫

Gn(F )\G(F )

f(g−1ng)β(g)−sdg

with

n = a

(
1 1
0 1

)
.
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Then θ(a, s, f) is also equal to

1

L(1 + s, 1F )

∫

Z(F )\A(F )

∫

K

f(k−1t−1ntk)

∣∣∣∣
c

d

∣∣∣∣
−1−s

dtdk

if

t =

(
c 0
0 d

)

It is easy to check that the derivative of θ(a, s, f) at s = 0 is −A3(a, f).

Suppose that f is the function f0, where f 0(g) = 0 unless g = zk, z ∈ NE/FZ(E), k ∈ K , when it equals

ξ−1(z). Of course f0 exists only if ξ is unramified. All three terms in the definition of A3(γ, f
0) are 0 unless

∣∣1 − b
a

∣∣ ≤ 1. If this condition is satisfied the difference between the first two terms is

−f0(a)

∫

K

∫

|x|≤1

`n|x|dxdk = −
|$| `n |$|

1 − |$|
f0(a)

∫

K

∫

|x|≤1

dxdk.

Moreover

c(γ, f) = −
|$| `n |$|

1 − |$|
f0(a)

∫

K

∫

|x|≤1

dxdk.

Thus A3(γ, f
0) is always 0.

If F is archimedean then

A1(γ, f)

2
= −

∆(γ)

2

∫

K

∫

F

f(k−1γ

(
1
(
1 − b

a

)
x

0 1

)
k)`n(1 + |x|2)dxdk

= −
1

2

∣∣∣∣
a

b

∣∣∣∣
1/2 ∫

K

∫

F

f(k−1γ

(
1 x
0 1

)
k)

{
`n

(∣∣∣∣1 −
b

a

∣∣∣∣
2

+ |x|2

)
− `n

∣∣∣∣1 −
b

a

∣∣∣∣
2}
dxdk.

We may define

c(γ, f) = −
L′(1, 1F )

L(1, 1F )2

∫

Gn(F )\G(F )

f(g−1ng)dg.

This is just another form of the definition used before; we refrain here from writing out the L­functions explicitly

([21]).

We set

A2(γ, f) = `n

∣∣∣∣1 −
b

a

∣∣∣∣F (γ, f) + c(γ, f)

and

A3(γ, f) = −
1

2

∣∣∣∣
a

b

∣∣∣∣
1/2 ∫

K

∫

F

f(k−1γ

(
1 x
0 1

)
k)`n

(∣∣∣∣1 −
b

a

∣∣∣∣
2

+ |x|2

)
dxdk − c(γ, f).

The desired properties are immediate. It is also clear that

θ′(a, 0, f) = −A3(a, f)

once again.
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Continuity of A3(γ, f) as a function on A(F ) is, however, not enough because we will want to apply a

form of Poisson summation, for which we need to know at least that the Fourier­Mellin transform of A3(γ, f)

is integrable. If we verify that the second derivatives of A3(γ, f) are measures when F = R and that the third

derivatives are when F = C, we will have adequate control on the Fourier­Mellin transform.*

A moment’s thought and we are reduced to considering

ϕ(t) =

∫

F

h(x)`n(|t|2 + |x|2)dx

at t = 0. Here h is a smooth function with compact support on F . If F = R the first derivative of ϕ is

ϕ′(t) = sgn t

∫

F

2h(tx)

1 + x2
dx.

Since ϕ′ is continuous except at 0 where it has a jump, the second derivative is a measure. If F = C a further

reduction leads to

ϕ1(t) =

∫ 1

0

h1(x)`n(x2 + |t|2)d(x2).

A direct calculation shows that

∫ 1

0

`n(x2 + |t|2)d(x2) = (1 + |t|2)`n(1 + |t|2) − |t|2`n|t|2 − 1

has third derivatives which are measures. We may therefore suppose that h1(0) = 0 and that h1(x) = O(x) as

x ↘ 0. Computing the first, second, and third derivatives of `n(x2 + |t|2) with respect to the two components

of t, one finds that after multiplication by x2 they are O
(

1
|t|

)
as |t| → 0 and that the first and second remain

bounded. It follows that the third derivatives of ϕ1(t) are measures.

This is all we need for the ordinary trace formula, but we must prepare ourselves for the twisted formula as

well. Suppose E is either a cyclic extension of F of degree ` or the direct sum of ` copies of F and σ is a fixed

non­trivial element in G(E/F ). If δ ∈ A(E), γ = Nδ, and ∆(γ) 6= 0 we set

A1(δ, φ) = ∆(γ)

∫

Z(E)A(F )\G(E)

φ(g−1δσ(g))`nλ(g)dg.

We are of course supposing that φ(zg) = ξ−1
E (z)φ(g), z ∈ Z(E). If E is a field then λ is defined as before except

that E replaces F . If E is not a field and g has components g1, · · · , g` then λ(g) = Πλ(gi).

We are going to write
A1(δ,φ)

2 as the sum of A2(δ, φ) and A3(δ, φ). The latter will extend to a continuous

function on A1−σ(E)\A(E) whose support is compact modulo Z(E). Moreover if φ and f are related as in

Paragraphs 6 or 8 then

A2(δ, φ) = `A2(γ, f).

* I am grateful to J. Arthur for drawing to my attention that A3(γ, f) is not smooth.
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Therefore if φ is a spherical function and f is related to it as in Paragraph 5, we will also have

A3(δ, φ) = `A3(γ, f).

We suppose first that F is non­archimedean. We set

F (δ, φ) = ∆(γ)

∫

Z(E)A(F )\G(E)

φ(g−1δσ(g))dg.

If

γ =

(
a 0
0 b

)

we set b(δ, φ) = c(δ, φ) = 0 unless
∣∣1 − b

a

∣∣ ≤ 1. If this condition is satisfied and

δ =

(
c 0
0 d

)

we set b(δ, φ) equal to

`

∣∣∣∣
a

b

∣∣∣∣
1/2{∫

Z(E)G(F )\G(E)

φ(g−1cσ(g))dg

}{∣∣∣∣
1 − b

a

∣∣∣∣
∫

K

∫

{x∈F | |x|≤1}

`n|x|dxdk

}
.

Moreover we choose z0 with trace z0 = 1 and set

n0 =

(
1 z0
0 1

)

and

n = cn0

and

c(δ, φ) = −`

∣∣∣∣
a

b

∣∣∣∣
1/2

|$| `n |$|

∫

Gσ
n(E)Z(E)\G(E)

f(g−1nσ(g))dg.

Finally

A2(δ, φ) = `n

∣∣∣∣1 −
b

a

∣∣∣∣
`

F (δ, φ) + b(δ, φ) + c(δ, φ)

and

A3(δ, φ) =
A1(δ, φ)

2
−A2(δ, φ).

The only difficulty is to analyze the behavior of A3(δ, φ) as
∣∣1 − b

a

∣∣ approaches 0. It is clear that c(δ, φ)

extends to a smooth function on A1−σ(E)\A(E). Moreover c(δ, φ) is independent of the choice of z0. Since we

are working with fields of characteristic 0 we may take z0 = 1
` ∈ F . We must consider

A1(δ, φ)

2
− b(δ, φ) − `n

∣∣∣∣1 −
b

a

∣∣∣∣
`

F (δ, φ).
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We are free to multiply δ by any element of Z(E)A1−σ(E). Since
∣∣1 − b

a

∣∣ is taken small we may suppose that c

and d belong to F .

We first treat the case that F is non­archimedean and E is a field. We must be careful to distinguish between

absolute values in F and absolute values in E; so for the present discussion alone we denote absolute values in

E by double bars. Observe that we may take c
d close to 1 and write it as 1 + u with |u| small. Then

∣∣∣∣1 −
b

a

∣∣∣∣ =

∣∣∣∣1 −
d`

c`

∣∣∣∣ = |`u|.

Denote G(OE) by KE . We may rewrite the expression defining
A1(δ,φ)

2 as

−∆(γ)

∫

KE

∫

Z(E)A(F )\A(E)

∫

‖x‖≥1

φ(k−1n−1t−1δσ(tnk))`n‖x‖dndtdk.

Here

n = n(x) =

(
1 x
0 1

)
.

If

t =

(
α 0
0 β

)

we rewrite this once again as

−∆(γ)

∫

KE

∫ ∫

‖x‖≥
∥∥α

β

∥∥ φ(k−1t−1n−1δσ(ntk))

(
`n‖x‖ − `n

∥∥∥∥
α

β

∥∥∥∥
)∥∥∥∥

α

β

∥∥∥∥
−1

dxdtdk.

The second integral is taken over Z(E)A(F )\A(E).

The integral with respect to x ∈ E may be replaced by a double integral, for we may first integrate over F

and then over F\E. To be more precise we replace the variable x by x + y
` and integrate first with respect to y.

This forces us, if we use the usual normalizations of measures, to divide by |`|. The new x which appears is only

determined modulo F and we choose it so that
∥∥x+ y

`

∥∥ ≥ ‖x‖ for all y ∈ F . Then
A1(δ,φ)

2 becomes

−∆(γ)

|`|

∫

KE

∫ ∫ ∫
φ(k−1t−1n(−x)δn

(uy
`

)
n(σ(x))σ(tk))

(
`n

∥∥∥∥x+
y

`

∥∥∥∥− `n

∥∥∥∥
α

β

∥∥∥∥
)∥∥∥∥

α

β

∥∥∥∥
−1

.

The inner integral is over the region
∥∥x+ y

`

∥∥ ≥
∥∥α

β

∥∥.

The region of integration may be decomposed into two parts, defined by the inequalities
∥∥ y

`

∥∥ ≤ ‖x‖ and

‖x‖ <
∥∥y

`

∥∥. Since ∆(γ) = |`u|, the integral over the second region yields

−

∫ ∫ ∫ ∫
φ(k−1t−1n(−x)δn

(y
`

)
n(σ(x))σ(tk))

(
`n‖y‖ − `n

∥∥∥∥
α

β

∥∥∥∥− `n‖`u‖

)∥∥∥∥
α

β

∥∥∥∥
−1

.



Base change 102

The inner integral is now over the region ‖y‖ ≥ ‖`ux‖, ‖y‖ ≥
∥∥`uα

β

∥∥. Since ‖`u‖ = |`u|` =

∣∣∣∣1 − b
a

∣∣∣∣
`

, this is the

sum of

`n

∣∣∣∣1 −
b

a

∣∣∣∣
`

F (δ, φ)

and

(9.1) −

∫ ∫ ∫ ∫
φ(k−1t−1n(−x)δn

(y
`

)
n(σ(x))σ(tk))

(
`n‖y‖ − `n

∥∥∥∥
α

β

∥∥∥∥
)∥∥∥∥

α

β

∥∥∥∥
−1

and

(9.2)

∫ ∫ ∫ ∫
φ(k−1t−1n(−x)δn

(y
`

)
n(σ(x))σ(tk))

(
`n‖y‖ − `n

∥∥∥∥
α

β

∥∥∥∥− `n‖`u‖

)∥∥∥∥
α

β

∥∥∥∥
−1

,

and the integral being over ‖y‖ ≤ ‖`ux‖, ‖y‖ ≥
∥∥α

β

∥∥, and

(9.3)

∫ ∫ ∫ ∫
(φ(k−1t−1n(−x)δn

(y
`

)
n(σ(x))σ(tk))

(
`n‖y‖ − `n

∥∥∥∥
α

β

∥∥∥∥− `n‖`u‖

)∥∥∥∥
α

β

∥∥∥∥
−1

,

the integral now being taken over ‖y‖ ≤
∥∥`uα

β

∥∥. In all of these integrals we may replace δ by c.

The integral (9.1) clearly extends to a smooth function on A(E). Letting s in A(F ) be

(
α1 0
0 β1

)

and representing y as β1

α1
we may change variables in (9.1) to obtain

(9.4) (1 − |$|)

∫ ∫ ∫
φ(k−1t−1n(−x)cn0n(σ(x))σ(tk))

∥∥∥∥
α

β

∥∥∥∥
−1

`n

∥∥∥∥
α

β

∥∥∥∥dxdtdk.

The integrals are over KE, Z(E)\A(E), and N(F )\N(E).

In the first region
∥∥y

`

∥∥ ≤ ‖x‖. Since φ is 0 where ‖x‖ is large and ‖u‖ is small we may replace y by 0 and δ

by c in the integral over the first region, as well as in (9.2) and (9.3). The sum of the integral over the first region

with (9.2) and (9.3) is equal to

(9.5)

∫

KE

∫

Z(E)A(F )\A(E)

∫

N(F )\N(E)

φ(k−1t−1n(−x)cn(σ(x))σ(tk))ψ(x, t)dxdtdk

where ψ(x, t) is
∥∥α

β

∥∥−1
times

∫
‖y‖≤‖`ux‖

‖y‖>
∥∥`u α

β

∥∥
+

∫

‖y‖≤
∥∥`u α

β

∥∥

(
`n‖y‖ − `n

∥∥∥∥
α

β

∥∥∥∥− `n‖`u‖

)

minus

|u|

∫
‖y‖≤‖`x‖∥∥x+ y

`

∥∥≥
∥∥α

β

∥∥
`n

∥∥∥∥x+
y

`

∥∥∥∥− `n

∥∥∥∥
α

β

∥∥∥∥.
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We have to convince ourselves that the result in b(δ, φ).

Although the principle to be invoked will be the same in both cases, it is simpler at this point to treat ramified

and unramified E separately. If E is unramified then the tree X is a subtree of X(E) and every double coset in

Z(E)G(F )\G(E)/KE has a representative g for which

d(gp′0) = dist(gp0, p0) = dist(gp0,X).

Two such representatives lie in the same double coset of K\G(E)/KE . Thus each double coset in

Z(E)G(F )\G(E)/KE is represented by a double coset in K\G(E)/KE . Moreover

∫

Z(E)G(F )\G(E)

φ(g−1cσ(g))dg

is equal to the sum over those p′ in X′(E) for which d(p′) = dist(p, p0) = dist(p,X) of

1

measZ(O)\K

∫

gp′
0=p′

φ(g−1cσ(g))dg.

On the other hand every double coset has a representative

g =

(
1 x
0 1

) (
α 0
0 β

)

where ‖x‖ = 1 and ‖x+ y‖ ≥ ‖x‖ for all y ∈ F . If ‖x‖ >
∥∥α

β

∥∥ and ‖β‖ = 1 it is a representative of the type just

described.

.............................................. ....................... ....................... ....................... ....................... ....................... .......................

.......................

.......................

.......................

........
........
........
........
......

........
........
........
........
......

........
........
........
........
......

gp0 =

(
1 x
0 1

)
p−k

‖α
β ‖ = ‖$‖k

p0p−k

Two such g, say g1 and g2 lie in the same right coset of G(E)/KE if and only if ‖α1‖ = ‖α2‖ and x1 ≡

x2(modα1OE). On the other hand, no matter what the absolute value of x is, if ‖x‖ ≤
∥∥α

β

∥∥ then

(
1 x
0 1

) (
α 0
0 β

)

lies in Z(E)G(F )K .

We first examine that part of (9.5) for which n(x)t lies in the trivial double coset. Then ‖`ux‖ <
∥∥`uα

β

∥∥.

Moreover ‖`x‖ ≥ ‖y‖ implies
∥∥x+ y

`

∥∥ = ‖x‖; so
∥∥x+ y

`

∥∥ ≤
∥∥α

β

∥∥. Thus

ψ(x, t) =

∥∥∥∥
α

β

∥∥∥∥
−1 ∫

‖y‖≤
∥∥`u α

β

∥∥ `n
∥∥∥∥
yβ

`uα

∥∥∥∥dy

= `

∥∥∥∥
α

β

∥∥∥∥
−

(`−1)
`

|`u|

∫

|y|≤1

`n|y|dy.
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We first integrate with respect to k. This allows us to replace n(x)tk by k and yields, since |`u| =
∣∣1 − b

a

∣∣, a

product, labelled (9.6), of

`

∣∣∣∣1 −
b

a

∣∣∣∣
measOE

measO

measZ(OE)\A(OE)

measZ(O)\A(O)

and {∫

KE

φ(k−1cσ(k))dk

} {∫

|y|≤1

`n|y|dy

}
.

There are however two Haar measures on KE , dk and dg, the restriction of the Tamagawa measure of G, and

measOE measZ(OE)\A(OE)

∫

KE

dk =

∫

Z(OE)\KE

dg.

A similar observation applies to K . Thus (9.6) equals

`
∣∣1 − b

a

∣∣
measZ(O)\K

{∫

KE

φ(g−1cσ(g))dg

}{∫

K

∫

|y|≤1

`n|y|dydk

}

which is the contribution to b(δ, φ) it is supposed to yield. If ‖x‖ >
∥∥α

β

∥∥ then since ‖y‖ ≤ ‖`x‖ implies
∥∥x+ y

`

∥∥ = ‖x‖,

ψ(x, t) =

∥∥∥∥
α

β

∥∥∥∥
−1{∫

‖y‖≤‖`ux‖

`n

∥∥∥∥
yβ

`uα

∥∥∥∥− |`u|

∫

‖y‖≤‖x‖

`n

∥∥∥∥
xβ

α

∥∥∥∥

= `

∥∥∥∥
α

xβ

∥∥∥∥
−1

|`u|

∫

|y|≤1

`n|y|dy.

Once again we integrate with respect to K and then with respect to x and t, keeping n(x)t in a fixed right coset

of G(E)/KE . Thus, for example, x varies over x0 + α0

β0
OE modulo F . The result is, as before,

`

∣∣∣∣1 −
b

a

∣∣∣∣
∥∥∥∥
α0

x0β0

∥∥∥∥
− 1

`
{∫

g0KE

φ(g−1cσ(g))dg

}{∫

K

∫

|y|≤1

`n|y|dydk

}

if

g0 = n(x0)t0.

The expression is not changed if x0 is replaced by α1

β1
x0, and α0, β0 by α1α0, β1β0 with α1, β1 in F×.

Thus we may always normalize so that |x0| = 1 and β0 = 1. Then t is determined modulo A(OE). As we

let x0 and t0 vary can we obtain all right cosets of KE within a given double coset of K\G(E)/KE? No! ­

because x0 is taken modulo F so that if the right coset represented by n(x0)t0 occurs then that represented by

n(x0+y)t0, y ∈ O, y /∈ α0

β0
OE , does not. This means that a single right coset must stand for

∥∥α0

β0

∥∥− 1
` =

∥∥ α0

x0β0

∥∥− 1
`

altogether. Since this factor occurs in front of our integrals we may remove it, and then have a sum over all right

cosets in the double coset of K\G(E)/KE representing a double coset of G(F )Z(E)\G(E)/KE . We conclude

that (9.5) is indeed b(δ, φ).
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IfE is ramified then the set X may still be regarded as contained in X(E), but to obtain a subtree we have to

subdivide each edge of X into ` equal parts. The subdivision performed we may choose as representations p′ for

the orbits of Z(E)G(F ) in X′(E) those points p′ for which d(p′) = dist(p, p0) for which the closest point to p in

X is pz in A(E) with 0 ≤ z ≤ `
2 . If z = 0 let K0 be Z(O)K . If 0 < z < `

2 let

K0 =

{(
a b
c d

)
∈ Z(O)K|c ≡ 0(mod$)

}
.

If z = `
2 let it be the group generated by the previous group and

$−1
E

(
0 1
$ 0

)

where$E is a uniformizing parameter forE. Notice that if z = `
2 then ` = 2. If p′1 and p′2 are two possible choices

for representatives of an orbit then z1 = z2 and p′2 = kp′1 with k ∈ K0. Thus each double coset Z(E)G(F )hKE

is represented by a double coset K0uKE . If ρ is 1 for z = 0, q+1
2 for z = `

2 , and q + 1 for 0 < z < `
2 then

∫

Z(E)G(F )\Z(E)G(F )hKE

φ(g−1cσ(g))dg

is equal to
ρ

measK

∫

KE

φ(g−1u−1cσ(ug))dg

because
measZ(O)K

measK
= ρ.

If p′ → p and the closest point to p inX is pz with `
2 < z ≤ ` then p′ lies in the orbit represented by p′ where

the closest point to p̄ is p`−z . Every double coset has a representative

g =

(
1 x
0 1

) (
α 0
0 β

)

where x is such that ‖x+ y‖ ≥ ‖x‖ for all y ∈ F . Let ‖x‖ = ‖$‖−
z
` and

∥∥α
β

∥∥ = ‖$‖
k
` . Here$ is a uniformizing

parameter for F . Let j be the smallest integer greater than or equal to k
` . If ‖x‖ ≤

∥∥α
β

∥∥ then gp′0 lies in the orbit of

Z(E)G(F ) whose projection to X(E) contains pz with z = `j−k if `j−k ≤ `
2 and z = `− (`j−k) if `j−k ≤ `

2 .

....................... .............................................. ....................... ....................... ....................... ....................... ....................... .......................

p−k = gp0pz

If ‖x‖ >
∥∥α

β

∥∥ then, multiplying by an element of A(F ), we may suppose that 0 ≤ z < `. Observe that pz is the

closest point to gp0 in X.

....................... .......................

.......................

.......................

.......................

........
........
........
........
......

........
........
........
........
......

........
........
........
........
......

gp0

....................... ....................... ....................... ....................... ....................... ....................... .......................

pzp−k
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We first examine that part of (9.5) for which n(x)t lies in a double coset corresponding to an orbit which

meet X, that is, for which ‖x‖ ≤
∥∥α

β

∥∥. Then

ψ(x, t) =

∣∣∣∣1 −
b

a

∣∣∣∣

∥∥∥∥
α

β

∥∥∥∥
−1 ∫

‖y‖≤
∥∥α

β

∥∥ `n
∥∥∥∥y
β

a

∥∥∥∥dy.

In particular it is independent of x. We first integrate over KE to obtain a factor

∫

KE

φ(k−1cσ(k))dk

and then with respect to x over α
βOE modulo F . This yields a factor

measOE

measO

∥∥∥∥
α

β

∥∥∥∥|$|−j .

Multiplying by ψ(x, t) and ignoring the terms which do not depend on x we are left with an integrand

|$|−j

∫

‖y‖≤
∥∥α

β

∥∥ `n
∥∥∥∥y
β

α

∥∥∥∥dy =

∫

‖y‖≤1

`n

∥∥∥∥y
$jβ

α

∥∥∥∥dy.

Since ∫

|y|≤1

`n|y|dy =
|$|`n|$|

1 − |$|

∫

|y|≤1

dy

the right­hand side equals

(9.7) `

{
1 + (|$|−1 − 1)

(
j −

k

`

)}{∫

|y|≤1

`n|y|dy

}
.

If we are interested in the double coset represented by the orbit whose projection on X(E) contains pz, 0 ≤

z ≤ `
2 we must take j− k

` to be z
` or 1− z

` . Integrating (9.7) over the relevant part of Z(E)A(F )\A(E) we obtain

ρ`
measA(OE)

measA(O)

∫

|y|≤1

`n|y|dy

where ρ is 1 if z = 0, q+1
2 if z = `

2 , and q+ 1 if 0 < z < `
2 . Gathering everything together we obtain ρ times (9.6),

which is exactly what we need.

We next consider a double coset whose projection on X(E) does not meet X. The product n(x)t can lie in

such a double coset only if ‖x‖ >
∥∥α

β

∥∥, and then

ψ(x, t) =

∣∣∣∣1 −
b

a

∣∣∣∣
∥∥∥∥
α

β

∥∥∥∥
−1 ∫

‖y‖≤‖x‖

`n

∥∥∥∥
y

x

∥∥∥∥dy.

As before we first integrate with respect to k to obtain a factor

∫

KE

φ(k−1g−1cσ(gk))dk
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if g is some fixed representative of the right coset in which n(x)t is constrained to lie. Take

g =

(
1 x0

0 1

) (
α0 0
0 β0

)
.

The integration over x0 + α
βOE , on which ‖x‖ = ‖x0‖ is a constant, yields a new factor

measOE

measO

∥∥∥∥
α

β

∥∥∥∥ |$|−j

if
∥∥α

β

∥∥ = ‖$‖
k
` and j is defined with respect to k

` as above. If ‖x‖ = ‖$‖−
z
` and i is the smallest integer greater

than or equal to − z
` the product of this with ψ(x0, t0) is

∣∣∣∣1 −
b

a

∣∣∣∣
measOE

measO

times

(9.8) |$|−j−i

∫

‖y‖≤1

`n

∥∥∥∥
y

$ix

∥∥∥∥dy.

At this point we are free so to normalize x0 and 0 ≤ z < ` and i = 0 and β0 = 1. Then (9.8) becomes, for z cannot

be 0,

`|$|−j

{∫

|y|≤1

`n|y|dy

}{
1 + (|$|−1 − 1)

z

`

}
.

The final integration with respect to t simply introduces a factor

measZ(OE)\A(OE)

measZ(O)\A(O)
.

We could now collect together the terms and find the contribution of the right coset n(x0) to KE . However,

we are interested in the total contribution from all the right cosets which, with x0 and t0 normalized, lie in a given

double coset K0uKE . As before, not all possible right cosets appear, for x0 is taken modulo O. However, we

may pretend that all occur if we suppress the factor |$|−j . We must also remember, since we are really interested

in double cosets with respect to Z(E)G(F ), KE , that we may obtain two double cosets in K0\G(E)/KE which

lie in the same double coset in Z(E)G(F )\G(E)/KE . To pass from one to the other we must replace z by `− z.

Since (
1 + (|$|−1 − 1)

z

`

)
+
(
1 + (|$|−1 − 1)

(
1 −

z

`

))
= q + 1

and

1 + (|$|−1 − 1)
`

2`
=
q + 1

2

we can finish simply by gathering together the pieces.
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Before analyzing the behavior ofA3(δ, φ) whenE is not a field, we introduce another expression for its value

when Nδ is a scalar. If c belongs to E× and

n0 =

(
1 z0
0 1

)
, trace z0 = 1,

we introduce θ(c, s, φ) as L(1 + `s, 1F )−1 times

∫

Z(E)\A(E)

∫

N(F )\N(E)

∫

KE

φ(k−1t−1n−1cn0σ(ntk))

∥∥∥∥
a

b

∥∥∥∥
−1−s

dndtdk,

It is clearly independent of the choice of z0; so we may take z0 = 1
` . The derivative of θ(c, s, φ) at s = 0 is equal

to the sum of

−1

L(1, 1F )

∫

Z(E)\A(E)

∫

N(F )\N(E)

∫

KE

φ(k−1t−1n−1cn0σ(ntk))

∥∥∥∥
a

b

∥∥∥∥
−1

`n

∥∥∥∥
a

b

∥∥∥∥dndtdk,

which is the negative of (9.4), and

−`|$|`n|$|

∫

Z(E)\A(E)

∫

N(F )\N(E)

∫

KE

φ(k−1t−1n−1cn0σ(ntk))

∥∥∥∥
a

b

∥∥∥∥
−1

dndtdk

which is c(δ, φ). Thus

θ′(c, 0, f) = −A3(c, f).

If F is non­archimedean and E is not a field then, as in Paragraph 8, φ is just a collection f1, · · · , f` of

functions on G(F ) and if δ = (δ1, · · · , δ`) then A1(δ, φ) is equal to

∑`

i=1
∆(γ)

∫

Z(E)A(F )\G(E)

f1(h
−1
1 δ1h2) · · · f`−1(h

−1
`−1δ`−1h`)f`(h

−1
` δ`h1)`nλ(hi).

We choose an i, 1 ≤ i ≤ `, and consider the corresponding term. We introduce new variables of integration by

the equations

gi = hi, gi+1 = h−1
i+1δi+1 · · · δ`δ1 · · · δi−1hi · · · , g` = h−1

` δ`δ1 · · · δi−1hi, · · · , gi−1 = h−1
i−1δi−1hi.

If f (i) is the convolution

fi ∗ fi+1 · · · ∗ f` ∗ f1 ∗ · · · ∗ fi−1

the term in which we are interested is simply

A1(γ, f
(i)).

Thus

A1(γ, φ) =
∑

i
A1(γ, f

(i)).
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A similar change of variables shows us that

F (δ, φ) =
∑

i
F (γ, f (i)) = `F (γ, f)

and

c(δ, φ) =
∑

i
c(γ, f (i)) = `c(γ, f)

if f = f (1) = f1 ∗ · · · ∗ f`. We also see that

b(δ, φ) =
∑

b(γ, f (i)) = `b(γ, f).

The required property of A3(δ, φ) follows therefore from the similar property of A3(γ, f).

We may again introduce θ(c, s, φ) if c ∈ Z(E). If β(g) is the function on G(E) defined by

β(

(
1 x
0 1

) (
α 0
0 β

)
k) =

∥∥∥∥
α

β

∥∥∥∥

then

θ(c, s, φ) =
1

L(1 + `s, 1F )

∫

Gσ
n0

(E)Z(E)\G(E)

φ(g−1cn0σ(g))β(g)−sdg.

The derivative of θ(c, s, φ) at s = 0 is

−1

L(1, F )

∫

Gσ
n0

(E)Z(E)\G(E)

φ(g−1cn0σ(g))`nβ(g)dg

plus

−`|$|`n|$|

∫

Gσ
n0

(E)Z(E)\G(E)

φ(g−1cn0σ(g))dg.

We may change variables as before to see that this equals

`θ′(a, 0, f)

if a = NE/F c. Therefore

θ′(c, 0, φ) = −A3(c, φ).

We must still discuss A2(δ, φ) and A3(δ, φ) for an archimedean field. We set

c(δ, φ) = −`
L′(1, 1F )

L(1, F )2

∫

Gσ
n0

(E)Z(E)\G(E)

φ(g−1cn0σ(g))dg

and

A2(δ, φ) = `n

∣∣∣∣1 −
b

a

∣∣∣∣
`

F (δ, φ) + c(δ, φ)
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while

A3(δ, φ) =
A1(δ, φ)

2
−A2(δ, φ).

If E is not a field we may proceed as in the non­archimedean case; so suppose E is a field. Then

A1(δ, φ)

2
= −∆(γ)

∫

KE

∫

Z(E)A(F )\A(E)

∫

E

φ(k−1n−1t−1δσ(tnk))`n(1 + |x|2)dxdtdk.

Here

n = n(x) =

(
1 x
0 1

)
.

Moreover the absolute value is that of an analyst and not of a number­theorist. To explain the disappearance of

the 2 from the denominator we observe that

(
0 1
−1 0

) (
1 x
0 1

)
=

(
0 1
−1 −x

)
=

(
(1 + xx̄)−1/2

(1 + xx̄)1/2

) (
1 y
0 1

)
k′

and

λ(n) = ‖(1 + xx̄)−1‖ = (1 + |x|2)−2.

If

t =

(
α 0
0 β

)

we first write this expression as

−∆(γ)

∫

KE

∫

Z(E)A(F )\A(E)

∫

E

φ(k−1t−1n−1δσ(ntk))`n

(
1 +

∣∣∣∣
β

α
x

∣∣∣∣
2
) ∣∣∣∣

α

β

∣∣∣∣
−2

dxdtdk.

Since we are again only interested in the behavior of this integral when γ is close to a scalar we may assume that

δ lies in A(F ). Indeed we can always do this; for F is R and E is C, so A(E) = A1−σ(E)A(F ). But when γ is

close to a scalar we may in addition suppose that c
d is close to 1 if

δ =

(
c 0
0 d

)
.

The function c(δ, φ) is clearly smooth on all of A(E) and

`n

∣∣∣∣1 −
b

a

∣∣∣∣
`

F (δ, φ) − `n

∣∣∣∣1 −
d

c

∣∣∣∣
`

F (δ, φ)

is smooth as long as we keep d
c close to 1, for then

∣∣∣∣1 −
b

a

∣∣∣∣ =
∣∣∣∣1 −

d

c

∣∣∣∣
∣∣∣∣1 +

d

c

∣∣∣∣

and

`n

∣∣∣∣1 +
d

c

∣∣∣∣
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is smooth. Thus we have ony to investigate the behavior of

A1(δ, φ)

2
− `n

∣∣∣∣1 −
d

c

∣∣∣∣
`

F (δ, φ).

Note that ` = 2.

In the integral defining
A1(δ,φ)

2 we write x as u
2 + iv and integrate with respect to u and then with respect to

v. We start from

n(−x)δn(σ(x)) = n(−iv)δn

((
1 −

d

c

)
u

2

)
n(−iv)

and the change variables so that the 1 − d
c disappears. This replaces −∆(γ) by −

∣∣a
b

∣∣1/2
and `n

(
1 +

∣∣ β
αx
∣∣2
)

by

`n

[∣∣∣∣1 −
d

c

∣∣∣∣
2
(

1 +

∣∣∣∣
β

α
v

∣∣∣∣
2
)

+
|βu|2

2α

]
− `n

∣∣∣∣1 −
d

c

∣∣∣∣
2

.

If we subtract

`n

∣∣∣∣1 −
d

c

∣∣∣∣
2

F (δ, φ)

we are left with −
∣∣a

b

∣∣1/2
times

∫ ∫ ∫
φ(k−1t−1n(−iv)δn

(u
2

)
n(−iv)σ(tk))`n

[∣∣∣∣1 −
d

c

∣∣∣∣
2
(

1 +

∣∣∣∣
β

a
v

∣∣∣∣
2
)

+

∣∣∣∣
βu

2α

∣∣∣∣
2]∣∣∣∣

α

β

∣∣∣∣
−2

.

The two outer integrals are over KE and Z(E)A(F )\A(E). This is a continuous function of δ for d
c close to 1.

As δ → c in E× the value of A3(δ, φ) approaches the sum of three terms:

−

∫

KE

∫

Z(E)A(F )\A(E)

∫
φ(k−1t−1n(−iv)cn

(u
2

)
n(−iv)σ(tk))

∣∣∣∣
α

β

∣∣∣∣
−2

`n

∣∣∣∣
βu

2α

∣∣∣∣
2

;

and, since 1 + d
c → 2,

−2`n2

∫

KE

∫

Z(E)A(F )\A(E)

∫
φ(k−1t−1n(−iv)cn

(u
2

)
n(−iv)σ(tk))

∣∣∣∣
α

β

∣∣∣∣
−2

;

and

lim
δ→c

−c(δ, φ).

The first two terms together yield

−

∫

KE

∫

Z(E)A(F )\A(E)

∫
φ(k−1t−1n(−iv)cn

(u
2

)
n(−iv)σ(tk))

∣∣∣∣
α

β

∣∣∣∣
−1

`n

∣∣∣∣
βu

α

∣∣∣∣
2

.

Writing u = βi

α1
we see that this in turn equals

−1

L(1, 1F )

∫

KE

∫

Z(E)\A(E)

∫

N(F )\N(E)

φ(g−1t−1n−1cn0σ(ntk))

∣∣∣∣
α

β

∣∣∣∣
−2

`n

∣∣∣∣
β

α

∣∣∣∣
2

.

We conclude once again that

A3(c, φ) = −θ′(c, 0, φ).

It is also easily shown that ifA3(δ, φ) is regarded as a function onA1−σ(E)\A(E) then its second derivatives

are measures.
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10. THE TRACE FORMULA

The results on global lifting as well as the remaining results on local lifting are obtained by combining the

local analysis which we have carried out with a comparison of the trace formula over F and the twisted trace

formula over E. This is also the method exploited by Saito and Shintani. The trace formula has been discussed

extensively in recent years ([1], [9], [10], [14]) and we shall review it only briefly, stressing the modifications

necessary for the present purposes. Our discussion of the twisted trace formula, of which the usual formula

is a special case, will be only a little more extensive. Enough will be said that the reader familiar with the

usual formula will be convinced of the validity of the twisted form, but the analytical aspects of the proof will

be scamped. However, some calculations will be carried out in more detail for the twisted case, and it may

occasionally be useful to glance ahead.

We recall some of the notation introduced in §2. Set

ZE(A) = Z(F )NE/FZ(AE)

and let ξ be a unitary character of ZE(A) trivial on Z(F ). Ls(ξ) is the space of measurable functions ϕ on

G(F )\G(A) which satisfy

(a) ϕ(zg) = ξ(z)ϕ(g) for all z ∈ ZE(A)

(b)

∫

ZE(A)G(F )\G(A)

|ϕ(g)|2dg <∞.

G(A) acts on Ls(ξ) by the right translations,

r(g)ϕ(h) = ϕ(hg).

The space Ls(ξ) is the direct sum of three mutually orthogonal subspaces, Lsp(ξ), L
0
se(ξ), and L1

se(ξ), all defined

in §2. The representation of G(A) on Lsp(ξ) + L0
se(ξ) is denoted r.

Let f be a function on G(A) defined by

f(g) =
∏

v
fv(gv),

where the fv satisfy the conditions (i), (ii), and (iii) imposed in §2. Recall that

r(f)ϕ(h) =

∫

NE/F Z(AE)\G(A)

ϕ(hg)f(g)dg

if ϕ ∈ Lsp(ξ) + L0
se(ξ). It is of trace class. We start from the formula for its trace given on pages 516–517 of [14],

taking account of the trivial modifications required by the substitution of ZE(A) or NE/FZ(AE) for Z(A), and

rewrite it in a form suited to our present needs. In particular, we shall express the trace as a sum of invariant
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distributions, along lines adumbrated in [23]. Unless the contrary is explicitly stated we shall use Tamagawa

measures locally and globally (§6 of [23]). This will remove some of the normalizing constants of [14].

The first term of this sum, corresponding to (i) and (ii) of [14] together, is

(10.1)
∑

γ
ε(γ)meas(NE/FZ(AE)Gγ(F )\Gγ(A))

∫

Gγ(A)\G(A)

f(g−1γg)dg.

The sum is over conjugacy classes in G(F ) for which Gγ(F ) does not lie in a Borel subgroup taken modulo

NE/FZ(F ). ε(γ) is 1
2 or 1 according as the equation

δ−1γδ = zγ

can or cannot be solved for δ ∈ G(F ) and z 6= 1 in NE/FZ(F ). Observe that the extension is cyclic and that

NE/FZ(E) is therefore

Z(F ) ∩NE/FZ(AE).

If A is the group of diagonal matrices the set D of all characters η = (µ, ν) of A(F )\A(A) for which

µν = ξ on ZE(A) may be turned into a Riemann surface by introducing as parameter in the neighborhood

(µ|α|
s
2 , ν|α|−

s
2 ), s ∈ C, of (µ, ν) the variable s. Differentiation with respect to s is well defined. We denote it by

a prime. We may also introduce the measure |ds| on the set D0 of unitary characters in D.

We write ρ(g, η) for the operator ρ(g, µ, ν, 0) introduced on p. 513 of [14] and set

ρ(f, η) =

∫

NE/F Z(AE)\G(A)

f(g)ρ(g, η)dg.

If ηv is the component of η at v we write R(ηv) for the operator R(µv, νv, 0) introduced on p. 521 of [14], noting

that the factor ε(1 − s, µ−1
v νv, ψv) occurring in that definition should be ε(s, µvν

−1
v , ψv), and set

M(η) =
L(1, νµ−1)

L(1, µν−1)
⊗v R(ηv).

We also let m(η) be the function
L(1, νµ−1)

L(1, µν−1)
.

The term (vi) of the trace formula of [14] may be written

(10.2) −
1

4

∑

ν=(µ,µ)

traceM(η)ρ(f, η).

The term (vii) is

(10.3)
1

4π

∫

D0

m−1(η)m′(η)trace ρ(f, η)|ds|.
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It appears at first sight that a factor ` should appear in the numerators because the integral on line 4 of p. 540

of [14] is now over G(F )NE/FZ(A)\G(A) rather than G(F )Z(A)\G(A). This is, however, compensated by a

change in the measure on the dual D0.

Let 1F be the trivial character of the idèles of F and let λ0 be the constant term of the Laurent expansion of

L(1 + s, 1F ) at s = 0. Let

n =

(
1 1
0 1

)
.

The first term of (v) becomes

(10.4)
∑

a∈NE/F Z(E)\Z(F )

`λ0

∏
v
L(1, 1Fv)

−1

∫

Gn(Fv)\G(Fv)

f(g−1ang)dg.

Those who follow the discussion on p. 532 of [14] will see that the ` occurs in the numerator because we have

replaced Z(A) by NE/FZ(AE) and

[Z(A) : Z(F )NE/FZ(AE)] = `.

If

γ =

(
a 0
0 b

)

belongs to A(Av) set

∆v(γ) =

∣∣∣∣
(a− b)2

ab

∣∣∣∣
1/2

v

and let

F (γ, fv) = ∆v(γ)

∫

A(Qv)\G(Qv)

f(g−1γg)dg.

Let λ(g) be the function on A(Fv)\G(Fv) obtained by writing g = ank, , a ∈ A(Fv), n ∈ N(Fv),

k ∈ Kv and setting λ(g) = λ(n) with λ(n) defined as on p. 519 of [14]. If γ ∈ A(Fv) set

A1(γ, fv) = ∆v(γ)

∫

A(Fv)\G(Fv)

f(g−1γg)`nλ(g)dg.

Because of the product formula the term (iv) becomes

−
1

2
`λ−1

∑
v

∑

γ∈NE/F Z(E)\A(F )

γ /∈Z(F )

A1(γ, fv)
∏

w 6=v
F (γ, fw).

λ−1, the residue of L(1 + s, 1F ) at s = 0, appears because we must pass to the normalized global Tamagawa

measure. As before, an ` appears in the numerator because

[Z(A) : Z(F )NE/FZ(AE)] = `.
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The results of the previous paragraph allow us to write the sum of (iv) and the second half of (v) as the sum

of

(10.5) −`λ−1

∑
v

∑
γ∈NE/F Z(E)\A(F )

γ /∈Z(F )

A2(γ, fv)
∏

w 6=v
F (γ, fw)

and

(10.6) −`λ−1

∑
v

∑
γ∈NE/F Z(E)\A(F )

A3(γ, fv)
∏

w 6=v
F (γ, fw).

We may apply the Poisson summation formula to (10.6) and the group NE/FZ(AE)\A(A). However,

departing a little from the usual convention, we apply it to a function, that of (10.6) which transforms under

NE/FZ(AE) according to ξ−1. Then the Fourier transform will be concentrated on D0. We may compute the

Fourier transform locally if we remember at the end to divide by λ−1, for the global measure differs from the

product of the local measures by this factor. The Fourier transform of F (γ, fv) is ρ(fv, ηv). Let B1(fv, ηv) be the

Fourier transform of A3(γ, fv). Since

[Z(A) : ZE(A)] = `

the dual measure on D0 is
1

2π`
|ds|.

Let

B(fv, ηv) =
1

2
Trace(R−1(ηv)R′(ηv)ρ(fv, ηv)) −B1(fv, ηv).

Then (10.6) may be put together with (viii) of [14] to yield

(10.7)
1

2π

∫

D0

∑
v
B(fv, ηv)

∏
w 6=v

trace ρ(fw, ηw) |ds|.

The trace in which we are interested is the sum of (10.1), (10.2), (10.3), (10.4), (10.5), and (10.7). Since (10.7) occures

in a linear equality in which all other terms are invariant, it must be invariant. It is not hard to deduce from this

that fv → B(fv, ηv) is also invariant. Since we do not need this fact we do not give its proof. The idea involved

will come up later in a different context. Observe that R(ηv) has been so defined that B(f0
v , ηv) = 0 for all ηv, if

f0
v is the unit of the Hecke algebra. Thus f 0

v is supported inG(OFv )NEv/Fv
Z(Ev) and is invariant underG(OFv ).

Let ξE be the character z → ξ(NE/F z) of Z(AE) and, as before, let Ls(ξE) be the space of measurable

functions ϕ on G(E)\G(AE) satisfying

(a) ϕ(zg) = ξE(z)ϕ(g) for all z ∈ Z(AE)

(b)

∫

Z(AE)G(E)\G(AE)

|ϕ(g)|2dg <∞.
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The representation r of G(AE) on the sum of Lsp(ξE) and L0
se(ξE) extends to a representation r of G′(AE) =

G(AE) × G if we let r(τ), τ ∈ G, send ϕ to ϕ′ with

ϕ′(h) = ϕ(τ−1(h)).

If

φ(g) =
∏

v
φv(gv)

is a function on G(AE), where the φv satisfy the conditions of §2, then we defined r(φ) by

r(φ) =

∫

Z(AE)\G(AE)

φ(g)r(g)dg.

We can use the usual techniques to develop a formula for the trace of r(φ)r(σ).

The kernel of r(φ)r(σ) is
∑

Z(E)\G(E)
φ(g−1γσ(h)).

Let P be the projection of Ls(ξE) on L1
se(ξE). As on p. 538 of [14] we may find a formula for the kernel of

Pr(φ)r(σ) in terms of Eisenstein series. Let DE be the set of characters of A(E)\A(AE) which equal ξE on

Z(AE) and let D0
E consist of the unitary characters in DE . We may introduce the parameter s on DE as before.

If η = (µ, ν) lies in DE we introduce the space B(η) = B(µ, ν), together with the representation ρ(η) of G(A)

on it, as in Chap. 10 of [14]. Of course E is now to be substituted for F . As observed on p. 512 we may regard

the space B(η) as depending only on the connected component of DE in which η lies. In each of these connected

components we choose an orthonormal basis {ϕi} of B(η). Let

ϕσ
i (g) = ϕi(σ(g)).

If E(g, ϕ, η) is the value of the Eisenstein series defined by ϕ at g and η then the kernel of Pr(φ)r(σ) is

1

4π

∫

D0
E

∑
i,j
ρij(φ, η)E(g, ϕi, η)E(h, ϕσ

j , η
σ)|ds|.

It would be pointless to introduce the dependence of the basis on the connected component into the notation.

Observe that

ρ(φ, η) =

∫

Z(AE)\G(AE)

φ(g)ρ(g)dg.

We form the difference of the kernels and integrate along the diagonal. We begin by separating from the

integrand some terms whose integral converges and can easily be put in the form we need. We take the sum

∑
φ(g−1γσ(g))
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over those elements γ, taken moduleZ(E), which are not σ­conjugate to a triangular matrix inG(E). We rewrite

it as a sum over σ­conjugacy classes

∑
{γ}

ε(γ)
∑

Z(E)F σ
γ (E)\G(E)

φ(g−1δ−1γσ(δ)σ(g)).

Here ε(γ) is 1
2 or 1 according as the equation

δ−1γσ(δ) = zγ

can or cannot be solved for δ ∈ G(E) and z in Z(E) but not in Z(E)1−σ . Integrating we obtain

∑
{γ}

ε(γ)meas(Z(AE)Gσ
γ (E)\Z(AE)Gσ

γ (AE))

∫

Z(AE)Gσ
γ (AE)\G(AE)

φ(g−1γσ(g))dg

or

(10.8)
∑

{γ}
ε(γ)meas(Z(A)Gσ

γ (E)\Gσ
γ (AE))

∫

Z(AE)Gσ
γ (AE)\G(AE)

φ(g−1γσ(g))dg.

The convergence of the integral is a consequence of the basic properties of Siegel domains.

The next term we can break off has exactly the same form but the sum is over those γ for whichNγ is central.

(10.9)
∑

{γ}
ε(γ)meas(Z(AE)Gσ

γ (E)\Gσ
γ (AE))

∫

Z(AE)Gσ
γ (AE)\G(AE)

φ(g−1γσ(g))dg.

For the γ appearing here, ε(γ) is easily shown to be 1. Moreover all but a finite number of the terms in this sum

are zero.

We turn now to the analogues of (16.2.1) and (16.2.2) of [14]. If B is the group of triangular matrices and N1

the group of triangular matrices with equal eigenvalues the analogue of (16.2.1) is

∑
B(F )N1(E)\G(E)

∑
γ∈Z(E)\N1(E)

Nγ /∈Z(F )

φ(g−1δ−1γσ(δ)σ(g))

and that of (16.2.2) is
1

2

∑
A(E)\G(E)

∑
γ∈Z(E)\A(E)

Nγ /∈Z(F )

φ(g−1δ−1γσ(δ)σ(g)).

We introduce the function χ as on p. 529 of [14] and consider

1

2

∑
B(E)\G(E)

∑
γ∈Z(E)\B(E)

Nγ /∈N1(E)

φ(g−1δ−1γσ(δ)σ(g))(1 − χ(δg) − χ(ω(γ)δg).

Here ω(γ) is some element of G(E) not in B(E) for which

ω(γ)γσ(ω(γ)−1) ∈ B(E).
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The integral of this sum over Z(AE)G(E)\G(AE) converges. It is equal to

1

2

∫

Z(AE)B(E)\G(AE)

∑
γ∈Z(E)\B(E)

Nγ /∈N(E)

φ(g−1γσ(g))(1 − γ(g) − χ(ω(γ)g))dg

which we may rewrite as

(10.10)
1

2

∑
γ∈A1−σ(E)Z(E)\A(E)

Nγ /∈Z(F )

∫

Z(AE)A(F )\G(AE)

φ(g−1γσ(g))(1 − χ(g) − χ(ωg))dg

with

ω =

(
0 1
−1 0

)
.

If we choose a measure onKE , the standard maximal compact subgroup of G(AE), so that

∫

Z(AE)\G(AE)

h(g)dg =

∫

Z(AE)\A(AE)

∫

N(AE)

∫

KE

h(ank)dadndk

then, as on pages 530–531, the integral (10.10) is equal to the sum of

(10.11)
`nc1
`

∑ ∫

Z(AE)A(A)\G(AE)

φ(g−1γσ(g))dg

and

(10.12) −
1

2`

∑
γ

∑
v

∫∫

N(AE)

∫

KE

φ(k−1n−1t−1γσ(tnk))`nλ(nv)dtdndk.

The outer integral is taken over Z(AE)A(A)\A(AE).

The factor ` appears in the denominator because χ is defined with respect to absolute values onE. Moreover

if Ev is not a field but a direct sum of fields, λ(nv) is the product of the values of λ at the components of nv. We

shall return to these expressions later.

We treat the analogue of (16.2.1) as on p. 532 of [14], separating off

∑
B(F )N1(E)\G(E)

∑
γ∈Z(E)\N1(E)

Nγ /∈Z(F )

φ(g−1δ−1γσ(δ)σ(g))(1 − χ(δg)).

The integral of this expression converges and is equal to

∫

Z(AE)B(F )N(E)\G(AE)

∑
γ∈Z(E)\N1(E)

Nγ /∈Z(F )

φ(g−1γσ(g))(1 − χ(g))dg.

If

n0 =

(
1 z0
0 1

)
trace z0 = 1

the sum of the integrand is

∑
N(F )Z(E)\B(F )N1(E)

φ(g−1δ−1n0σ(δ)σ(g))(1 − χ(g)).
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Since χ(δg) = χ(g) the integral itself is equal to

∫

Z(AE)N(F )\G(AE)φ

(g−1n0σ(g))(1 − χ(g))dg.

If we write t in A(AE) as (
a 0
0 b

)

then this integral is the limit as s approaches 0 from above of

∫

Z(AE)\A(AE)

∫

N(A)\N(AE)

∫

KE

φ(k−1t−1n−1n0σ(ntk))(1 − χ(t))

∣∣∣∣
a

b

∣∣∣∣
−1−s

dndtdk.

If s is positive this integral is the difference of

(10.13)

∫

Z(AE)\A(AE)

∫

N(A)\N(AE)

∫

KE

φ(k−1t−1n−1n0σ(ntk))

∣∣∣∣
a

b

∣∣∣∣
−1−s

dndtdk

and

(10.14).

∫

Z(AE)\A(AE)

∫

N(A)\N(AE)

∫

KE

φ(k−1t−1n−1n0σ(ntk))

∣∣∣∣
a

b

∣∣∣∣
−1−s

χ(t)dndtdk.

We suppose φ(g) =
∏
φv(gv) and set θ(s, φv) equal to L(1 + `s, 1Fv)−1 times

∫

Z(Ev)\A(Ev)

∫

N(Fv)\N(Ev)

∫

KEv

φv(k−1t−1n−1n0σ(ntk))

∣∣∣∣
a

b

∣∣∣∣
−1−s

dndtdk.

For almost all v, φv is φ0
v , whose value at gv is 0 unless gv = zk, z ∈ Z(Ev), k ∈ KEv , when it is

ξ−1
Ev

(z)meas−1(Z(Ev) ∩KEv\KEv).

If

n =

(
1 x
0 1

)

and if we take b to be 1 then

φ0
v(k−1t−1n−1n0σ(ntk)) = φ0

v(t−1n−1n0σ(n)σ(t))

and

t−1n−1n0σ(n)σ(t) =




a−1σ(a) a−1(1 − x+ σ(x))

0 1



 .

For almost all v, this matrix can be in Kv only if a = αy where α−1 is integral in Fv , y is a unit in Ev , and αx is

integral in Ev modulo Fv. If dv is the product of the measures of the image in Z(Ev)\A(Ev) of

{(
y 0
0 1

) ∣∣∣∣ y a unit in Ev

}
,
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of the image in N(Fv)\N(Ev) of {(
1 x
0 1

) ∣∣∣∣ x integral in Ev

}
,

and of Kv, divided by the measure of Z(Ev) ∩KEv\KEv , then

θ(s, φ0
v) = dv.

Since the product of the dv converges and since each θ(s, φv) is analytic for Res> −1
` the product

∏
v
θ(s, φv) = θ(s, φ)

is analytic for Res> −1
` and its derivative at s = 0 is

∑
v
θ′(0, φv)

∏
w 6=v

θ(0, φv).

The expression (10.13) is equal to

L(1 + `s, 1F ) θ(s, φ).

It has a simple pole at s = 0 and the constant term of its Laurent expansion is

(10.15) λ0θ(0, φ) +
λ−1

`

∑
v
θ′(0, φv)

∏
w 6=v

θ(0, φv).

This is one of the contributions to the twisted trace formula.

The pole of (10.13) at s = 0 will have to be cancelled by a pole of (10.14) and is thus irrelevant. As on p. 534

of [14] we use the Poisson summation formula to treat (10.14). It equals the difference of

(10.16)

∫

Z(AE)A(F )\A(AE)

∫∫

KE

∑
γ∈N(E)

φ(k−1t−1n−1γσ(ntk))

∣∣∣∣
a

b

∣∣∣∣
−1−s

χ(t)dndtdk

and

(10.17)

∫∫∫

KE

φ(k−1t−1n−1σ(ntk))

∣∣∣∣
a

b

∣∣∣∣
−1−s

χ(t)dndtdk.

The outer integrals are both over Z(AE)A(F )\A(AE) and the inner integrals in the two expressions are over the

different spaces N(A)N(E)\N (AE) and N(A)\N(AE).

Let

N0(AE) = {n ∈ N(AE) |Nn = 1}.

If g ∈ G(AE) and t ∈ A(A) then

∫

N(A)\N(AE)

φ(g−1t−1n−1σ(ntg))dn =

∣∣∣∣
a

b

∣∣∣∣
`−1

F

∫

N0(AE)

φ(g−1nσ(g))dn.
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Notice that an absolute value with respect to F intervenes in this formula; the other absolute values have been

taken with respect to E. Also if

t′ =

(
a′ 0
0 b′

)

lies in A(AE) then

∫

Z(A)A(F )\A(A)

∣∣∣∣
a

b

∣∣∣∣
`−1

F

∣∣∣∣
a

b

∣∣∣∣
−1−s

χ(tt′)dt =
1

1 + `s

(∣∣∣∣
a′

b′

∣∣∣∣ c
−1
1

) 1+`s
`

.

Here c1 is the constant used to define χ. Thus (10.17) is equal to

1

1 + `s
· c

− 1+`s
`

1 ·

∫∫

N0(AE)

∫

KE

φ(k−1t−1nσ(t)σ(k))

∣∣∣∣
a

b

∣∣∣∣

1−`
`

dndtdk.

The outer integral is taken over Z(AE)A(A)\A(AE), and the entire integral is finite. This function is analytic at

s = 0 and its value there approaches 0 as c1 approaches infinity. Since our final step in the derivation of the trace

formula is to let c1 pass to infinity, it can be forgotten.

To treat (10.16) we choose a non­trivial characterψ ofF\A. Write (10.16) as the integral overZ(AE)A(F )\A(AE)

of
∑

N0(E)\N(E)

∫

KE

∫

N0(AE)

φ(k−1t−1γnσ(t)σ(k))

∣∣∣∣
a

b

∣∣∣∣
−1−s

χ(t)dndkdt

and take the Fourier transform Ψ(γ, t), with respect to ψ, of the function

∫

KE

∫

N0(AE)

φ(k−1t−1γnσ(t)σ(k))dndk

on N0(AE)\N(AE), which is isomorphic to N(A) or A. If t ∈ A(A) then

Ψ(γ, tt′) =

∣∣∣∣
a

b

∣∣∣∣
`−1

F

Ψ(tγt−1, t′).

Since γ → tγt−1 spreads apart lattice points when
∣∣a

b

∣∣ is large

∫

Z(AE)A(F )\A(AE)

{∑
γ 6=0

Ψ(γ, t)

}
χ(t)

∣∣∣∣
a

b

∣∣∣∣
−1−s

dt

is a holomorphic function of s and its value at s = 0 approaches 0 as c1 approaches ∞.

The remaining term is

∫

Z(AE)A(F )\A(AE)

∫

KE

∫

N(AE)

φ(k−1t−1nσ(t)σ(k))χ(t)

∣∣∣∣
a

b

∣∣∣∣
−1−s

dndtdk

which equals

1

`s

1

cs1

∫

Z(AE)A(A)\A(AE)

∫

KE

∫

N(AE)

φ(k−1t−1nσ(t)σ(k))

∣∣∣∣
a

b

∣∣∣∣
−1

dndtdk.
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The pole of this at s = 0 cancels with a pole we have met before, but we must keep its constant term with the

opposite sign. This is

(10.19)
`nc1
`

∫

Z(AE)A(A)\A(AE)

∫

KE

∫

N(AE)

φ(k−1t−1nσ(t)σ(k))

∣∣∣∣
a

b

∣∣∣∣
−1

dndtdk.

The product formula together with a little measure­theoretic manipulation allows us to put (10.11) in a form

that can be combined with (10.19) to yield

(10.20)
`nc1
`

∑ ∫∫

KE

∫

N(AE)

φ(k−1t−1γnσ(t)σ(k))

∣∣∣∣
a

b

∣∣∣∣
−1

dndtdk.

The sum is over A1−σ(E)Z(E)\A(E); the outer integral over Z(AE)A(A)\A(AE).

We treat what remains of the analogues of (16.2.1) and (16.2.2) as on pages 536–538. For the second we have

the sum of
1

2

∑
B(E)\G(E)

∑
γ∈Z(E)\B(E)

Nγ /∈N1(E)

φ(g−1δ−1γσ(δ)σ(g))χ(δg)

and
1

2

∑
B(E)\G(E)

∑
γ∈Z(E)\B(E)

Nγ∈N1(E)

φ(g−1δ−1γσ(δ)σ(g))χ(ω(γ)δg).

If γ′ = δ−1γσ(δ) with δ ∈ B(E) then we may chose ω(γ′) = δ−1ω(γ)δ. It follows easily that these two sums are

equal and that together they yield

∑
γ∈A1−σ(E)Z(E)\A(E)

Nγ /∈Z(F )

∑
Z(E)A(F )\G(E)

φ(g−1δ−1γσ(δ)σ(g))χ(δg)

which may also be written

(10.21)
∑

γ1∈A1−σ(E)Z(E)\A(E)
Nγ1 /∈Z(F )

{∑∑
φ(g−1δ−1γ1γ2σ(δ)σ(g))χ(δg)

}
.

The inner sums are over δ inA(F )N1(E)\G(E) and γ inN(E). The expression in brackets is 0 for all but finitely

many γ1.

For given γ1 and g, φ(g−1γ1γ2σ(g)) may be regarded as a function on N(AE) or, what is the same, on AE .

We choose a non­trivial additive character ψE of E\AE and set

Ψ(y, γ1, g) =

∫

A
φ(g−1γ1

(
1 x
0 1

)
σ(g))ψ(xy)dx.

We may apply Poisson summation to the innermost sum of (10.21). Now

∫

Z(AE)G(E)\G(AE)

∑
γ1

∑
δ

∑
y 6=0
y∈E

Ψ(y, γ1, δg)χ(δg)dg
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is equal to
∑

γ1

∫

Z(AE)A(F )N(E)\G(AE)

∑
y 6=0

Ψ(y, γ1, g)χ(g)dg.

Taking the structure of Siegel domains as well as the compact support of φ into account one sees that this integral

is finite and that it approaches 0 as c1 approaches infinity. This leaves

(10.22)
∑

{γ1|Nγ1 /∈Z(F )}

∑
δ

Ψ(0, γ1, δg)χ(δg)

to be considered.

The analogue of (16.2.1) still yields

∑
B(F )N1(E)\G(E)

∑
γ∈Z(E)\N1(E)

Nγ /∈Z(F )

φ(g−1δ−1γσ(δ)σ(g))χ(δg).

If we observe that every element of A(E) whose norm lies in Z(F ) is congruent module A1−σ(E) to an element

of Z(E), we see that we can apply Poisson summation to this expression to obtain a term which together with

(10.22) yields

(10.23)
∑

γ1∈A1−σ(E)Z(E)\A(E)

∑
δ∈A(F )N1(E)\G(E)

Ψ(0, γ1, δg)χ(δg)

as well as two remainder terms:

−
∑

A(F )N1(E)\G(E)

∑
γ∈Z(E)\N1(E)

Nγ∈Z(F )

φ(g−1δ−1γσ(δ)σ(g))χ(δg);

and
∑

A(F )N1(E)\G(E)

∑
y 6=0

Ψ(y, 1, δg)χ(δg).

The integrals over Z(AE)G(E)\G(AE) of both these functions converge and approach 0 as c1 approaches ∞.

We now turn to the kernel of Pr(φ)r(σ) on the diagonal. We must separate from it a term which cancels

(10.23) and calculate the integral of the reminder. Set E1(g, ϕ, η) equal to

∑
δ∈B(E)\G(E)

{ϕ(δg) +M(η)ϕ(δg}χ(δg)

and

E2(g, ϕ, η) = E(g, ϕ, η) −E1(g, ϕ, η).

In the sum it is implicit that ϕ lies in B(η), that is

ϕ(

(
a 0
0 b

)
g) = µ(a)ν(b)ϕ(g)

and that M(η) takes B(η) to B(η̃) with η̃ = (ν, µ). If 1 ≤ m, n ≤ 2 set

Hmn(g, η; i, j) = ρij(φ, η)Em(g, ϕi, η)En(g, ϕσ
j , η

σ).
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The kernel of Pr(φ)r(σ) is

1

4π

∫

D0
E

∑2

m,n=1

∑
i,j
Hmn(g, η; i, j) |ds| =

∑2

m,n=1
Φmn(g).

If m or n is 2 the integral of Φmn(g) over Z(AE)G(E)\G(AE) turns out to be finite and is equal to

1

4π

∫

D0
E

∑
i,j

{∫

Z(AE)G(E)\G(AE)

Hmn(g, η; i, j)dg

}
|ds|.

First take m = n = 2. A formula for the inner product

∫

Z(AE)G(E)\G(AE)

E2(g, ϕi, η)E2(g, ϕ
σ
j , η

σ)dg

is given on p. 135 of [22], but in a different notation and not in adelic form. It is easy enough to take these

differences into account. Let

αt :

(
a 0
0 b

)
→

∣∣∣∣
a

b

∣∣∣∣
t

.

We may as well suppose η is a unitary character. If ηη−σ is trivial on

A0 =

{(
a 0
0 b

) ∣∣∣∣
∣∣∣∣
a

b

∣∣∣∣ = 1

}

set

ηη−σ = αs(η).

The inner product is the sum of two terms. The first is 0 if ηη−σ is not trivial on A0. Otherwise it is

(10.24) lim
t↘0

1

s(η) + 2t
{c

s(η)+2t
1 (ϕi, ϕ

σ
j ) − c

−s(η)−2t
1 (M(ηαt)ϕi,M(ησαt)ϕ

σ
j )}

if

(ϕi, ϕ
σ
j ) =

∫

KE

ϕi(k)ϕ
σ
j (k)dk.

The second is 0 unless ηη̃−σ is trivial on A0, when it is

(10.25) lim
t↘0

1

t(η)
{c

t(η)
1 (ϕi,M(ησαt)ϕ

σ
j ) − c

−t(η)
1 (M(ηαt)ϕi, ϕ

σ
j )}

if

ηη̃−σ = αt(η).

Observe that s(η) is constant on connected components of D0
E and that

t(ηαt) = t(η) + 2t.

The Riemann­Lebesgue lemma allows us to discard the integral of (10.24) over those connected components

on which s(η) is not 0. Those elements of D0
E for which s(η) = 0 are all obtained from elements of D0 by
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composing with the norm, and `2 different elements ofD0 give rise to each such η. If s(η) = 0 then (10.24) equals

the sum of

(10.26) 2`nc1(ϕi, ϕ
σ
j )

and

(10.27) −
1

2
{(M(η)ϕi,M

′(η)ϕσ
j ) + (M ′(η)ϕi,M(η)ϕσ

j )} = −(M−1(η)M ′(η)ϕi, ϕ
σ
j ).

If η = ησ then g → ρ(g, η) may be extended to a representation of G(AE) × G for ϕ → ϕσ takes B(η) to

itself. The trace of ρ(φ, η)ρ(σ, η) is, on the one hand,

∫

Z(AE)\A(AE)

∫

N(AE)

∫

KE

φ(k−1tnσ(k))η(t)

∣∣∣∣
a

b

∣∣∣∣
−1

dtdndk

or ∫ {∫∫

N(AE)

∫

KE

φ(k−1t−1γnσ(t)σ(k))

∣∣∣∣
a

b

∣∣∣∣
−1

dtdndk

}
η(γ)

∣∣∣∣
a0

b0

∣∣∣∣
−1

dγ,

the two missing domains of integration being Z(AE)A1−σ(AE)\A(AE) and Z(AE)A(A)\A(AE), and γ now

being (
a0 0
0 b0

)
.

On the other hand it is
∑

i,j
ρij(φ, η) (ϕi, ϕ

σ
j ).

We apply Poisson summation to see that 1
2π times the integral over thoseη for which s(η) = 0 of traceρ(φ, η)ρ(σ, η)

is the sum over γ in A1−σ(E)Z(E)\A(E) of

1

`

{∫

Z(AE)A(A)\A(AE)

∫

N(AE)

∫

KE

φ(k−1t−1γnσ(t)σ(k))

∣∣∣∣
a

b

∣∣∣∣
−1

dtdndk

}
.

The factor ` appears in the denominator because the image ofA(AE) inA(A) is of index `moduleA(F ) and 1
2π |ds|

is the dual of the Tamagawa measure on Z(A)A(F )\A(A) pulled back to characters of Z(AE)A(E)\A(AE). In

any case the contribution of (10.26) cancels (10.20).

We define

mE(η) =
LE(1, νµ−1)

LE(1, µν−1)

with a subscript to stress that the L­functions are defined with respect to E. We also introduce RE(ηv) so that

M(η) = mE(η) ⊗v RE(ηv).
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The contribution of (10.27) to the trace is the sum of

(10.28)
1

4π

∫

{η∈D0
E
|s(η)=0}

m−1
E (η)m′

E(η)trace ρ(φ, η)ρ(σ, η)

and

(10.29)
1

4π

∫ ∑
v
trace(ρ(φv , ηv)ρ(σ, ηv)R−1

E (ηv)R′
E(ηv))

∏
w 6=v

trace ρ(φw, ηw)ρ(σ, ηw)ds,

the integral being over {η ∈ D0
E |s(η) = 0}. The sum is over the places of F .

If ησ = η̃ then M(ησ) is the adjoint M∗(η) of M(η) and, as on p. 543 of [14], the contribution of the integral

of (10.25) to the trace formula is

(10.30) −
1

4

∑
ησ=η̃

trace (ρ(φ, η)ρ(σ, ησ)M(η))

where

ρ(σ, ησ) : B(ησ) → B(η)

and

M(η) : B(η) → B(ησ).

As on pages 543–544 of [14] ∫

Z(AE)G(E)\G(AE)

Hmn(g, η; i, j)dg

is 0 if m 6= n and c1 is sufficiently large.

To handle that part of the kernel given by Φ1,1(g) we proceed as on p. 544 of [14]. If

F (g, ϕ, η) = ϕ(g) +M(η)ϕ(g)

where ϕ is here a function in B(η) then for c1 sufficiently large

H1 1(g, η; i, j) =
∑

B(E)\G(E)
ρij(φ, η)F (δg, ϕi, η)F (δg, ϕσ

j , η
σ)χ(δg).

The right side is the sum of four terms which we obtain by replacing F (g, ϕi, η) by ϕi and M(η)ϕi, and

F (g, ϕσ
j , η

σ) byϕσ
j andM(ησ)ϕσ

j . Since η̃η−σ and ηη̃−σ are not constant on the connected components, the cross

terms ϕi(g) ·M(ησ)ϕσ
j (g) and M(η)ϕi(g) · ϕσ

j (g) contribute nothing to the trace, or at least only a term which

approaches 0 as c1 approaches ∞.

Thus that part of Φ1,1(g) which we need to consider is the sum of

∑
δ

1

4π

∫

D0
E

∑
i,j
ρij(φ, η)ϕi(δg)ϕσ

j (δg)|ds|χ(δg)



Base change 127

and
∑

δ

1

4π

∫

D0
E

∑
i,j
ρij(φ, η)M(η)ϕi(δg)M(ησ)ϕσ

j (δg)|ds|χ(dg).

The first integrand
∑

i,j
ρij(φ, η)ϕi(g)ϕσ

j (g)

is the kernel ρ(φ, η)ρ(σ, ησ) restricted to the diagonal. The second is the kernel of

M(η)ρ(φ, η)M∗(η)ρ(σ, ησ) = ρ(φ, η)ρ(σ, ησ).

The kernel is also ∫

Z(AE)\A(AE)

∫

N(AE)

φ(g−1ntσ(h))η(t)

∣∣∣∣
a

b

∣∣∣∣
−1

dtdn.

By Poisson summation our sum is

∑
B(E)\G(E)

∑
Z(E)\A(E)

∫

N(AE)

φ(g−1δ−1γnσ(δ)σ(g))dnχ(δg).

This is easily seen to equal (10.23); so the two cancel each other.

The twisted trace formula is given by the sum of (10.8), (10.9), (10.12), (10.15), (10.28), (10.29), and (10.30);

but we must subject the expressions (10.12), (10.15), and (10.29) to further torture. We first remove

(10.31) λ0θ(0, φ)

from (10.15). If we observe that

θ(s, φv) = θ(1, s, φv)

we may appeal to the results of Paragraph 9 and write the sum of (10.12) and the remaining part of (10.15) as

(10.32)
−λ−1

`

∑
γ∈A1−σ(E)Z(E)/A(E)

Nγ /∈Z(F )

∑
v
A2(γ, φv)

∏
w 6=v

F (γ, φw)

and

(10.33)
−λ−1

`

∑
γ∈A1−σ(E)Z(E)\A(E)

∑
v
A3(γ, φv)

∏
w 6=v

F (γ, φw).

Poisson summation for the pairA1−σ(E)Z(E)\A(E),A1−σ(AE)Z(AE)\A(AE) may be applied to the latter

sum. If ηv agrees with ξEv on Z(Ev) we set

B1(φv, ηv) =

∫

A1−σ(Ev)Z(Ev)\A(Ev)

A3(t, φv)ηv(t)dt.
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Since λ−1 is just the discrepancy between the global Tamagawa measure and the product of the local Tamagawa

measures (10.33) is equal to

(10.34) −
1

2π

∫

{η∈D0
E

| s(η)=0}

∑
v
B1(φv, ηv)

∏
w 6=v

trace(ρ(φw , ηw)ρ(σ, ηw))|ds|

because, as observed in Paragraph 7,

∫

A1−σ(Ev)Z(Ev)\A(Ev)

F (t, φv)ηv(t)dt = trace(ρ(φv , ηv)ρ(σ, ηv)).

The ` has disappeared in (10.34) because the dual measure must be `|ds|.

If we set

B(φv, ηv) =
1

2
trace ρ(φ, ηv)ρ(σ, ηv)R−1

E (ηv)R′
E(ηv) −B1(φv, ηv)

then (10.29) and (10.34) may be combined to yield

(10.35)
1

2π

∫

{η∈D0
E

| s(η)=0}

∑
v
B(φvηv)

∏
w 6=v

trace(ρ(φw, ηw)ρ(σ, ηw))|ds|.
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11. THE COMPARISON

As pointed out in §2, the function of the trace formula is to establish the equality

traceR(φ)R(σ) = trace r(f).

However we there defined the representation R only for ` odd, and we have now to complete the definition.

Let S be the set of η in DE for which ησ 6= η but ησ = η̃. If η ∈ S and η = (µ, ν) then µσ = ν and νσ = µ

but µσ 6= µ and νσ 6= ν. It follows, in particular, that ` = 2 if S is not empty. If η ∈ S we may extend ρ(η) to a

representation τ(η) of G(AE) × G by setting

τ(σ) = ρ(σ, ησ)M(η).

Indeed

τ(g, η)τ(σ, η) = ρ(g, η)τ(σ, η) = ρ(σ, ησ)M(η)ρ(g, η)

which, because M(η) intertwines ρ(η) and ρ(η̃) = ρ(ησ), is equal to

ρ(σ, ησ)ρ(g, ησ)M(η) = ρ(σ(g), η)ρ(σ, ησ)M(η) = τ(σ(g), η)τ(σ, η).

Moreover, by the theory of Eisenstein series M(ησ)M(η) = M(η̃)M(η) = 1; so

τ(σ, η)τ(σ, η) = ρ(σ, ησ)M(η)ρ(σ, ησ)M(η)

= ρ(σ, ησ)ρ(σ, η)M(ησ)M(η)

= 1.

The representations τ(η) and τ(η̃) are equivalent, for

M(η)ρ(g, η)M(η)−1 = ρ(g, η̃)

and

M(η)ρ(σ, ησ)M(η)M(η)−1 = M(η)ρ(σ, ησ) = ρ(σ, η)M(η̃).

Since the involution η → η̃ has no fixed points on S

τ =
1

2

⊕
S
τ(η)

is actually a well­defined – up to equivalence – representation of G(AE) × G. It is 0 if ` 6= 2. Let R be the

representation ofG(AE)×G which is the direct sum of τ and ` copies of the representation r onLsp(ξE)⊕Lo
se(ξE).

We now let r denote solely the representation of G(A) on Lsp(ξ) + Lo
se(ξ).
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Suppose φ = Πφv is a function satisfying the conditions of the previous paragraph. Suppose moreover that

if v splits inE then φv onG(Ev) ' G(Fv)×· · ·×G(Fv) is itself a product of ` functions, one for each factor. Then

we map φv → fv, as in Paragraph 5 if v is unramified and φv is spherical, and as in Paragraph 6 or 8 otherwise.

Theorem 11.1 The equality

traceR(φ)R(σ) = trace r(f)

is valid.

We will, as has been stressed, use the results of the previous paragraph to prove this equality. If our

knowledge of local harmonic analysis were adequate we could prove it with no difficulty whatsoever; our

ignorance however forces some rather inelegant gymnastics upon us. We begin by deriving a formula for

traceR(φ)R(σ) − trace r(f).

We apply the trace formula, cancelling as much as possible.

We begin by observing that the contributions from (10.8) and (10.9) are cancelled by that from (10.1). First of

all, if γ is one of the indices in (10.1), the corresponding term is 0 unless γ is a local norm everywhere, and hence

a global norm. If γ = Nδ, then ε(γ) = ε(δ), for if

u−1γu = zγ, u ∈ G(F ),

with z = Nx, x ∈ Z(E), z 6= 1 then

N(u−1δu) = N(xδ)

and

xδ = v−1u−1δuσ(v) = v−1u−1δσ(u)σ(v).

Moreover

meas(NE/FZ(AE)Gγ(F )\Gγ(AA)) = `meas(Z(A)Gγ(F )\Gγ(A))

and, by standard facts about Tamagawa numbers (formula 16.1.8 of [14]),

meas(Z(A)Gγ(F )\Gγ(A)) = meas(Z(A)Gσ
γ (F )\Gσ

δ (AE))

= meas(Z(AE)Gσ
γ (F )\Z(AE)Gσ

δ (AE)).

SinceR is so defined that (10.8) and (10.9) have to be multiplied by `, the cancellation follows from the definitions

of Paragraphs 6 and 8, provided we recall from Paragraph 4 that if γ is central then the number of places at which

δ is not σ­conjugate to a central element is even.

The term (10.4) is cancelled by (10.31), or rather ` times (10.31). To see this we have only to appeal to the

definitions of Paragraphs 6 and 8, and to observe in particular that every term of (10.4) is 0 except the one indexed

by a ∈ NE/FZ(E).
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The terms (10.3) and (10.28) cancel each other. Observe first that there is a surjective map η → ηE , with

ηE(t) = η(Nt), of D0 to D0
E , D0 and D0

E being the groups of unitary characters of A(A) and A(AE) introduced

in the previous paragraph; and that, as we deduce from Paragraph 8,

trace ρ(φ, ηE)ρ(σ, ηE) = trace ρ(f, η).

The expression (10.3) is equal to

1

4π

∫

D0
E

(∑
η→ηE

m−1(η)m′(η)trace(ρ(φ, ηE)ρ(σ, ηE)
)
|ds|.

Since
∑

η→ηE

m−1(η)m′(η) = `m−1
E (ηE)m′

E(ηE)

the two can be cancelled – provided of course that we do not forget to multiply (10.28) by `.

The results of Paragraph 9 allow us to cancel (10.5) and (10.32). We should perhaps observe that the term of

(10.5) indexed by γ and v is 0 unless γ is a norm everywhere except perhaps at v. But if γ is a norm at all but one

place it is a norm everywhere, and hence a norm.

If we add the trace of τ(φ)τ(σ) to ` times (10.30) we obtain

−
`

4

∑
{η∈Do

E
| η=ησ=η̃}

M(η)trace(ρ(φ, η)ρ(σ, η)).

We have placed M(η) outside the trace because it is now a scalar; it intertwines ρ(η) with itself and ρ(η) is

irreducible ([14], Chapter I). If we subtract (10.2) from this we obtain

−
1

4

∑
η

{∑
η′=η̃′

η′→η

M(η′) − `M(η)

}
trace(ρ(φ, η)ρ(σ, η)).

However, as we shall see in a moment,M(η′) = M(η) = −1. Since there are ` different η′ mapping to a given η,

this expression is 0.

It will be enough to show that M(η ′) = −1, for M(η) is the same object, defined with respect to a different

field. First of all, since η′ = (µ′, µ′)

m(η′) = lim
t→0

m(ηαt) = lim
t→0

L(1 − 2t, 1F )

L(1 + 2t), 1F )
= −1.

To conclude we have only to appeal to Lemma 7.7 which shows that each R(η′v) is the identity.

At this point only (10.7) and (10.35) are left. They yield the sum over v of

(11.1)
1

2π

∫ {
`B(φvηv) −

∑
η′→η

B(fv, η
′
v)

} ∏
w 6=v

trace(ρ(φ, ηw)ρ(σ, ηw))|ds|,
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the integral being taken over {η ∈ Do
E |s(η) = 0}. Suppose v is unramified and φv is spherical. Then

B(φv, ηv) = −B1(φv , ηv)

and

B(fv, η
′
v) = −B1(fv, ηv).

Ifη′1 andη′2 both map toη andη′1 = (µ′
1, ν

′
1), η

′
2 = (µ′

2, ν
′
2), then

µ′
2

µ′
1

and
ν′
2

ν′
1

are both characters ofZ(F )NE/FZ(AE)\Z(A).

Thus if v splits in E, η′v is the same for all η′ → η. Denote it by η0
v . Then

∑
η′→η

B1(fv, η
′
v) = `2

∫

Z(Fv)\A(Fv)

A3(t, fv)η
0
v(t)dt.

Since

`A3(Nt, fv) = A3(t, φv)

the right side equals

`

∫

A1−σ(Ev)A(Ev)\A(Ev)

A3(t, φv)ηv(t)dt = `B1(φv, ηv).

If v remains prime in E, then

∑
η′→η

B1(fv, η
′
v) = `2

∫

NE/F Z(Ev)\NE/F A(Ev)

A3(t, fv)η
0
v(t)dt

if ηo
v is the restriction of the η′v to NE/FA(Ev). As before the right side equals `B1(φv , ηv). We are led to suspect

that

`B(φv, ηv) =
∑

η′→η
B(fv, η

′
v)

for all v; so (11.1) should vanish. This however we have yet to prove.

We now know only that

traceR(φ)R(σ) − trace r(f)

is equal to (11.1) above. We must show that this equality can hold only if both sides are 0.

The multiplicity one theorem is valid for the representation of G(AE) on Lsp(ξE) ⊕ Lo
se(ξE) (Proposition

11.1.1 of [14]). If Π, acting on VΠ, is an irreducible constituent then so is Πσ : g → Π(σ(g)). If Πσ is not equivalent

to Π, that is, if VΠ 6= VΠσ then the trace of R(φ)R(σ) on

VΠ ⊕ VΠσ ⊕ · · · ⊕ VΠσ`−1

is 0. If VΠ = VΠσ then G(AE) × G acts on VΠ. We denote the extended representation by Π′.

The representation Π is a tensor product ⊗vΠv where Πv is a representation of G(Ev). If Πσ ' Π then

Πσ
v ' Πv for each v, so Πv extends to a representation Π′

v of G(Ev) × G. Π′
v is determined up to a character
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of G. We may suppose that Π′ = ⊗Π′
v. Let V be a fixed finite set of places containing all infinite places and all

places ramified inE. Suppose Πv belongs to the unramified principal series for v /∈ V ; then we may also demand

that for such v the operator Π′
v(σ) fixes the KEv invariant vector. If we consider only φ for which φv is spherical

outside of V , we have

traceΠ′
v(φv)Π′

v(σ) = traceΠv(φv) = f∨
v (t(Πv))

for v /∈ V . Here

t(Πv) =



a(Πv) 0

0 b(Πv)




lies in A(C) and

a(Πv)b(Πv) = ξ($v), v split,

a(Πv)`b(Πv)` = ξ($`
v), v not split,

if $v is a uniformizing parameter for Fv . Observe that it is really only the conjugacy class of t(Πv), that is, the

pair (a(Πv), b(Πv)) which matters. Some of the equalities which are written below should be understood as

equalities between conjugacy classes.

If we set

α(Π) =
∏

v∈V
traceΠ′

v(φv)Π′
v(σ)

then the trace of the operator R(φ)R(σ) on Lsp(ξE) ⊕ Lo
se(ξE) is

∑
α(Π)

∏
v/∈V

f∨
v (t(Πv)).

The sum is over those Π which are equivalent to Πσ and for which Πv belongs to the unramified principal series

outside of V .

We need a similar expression for the trace of τ(φ)τ(σ). If η ∈ S and η = (µ, ν) then

mE(η) =
L(1, νµ−1)

L(1, µν−1)
.

In general this has to be evaluated as a limit. However both numerator and denominator are not finite and

different from 0, for µ 6= ν. Thus the quotient is meaningful as it stands and equals

L(1, νµ−1)

L(1, νσµ−σ)
= 1

because

L(s, χ) = L(s, χσ)

for all characters of E×\IE .

It follows that

M(η) = ⊗RE(ηv).
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If ηv is unramified then RE(ηv) fixes the KEv ­invariant vectors. If φv is spherical outside of V then trace

τ(φ, η)τ(σ, η) = 0 unless ηv is also unramified outside of v, when it equals

Πvtrace ρ(φ, ηv)ρ(σ, ησ
v )RE(ηv) = α(η)

∏
v/∈V

(f∨v (t(ηv)),

with

α(η) =
∏

v∈V
trace ρ(φ, ηv)ρ(σ, ησ

v )RE(ηv)

and

t(ηv) =



µ′

v($v)

ν′v($v)


 .

Here µv(x) = µ′v(Nx), νv(x) = ν′v(Nx).

The trace of R(φ)R(σ) is, when φv is spherical outside of V , given by

(11.2) `
∑

Π
α(Π)

∏
v/∈V

f∨
v (t(Πv)) +

1

2

∑
η
α(η)

∏
v/∈V

f∨
v (t(ηv)).

The indices Π and η are constrained as above. We may treat the trace of r(f) in a similar fashion to obtain

(11.3)
∑

π
α(π)

∏
v/∈V

F∨
v (t(πv))

where

t(πv) =



a(πv) 0

0 b(πv)




and
a(πv)b(πv) = ξ($v), v split,

a(πv)`b(πv)
` = ξ($`

v), v not split.

We write the difference of (11.2) and (11.3) as

(11.4)
∑

k
αk

∏
v/∈V

f∨
v (tkv)

with a family of distinct sequences {tkv |v /∈ V } and with none of the αk equal to 0. Distinct must be understood

to mean that either tkv and tk
′

v are not conjugate for some v which splits in E or (tkv)` and (tk
′

v )` are not conjugate

for some v which does not split. We are trying to show that this sum is empty.

If we set

β(η) =
∑

ν∈V

{
`B(φv, ηv) −

∑
η′→η

B(fv, η
′
v)

} {∏
w∈V
w 6=v

trace ρ(φ, ηw)ρ(σ, ηw)

}

and then (11.1) is equal to

(11.5)
1

2π

∫
β(η)

∏
v/∈V

f∨
v (t(ηv))|ds|.
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The integral is taken over those η ∈ D0
E for which ησ = η and which are unramified outside V .

Fix a v /∈ V . Suppose first that v splits in E. We choose a, b in C with |a| = |b| = 1 and write any

t =



a(t) 0

0 b(t)




in A(C) with a(t)b(t) = ξ($v) as

t =




az 0

0 bz−1



 .

This allows us to regard any function in the Hecke algebra at v,H′
v , onto which H′

Ev
maps surjectively, as a finite

Laurent series in z. These Laurent series will be invariant under z → b
az

−1. Moreover the Hecke algebra yields

all such series.

We may assume that for all the

tkv =




ak

v 0

0 bkv





occurring in (11.4), the inequality
∣∣ak

v

∣∣ ≥
∣∣bkv
∣∣

obtains. It follows from Lemma 3.10 of [14] that

∣∣∣∣
ak

v

bkv

∣∣∣∣ ≤ |$v|
−1.

If η ∈ D0
E , η is unramified outside of V , and v /∈ V , and

t(ηv) =




a(ηv)

b(ηv)





then

|a(ηv)| = |b(ηv)| = 1.

Let ri
v, i = 1, 2, · · · be the distinct elements among the tkv for the given fixed v and set

ci =
∑

tk
v=ri

v

αk

∏
w/∈V
w 6=v

f∨
v (tkv).

We write (11.4) as

(11.6)
∑

i
cif

∨
v (ri

v).



Base change 136

In a given connected component of D on which η = ησ and η is unramified outside V we may choose η0 with

η0
v =

(
a 0
0 b

)
.

If on each such component we choose an η0 and set

d(s) =
∑

β(η0αs)
∏

w/∈V
w 6=v

fw(t(η0
wαs))

then we may write (11.5) as

(11.7)
1

2π

∫ i∞

−i∞

d(s)f∨v (




a|$v|

s 0

0 b|$v|
−s



)|ds|.

It will be recalled that

αs :




a1

b1



→

∣∣∣∣
a1

b1

∣∣∣∣
s

.

From the equality of (11.6) and (11.7) we want to deduce that all ci are 0. It will follow that (11.7) is 0; so

the theorem will be established, for given any φ we can always choose V so that φv is spherical outside of V as

well as a v outside of V which splits in E. It is implicit in (11.6) and (11.7) that φw and fw are fixed for w 6= v.

However we are still free to vary φv and hence fv.

Since the trace formula yields absolutely convergent sums and integrals and since, in addition, we can make

f∨
v = 1,

∑
|ci| = M1 <∞

and
1

2π

∫ i∞

−i∞

|d(s)| |ds| = M2 <∞.

Moreover
1

2π
sup

−∞<s<∞
|d(is)| = M3 <∞.

We set

ri
v =




azi

bz−1
i



 , |zi| ≥ 1.

Since the Πv , the ρ(ηv), and the πv which contribute to (11.6) are all unitary

f∨
v (ri

v) = f∨
v (si

v)

with

si
v =




ā−1z̄ −1

i 0

0 b̄−1z̄−1
i



 .
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That is, either |zi| = 1 or zi = b
a z̄i. Since |$v|

1/2 ≤ |zi| ≤ |$v|
−1/2, the zi are constrained to lie in the compact

set X depicted below.

A finite Laurent series

ϕ(z) =
∑

λjz
j

is yielded by the Hecke algebra if and only if ajλ−j = bjλj . If λ∗j = λ̄−j this condition is equivalent to

ajλ∗−j = bjλ∗j ; so ϕ is yielded by the Hecke algebra if and only if

ϕ∗(z) =
∑

λ∗jz
j

is. Since

λ∗j =
(a
b

)j

λ̄j

the equality

ϕ∗(z) = ϕ(z)

is valid on X . We appeal to the Stone­Weierstrass theorem to conclude that any continuous function ϕ on X

satisfying

(11.8) ϕ(z) = ϕ

(
b

a
z−1

)

can be uniformly approximated by the functions associated to elements of the Hecke algebra.

Both (11.6) and (11.7) then extend to continuous linear functionals in the space of continuous functions

satisfying (11.8). It follows from the Riesz representation theorem that they are both zero, for one is given by an

atomic measure and the other by a measure absolutely continuous with respect to the Lebesgue measure on the

circle.

The theorem gives the equality easiest to state, but we shall work with a sharper form. Observe first that we

could have applied a similar argument if v were not split. The only difference is that the Laurent series coming

into play would only involve power of z`. But we would have to notice that it is then only the `th power (tkv)` of
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tkv which is relevant. It is clear that by repeatedly applying our argument we can show that if U is any finite set

of places disjoint from V then

(11.9)
∑

αk

∏
v/∈U∪V

f∨
v (tkv) = 0.

Here we choose rv, v ∈ U , and take the sum over those k for which

tkv = rv, v split,

(tkv)` = r`
v, v not split.

The equality is to be read as an equality of conjugacy classes. It simply means that the two matrices have the

same eigenvalues.

We show next that each αk is 0. Suppose for example that α0 6= 0. Choose an N such that

∑
k≥N

|αk| ≤
|α0|

2
.

Then choose U disjoint from V so that if 1 ≤ k < N then for some v ∈ U either i) v is split and tkv 6= tov, or ii)

v is not split and (tkv)` 6= (tov)
`. Applying (11.9) with rv = tov, v ∈ U , and with all f∨v equal to 1 we deduce a

contradiction.

Before going on we review the facts now at our disposal. Let V be a finite set of places containing all infinite

places and all finite places ramified in E. Suppose that for each v /∈ V we are given

rv =



av 0

0 bv




where avbv = ξ($v) if v is split and (avbv)` = ξ($`
v) if v is not split. Set

A1 =
∑ ∏

v∈V
trace(Πv(φv)Π′

v(σ)).

The sum is taken over all Π occurring in the representation of G(E) on Lsp(ξE) ⊕ Lo
se(ξE) for which Πv is

unramified outside of V and for which

traceΠv(φv) = f∨
v (rv)

for all v /∈ V and all spherical φv . Observe that by the strong form of the multiplicity one theorem (Lemma 3.1),

the sum is either empty or contains a single term.

We set

A2 =
∑ ∏

v∈V
trace τ(φv , ηv)τ(σ, ηv).
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Since τ(η) ∼ τ(η̃) we take the sum over unordered pairs (η, η̃) for which i) ησ = η̃, ii) η 6= η̃, iii) η = (µ, ν) and

µν = ξE , iv) ηv is unramified for v /∈ V , and v) if φv, v /∈ V , is spherical then

trace τ(φv , ηv) = trace ρ(φv, ηv) = f∨
v (rv).

According to Lemma 12.3 of [14], η = η′ or η̃ = η′ if for almost all v either ηv = η′v or η̃v = η′v. Thus the sum

definingA2 is either empty or contains a single term. By examining the poles of the L­functions L(s, χ⊗Π) and

L(s, χ⊗ ρ(η)) one sees readily that one of the two sums, either that definingA1 or that definingA2, must always

be empty. Set

A = `A1 +A2.

Finally set

B =
∑ ∏

v∈V
traceπv(fv).

The sum is taken over all π occurring in the representation r for which πv is unramified outside of V and for

which

traceπv(fv) = f∨
v (rv)

if fv is the image of some spherical φv . We know that

A = B,

and it is this equality with which we shall work.

We begin by studying the representation τ(η), and hence suppose for the moment that E is quadratic over

F . Given η with ησ = η̃, η 6= η̃ choose V and {rv} so that A2 is

∏
v/∈V

trace τ(φ, ηv)τ(σ, ηv).

If η = (µ, µσ) and

ρ = Ind(WE/F ,WE/E , µ),

then π = π(ρ) (§12 of [14]) defines a term entering the sum B. I claim there is only this one term.

If π′ also contributes to B then it must be cuspidal. To show that it must be π I apply a theorem of Jacquet­

Shalika ([15]), according to which it is enough to show that the function L(s, π′ × π̃) employed by them has a

pole at s = 1. Here π̃ is the contragredient of π. According to them it suffices for this purpose to show that

L(s, π′
v × π̃v) = L(s, πv × π̃v)

for almost all v. We take v outside of V . If v splits inE then πv = π′
v and the equality is certainly valid. Otherwise

L(s, π′
v × π̃v) = det−1(1 − |$v|

st(π′v) ⊗ ρ̃(Φv))
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if ρ̃ is the contragredient of ρ and Φv the Frobenius at v. Since ρ is induced the right side is equal to

det−1(1 − |$v|
2sµ(Φ2

v)t(π′v)2).

Since the analogous formula is valid for L(s, πv × π̃v), the asserted local equality is clear.

We conclude that

(11.10)
∏

v∈V
trace τ(φv , ηv)τ(σ, ηv) =

∏
v∈V

traceπ(fv)

f π = π(ρ). We want to deduce the equality

(11.11) trace τ(φv , ηv)τ(σ, ηv) = traceπ(fv)

for all φv. We know from Paragraphs 7 and 8 that this equality is valid if v splits, or if ηv = (µv, νv) is unramified

for then µv = νv .

Given F and a non­archimedean v we may choose another quadratic extension E′ so that E′
v = Ev and so

that every infinite place of F splits in E′. Given any character µv of E′
v we may extend it to a character µ of

E′×\IE , which is unramified outside of v. Take η = (µ, µσ) and apply the equality (11.10) to E′, η. Since we can

always choose φ so that

trace τ(φw , ηw)τ(σ, ηw) 6= 0 w ∈ V, w 6= v

we deduce (11.11). To prove (11.11) for Fv = R we takeE to be an imaginary quadratic field and F to be Q. Any

character of E∞ extends to a character of E×\IE , and we can proceed as before, since we now know that (11.11)

is valid at all non­archimedean places. The next lemma is an immediate consequence of the relation (11.11).

Lemma 11.2 Suppose F is a local field, E a quadratic extension, and η = (µ, µσ). Then the character of τ(η)

exists as a function and if

ρ = Ind(WE/F ,WE/E , µ)

then

χτ(η)(g × σ) = χπ(τ)(h)

if h inG(F ) is conjugate toNg and h has distinct eigenvalues, and the representation π(µ, µσ) is a lifting of π(ρ).

Actually we have only proved the lemma when µ is a unitary character, but the general case reduces

immediately to this. Observe that with this lemma, the proof of Proposition 5.1 is complete.

The first assertion of the next lemma is already proved. The others, in which the degree of E over F is an

arbitrary prime, will also be deduced from the equality A = B.

Lemma 11.3 (a) If E is a quadratic extension of the global field F and ρ is the representation induced from an

idèle class character µ of E then π(µ, µσ) is a lifting of π(ρ).
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(b) If π is a cuspidal automorphic representation and π is not a π(ρ) with ρ dihedral and induced from an

idèle class character of the given E then there is a cuspidal automorphic representation Π of G(AE) which is a

quasi­lifting of π.

(c) f Π is a cuspidal automorphic representation of G(AE) and Πσ ∼ Π then Π is a quasi­lifting of some π.

To begin the proof, suppose Π is finite­dimensional and choose V, rv, v /∈ V so that A1 is equal to

∏
v∈V

trace(Πv(φv)Π′
v(σ)).

If Π(g) = χ(det g) then χσ = χ and there exists a χ′ with χ(x) = χ′(Nx). Π′(σ) is the identity; so we may take

each Π′
v(σ) to be the identity. This means that the extension of Πv toG(Ev)×G agrees with that of Paragraphs 7 and

8. If ω is again a non­trivial character of F×NE/F IE\IE then the representations π(g) = ωiχ′(det g), 0 ≤ i < `,

each contribute a term toB. By Lemmas 7.4 and 7.5 and the results of Paragraph 8 the sum of these terms is equal

to A. If B′ denotes the sum over those π entering into B which are not of the form g → ωiχ(det g) of

∏
v
traceπv(fv)

then B′ equals 0. We must show that this implies the sum defining B ′ is empty.

If we knew that the sum contained only a finite number of terms, this would be an easy application of Lemma

7.13. But we do not, and have to work a little harder. We have a finite set of places V = (v1, · · · , vr), and a

sequence {(πk
v1
, · · · , πk

vr
) | k ≥ 0}, which may terminate or be empty, in which πk

vi
is an irreducible, admissible,

infinite­dimensional, unitary representation of G(Fvi ). For each i

πvi(zg) = ξvi(z)πvi(g) z ∈ NEvi
/Fvi

E×
vi
.

Moreover for every collection (fv1 , · · · , fvr) where fvi is the image of some φvi on G(Evi) the series

(11.12)
∑

k

∏r

i=1
traceπk

vi
(fvi)

is absolutely convergent and its sum is 0. We show by induction on r that this implies the sequence is empty.

Take a square­intergrable representation π0 of G(Fvr ) satisfying

(11.13) π0(zg) = ξvr (z)π
0(g), z ∈ NEvr\Fvr

E×
vr
,

and let f0
vr

be such that

traceπ(f0
vr

) = 0
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for infinite­dimensional π unless π ' ωi
v⊗π

0 for some i, ωv being the character ofF×
v associated to the extension

Ev . Then the trace is to be 1
` if π0 6' ω ⊗ π0 and 1 if π0 ' ω ⊗ π0. Notice that π(f 0

vr
) is defined only if π too

satisfies (11.13). The function f0
vr

is defined by

(11.14)

∫

A(Fvr )\G(Fvr)

f0
vr

(g−1γg)dg = 0

for regular γ in the group A(Fvr ) of diagonal matrices, and

(11.15)

∫
T (Fvr )\G(Fvr )f

0
vr

(g−1γg)dg =





(measZ(Fvr )\T (Fvr ))

−1χπo(γ), γ ∈ NT (E),

0, γ /∈ NT (E)

Here of course γ must in addition be regular, T is a non­split Cartan subgroup, and χπo is the character of π0.

Substituting f 0
vr

for fvr in (11.12) and applying the induction assumption, we see that πk
vr

is never square­

integrable. As a consequence (11.12) is not affected by the values of the orbital integrals of fvr on the non­split

Cartan subgroups.

Choose a character η0 = (µ0, ν0) of A(Fvr ) such that µ0ν0 = ξvr on NE×
vr

. For simplicity choose η0 so that

if, for some s,

µ0(x) = ν0(x)|x|s, for x ∈ NE×
vr
,

then µ0 = ν0. This can always be arranged by replacing µ0 by x → µ0(x)|x|−
s
2 and ν0 by x→ ν0(x)|x|

s
2ωj

vr
(x).

Let

A0(Fvr ) =

{
t =

(
α 0
0 β

)
∈ NA(Evr )

 |α| = |β|

}
.

If ϕ is a smooth function on NA(Evr ) compactly supported modulo NZ(Evr ) and satisfying

ϕ(zt) = η0(z)−1ϕ(t), z ∈ A0(Fvr ),

there is an fvr such that

Ffvr
(t) =




ϕ(t) + ϕ(t̃), t ∈ NA(Evr ),

0, t ∈ A(Fvr ), t /∈ NA(Evr ).

We set

ϕ∨(s) =

∫

NZ(Evr )\NA(Avr )

ϕ(t)η0(t)

∣∣∣∣
α

β

∣∣∣∣
s

dt.

If π = π(µ, ν) is infinite­dimensional and µν = ξvr on NE×
vr

then

traceπ(fvr ) = 0
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unless there is an s such that µ(x) = µ0(x)|x|s, ν(x) = ν0(x)|x|−s for x ∈ NE×
vr

and then

traceπ(fvr ) =






ϕ∨(s), η̃o 6= ηo,

ϕ∨(s) + ϕ∨(−s), η̃o = ηo.

Since the collection of functions ϕ(t) is closed under convolution and, if η0 = η̃0, also under ϕ → ϕ̃ with

ϕ̃(t) = ϕ(t̃), the collection ϕ∨(s) or ϕ∨(s) + ϕ∨(−s) is closed under multiplication.

Suppose π = π(µ, ν) is unitary. Then either µ = µ̄−1, ν = ν̄ −1 and then s may be taken purely imaginary

or ν = ωµ and µ̄−1 = ωµ, ω̄−1µ̄−1 = µ. Thenω = (µµ̄)−1 : x → |x|u with u positive. This implies in particular

that η0 = η̃0.

Thus if η0 6= η̃0 it is only the values of ϕ∨(s) for purely imaginary s which matter. Applying the Stone­

Weierstrass Theorem we see that if v is non­archimedean any continuous function on the imaginary axis which

is periodic of period 2πi
`n|$vr |

or 2πi
`n|$`

vr
| , the latter only if vr is unramified and does not split, may be uniformly

approximated by the functionsϕ∨(s) and that if vr is archimedean then any continuous function on the imaginary

axis which approaches 0 at infinity may be uniformly approximated by these functions.

If η0 = η̃0, µ(x) = µ0(x)|x|s, ν(x) = µ0(x)|x|−s, and µν−1(x) = |x|−u with u real then s is real if vr is

archimedean and of the form aπi
`n|$vr |

+ b, a ∈ Z or A
` , b ∈ R if vr is non­archimedean. As we observed before

an examination of the asymptotic behavior of the spherical functions shows that π(µ, ν) cannot be unitary unless

− 1
2 ≤ s ≤ 1

2 . The Stone­Weierstrass Theorem shows that theϕ∨(s)+ϕ∨(−s) uniformly approximate continuous

symmetric functions on the set

2πi
`n|$vr |

πi
`n|$vr |

−πi
`n|$vr |

.

.

.

.

.

.

1
2− 1

2
0
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if vr is non­archimedean, and continuous symmetric functions on the set

.

.

.

.

.

.

− 1
2

1
20

which go to zero at infinity if vr is archimedean. In the first diagram $vr is to be replaced by$`
vr

if the extension

is unramified.

Suppose π0
vr

in (11.12) is π(µ, ν) with µ(x) = µ0(x)|x|s0 , ν(x) = ν0(x)|x|−s0 for x ∈ NE×
vr

. Choose ϕ1 so

that

1 =






ϕ∨
1 (s0), η0 6= η̃0,

ϕ∨
1 (s0) + ϕ∨

1 (−s0), η0 = η̃0.

Let s0, s1 · · · be the collection of s for which there is a k such that

πk
vr

= π(µ′, ν′)

with µ′(x) = µ0(x)|x|s, ν′(x) = ν0(x)|x|−s for x ∈ NE×
vr

. We suppose that the pairs {µ′, ν′} of characters of

NE×
vr

which arise from distinct sj are distinct. Let µj(x) = µ0(x)|x|sj , νj(x) = ν0(x)|x|−sj and set

αj =
∑ ∏r−1

i=1
traceπk

vi
(fi).

The sum is over those πk
vr

which have the same lifting as π(µj , νj). Then

∑
j
αjϕ

∨
1 (sj)

or
∑

j
αj(ϕ

∨
1 (sj) + ϕ∨

1 (−sj))

is absolutely convergent. If we choose any ϕ2

∑
j
αjϕ

∨
1 (sj)ϕ

∨
2 (sj)

∑
j
αj(ϕ

∨
1 (sj) + ϕ∨

1 (−sj))(ϕ
∨
2 (sj) + ϕ∨

2 (−sj))

is equal to 0. The argument used to prove the quality of Theorem 11.1 allows us to conclude that α0 = 0. From

this and the induction hypothesis we immediately derive a contradiction.
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We can infer not only that if the Π defining A is finite­dimensional then all the π contribution to B are

finite­dimensional but also that if the sum defining A is empty then so is the sum defining B. It is clear that the

sum A is empty whenever the sum B is. Parts (b) and (c) of Lemma 11.3 follow immediately from these facts.

As our last piece of serious work we verify the assertion (F) of §2.

Proposition 11.4 A quasi­lifting is a lifting.

Once again we exploit the quality A = B. Choose a Π occurring in the space of cusp forms and then a V

and a collection {rv} so that

A = `
∏

v∈V
trace(Πv(φv)Π′

v(σ)).

Let

B =
∑

k

∏
v∈V

traceπk
v (fv).

The proof of Proposition 11.4 proceeds as follows:

1) We show that if for some v ∈ V the representation Πv is the lifting of a πv then for all k it is the lifting of πk
v .

2) We let V ′ be the set of v ∈ V for which Πv is not a lifting. We show that if V ′ is not empty then it contains

more than one element.

3) From (2) we deduce the following proposition, which in conjunction with (1) in turn implies Proposition 11.4.

Proposition 11.5 Suppose F is a local field and E a cyclic extension of prime degree `. Fix a generator σ of

G(E/F ). Every absolutely cuspidal representation π of G(F ) has a lifting in the sense of criterion (ii) of §2.

Moreover every representation Π of G(E) for which Πσ ∼ Π is a lifting.

We begin with (1). Observe that Πv is not finite­dimensional. If

α =
∏

w∈V
w 6=v

trace(Πw(φw)Π′
w(σ))

there is an integer i such that

A = ζiα traceπv(fv).

The power ζ occurs because the Π′
v occurring in the definition of A may not be the Π′

v which satisfies the local

lifting condition. The equality A = B becomes

(11.16) `ζ iα traceπv(fv) =
∑

k
βktraceπk

v (fv)

with

βk =
∏

w∈V
v 6=w

traceπk
w(fw).
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Let π′
v be square­integrable and choose fv so that for infinite­dimensional π′′

v with π′′
v (z) = ξ(z), z ∈ NE×

v ,

(11.17) traceπ′′
v (fv) =





0, π′′
v 6' ωj

v ⊗ π′
v,

1, π′′
v ' ωj

v ⊗ π′
v, π

′
v ' ωv ⊗ π′

v ,

1
` , π′′

v ' ωj
v ⊗ π′

v, π
′
v 6' ωv ⊗ π′

v.

Here ωv is, as usual, a character of F×
v associated to the extension Ev . If πv is not of the form ωj

v ⊗ π′
v then

substitution in (11.16) yields

0 =
∑

πk
v'ωj

v⊗π′
v

βk,

all possible j being allowed. The arguments used in the proof of Lemma 11.3 show that the sum is empty. If

however πv is equivalent to some ωj
v ⊗ π′

v, then

(11.18) `ζ iα =
∑

πk
v'ωj

v⊗πv

βk.

In conjunction with (11.16) this equality yields

0 =
∑

πk
v 6'ωj

v⊗πk
v

βk.

The sum on the right must once again be empty.

We have shown that if Πv is the lifting of a square­integrable πv then it is the lifting of each πk
v . Suppose it is

the lifting of a πv which is not square­integrable. Then we have shown that no πk
v is square­integrable. We may

introduce the functions ϕv(s) as before and show in the same way that every πk
v has the same lifting as πv .

Now suppose that there is a single v in V for which Πv is not a lifting. It is necessarily non­archimedean.

The equality A = B becomes

(11.19) traceΠv(φv)Π′
v(σ) =

∑
k
traceπk

v (fv).

By Lemma 7.9 there is a function χv on the union of NT (Ev), where T runs over a set of representatives for

the conjugacy classes of Cartan subgroups of G over Fv , such that

traceΠv(φ)Π′
v(σ) =

1

2

∑ ∫

NZ(Ev)\NT (Ev)

χv(t)Ffv (t)∆(t)dt.

Moreover
1

2

∑′ 1

measNZ(Ev)\T (Fv)

∫

NZ(Ev)\NT (Ev)

|χv(t)|
2∆(t)2dt =

1

`
.

By the completeness of the characters of the square­integrable representations of G(Fv), which is a consequence

of Theorem 15.1 of [14], there is a square­integrable πv such that

1

2

∑′ 1

measNZ(Ev)\T (Fv)

∫

NZ(Ev)\NT (Ev)

χv(t)χπv (t)∆(t)2dt = αv 6= 0.
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It follows from Lemmas 7.6, 7.12, and 11.2 that πv is absolutely cuspidal and not π(ρv) for any dihedral ρv

associated to ρv. By Lemma 7.17, πv 6' ωv ⊗ π and then, by Lemma 7.13,

1

2

∑′ 1

measNZ(Ev)\T (Fv)

∫

NZ(Ev)\NT (Ev)

|χπv (t)|2∆(t)2dt =
1

`
.

Here ω is a non­trivial character of F×NIE\IF and ωv is its component at v. We conclude that

|αv| ≤
1

`

with equality only if χv = `αvχπv on NT (Ev) whenever T is not split. Choose fv so that it satisfies (11.17).

Taking first π′v = πv , we deduce from (11.19) that

(11.20) `
∏

v∈V ′
αv =

1

`

{∑
1

}
.

The sum is over those k such that πk
v ' ωj

v ⊗ πv for some j. If πk contributes to the sum in brackets, so does

ω ⊗ πk and ω ⊗ πk 6' πk. The sum is therefore a multiple of `. We conclude that αw = 1
` and that

(11.21) χv = χπv

on the norms in non­split Cartan subgroups. Moreover the sum on the right of (11.20) contains exactly ` terms.

Renumbering if necessary we assume that

πk
v ' ωk ⊗ πv, v ∈ V ′, 0 ≤ k < `.

Choosing the π′
v defining fv to be inequivalent to each ωj

v ⊗ πv , we conclude from (11.19), (11.21), and the

orthogonality relations for characters of square­integrable representations of G(Fv) that if k ≥ ` then πk
v is not

square­integrable. We want to show that there are only ` terms on the right of (11.19). Suppose not, so that k

takes on the value `.

Choose η0 = (µ0, ν0) and ϕ as before, replacing vr by v and demanding that π`
v = π(µ, ν) with µ(x) =

µ0(x)|x|s, ν(x) = ν0(x)|x|−s for x ∈ NE×
v . As before we choose fv so that

Ffv (t) =






ϕ(t) + ϕ(t̃), t ∈ NA(Ev),

0, t ∈ A(Fv), t /∈ NA(Ev).

We then substitute in (11.19). The terms for k ≥ ` yield a sum

(11.22a)
∑

j
αjϕ

∨(sj), η0 6= η̃0,

or

(11.22b)
∑

j
αj(ϕ

∨(sj) + ϕ∨(−sj)), η0 = η̃0.
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The sum is finite but not empty, and the αj are positive integers. It is equal to a difference

1

2

∑ ∫

NZ(Ev)\NT (Ev)

∆(t)χv(t)Ffv (t)dt

minus
1

2

∑ ∫

NZ(Ev)\NT (Ev)

∆(t)χπv (t)Ffv (t)dt.

The first part is contributed by the left­hand side of (11.19); the second by the first ` terms on the right. Because

of (11.21) the contributions from the non­split Cartan subgroups to this difference cancel.

The proofs of Lemma 7.9, and of Proposition 7.4 of [14] show that

∆(t)

2
{χv(t) − χπv(t)}

is bounded on NA(Ev) and that it has support which is compact modulo NZ(Ev). If we choose η0 and ϕ as

above and set

ψ(s) =

∫

NZ(Ev)\NA(Ev)

∆(t)

2
{χv(t) − χπv (t)}η0(t)−1

∣∣∣∣
α

β

∣∣∣∣
−s

dt

then ψ(−s) = ψ(s) if η0 = η̃0 and

1

2

∫

NZ(Ev)\NA(Ev)

∆(t){χv(t) − χπv(t)}Ffv (t)dt

is equal to

(11.23a)
b

2πmeasNZ(Ev)\A0(Fv)

∫ 2πi
b

0

ψ(s)ϕ∨(s)|ds|

if η0 6= η̃0 and to

(11.23b)
b

2πmeasNZ(Ev)\A0(Fv)

∫ 2πi
b

0

ψ(s){ϕ∨(s) + ϕ∨(−s)}|ds|

if η0 = η̃0. Here b is `n|$v| if v is ramified and `n|$`
v| if it is not. Both (11.22) and (11.23) are linear functionals of

ϕ∨(s) given by measures. One is atomic, one is continuous, and they are equal; and so, by the Riesz representation

theorem, they are both zero. This is a contradiction.

We conclude that there are only ` representations π which contribute to the sum B, namely π0, · · · , π`−1,

with πj = ωj ⊗ π0. It now follows from (11.19) that (11.21) is valid on all norms, and hence that Πv is a lifting of

πv .

We next prove Proposition 11.5. The proposition has already been proved for F archimedean, and for π and

Π not absolutely cuspidal. We may therefore suppose π and Π are absolutely cuspidal. There is then a trivial

reduction to unitary π and Π, which we omit. It is moreover enough to show that every π has a lifting, for we

can then conclude from the completeness of the characters of square­integrable representations of G(F ), which
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follows from Theorem 15.1 of [14], and the orthogonality relations of Lemma 7.12 that if Π is not a lifting then

χΠ′(t× σ) = 0 when Nt lies in a non­split Cartan subgroup. This contradicts Lemma 7.9.

If a non­archimedean local field and a cyclic extension of it of order ` are given there is a totally real global

field F , a place v of it, and a cyclic extension E, totally real and again of degree `, such that the pair Fv, Ev is

isomorphic to the given local field with the given cyclic extension. Suppose πv is a unitary absolutely cuspidal

representation of G(Fv). To prove the proposition we have to show that πv has a lifting. By Step (2), we have

only to show that there is a cuspidal automorphic representation π of G(A), whose local component at v is πv

and whose local components at the non­archimedean places other than v are unramified. This will be done with

the help of the trace formula.

There is a character ζv of Z(Fv) = F×
v such that

πv(z) = ζv(z), z ∈ Z(Fv).

There is also a character ζ of F×\IF , unramified outside of v, whose component at v is ζv. Let v1, · · · , vr be the

infinite places of F . Let ζvi(−1) = (−1)mi . If ni > 0 and ni −mi ≡ 1(mod 2) there is a pair µvi , νvi of characters

of F×
vi

such that

µviν
−1
vi

: t→ tnisgn t

µviνvi = ζvi .

The representation πvi = σ(µvi , νvi) introduced in Theorem 5.11 of [14] is square­integrable.

There is a smooth function fvi on G(Fvi ) compactly supported modulo Z(Fvi) such that:

(i) if γ in A(Fvi ) is regular then ∫

A(Fvi
)\G(Fvi

)

fvi(g
−1γg)dg = 0;

(ii) if T is a non­split Cartan subgroup over Fvi and γ in T (Fvi) is regular then

∫

Z(Fvi
)\G(Fvi

)

fvi(g
−1γg)dg = χπvi

(γ);

(iii) if z ∈ Z(Fvi) then

fvi(zg) = ζ−1
vi

(z)fvi(g).

We may replace vi by v, πvi by πv and then define fv in a similar manner. If w is a non­archimedean place and

w 6= v define fw by fw(g) = 0 if g /∈ Z(Fw)Kw while

fw(zk) =
ζ−1
w (z)

meas (Z(Ow)\Kw)

The trace of Φ =
∏
fw , the product being taken over all places, on the space Lsp(ζ)⊕Lo

se(ζ) is given by the

trace formula on pages 516–517 of [14]. Of the terms given there only (i) and (ii) do not vanish. If the term in (ii)
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defined by γ is non­zero then F (γ) is a totally imaginary quadratic extension of F . Denote the automorphism

of this field over F by a bar. Then γ̄
γ is a root of unity, for γ̄

γ must have absolute value 1 at all places. Moreover

we are only interested in γ modulo Z(F ) and if the term in (ii) defined by γ does not vanish then, replacing γ

by γ
δ , δ ∈ Z(F ), if necessary, we may assume that γ is itself a unit except perhaps at the places in V , if V is a

finite set of non­archimedean places containing v and set of generators for the ideal class group of F . Since there

are only a finite number of possibilities for the root of unity, there is a finite set of integers {k1, · · · , ks} such that

the non­zero terms of (ii) are given by γ for which, for at least one i, γki lies in F and is a unit away from V .

Applying the unit theorem for the set {v1, · · · , vr} ∪ V we see that there is a finite set of γ, taken modulo Z(F ),

which can yield a non­zero contribution to (ii). This set may be chosen to be independent of n1, · · · , nr .

If γi is the image of γ in an imbedding F (γ) → C extending vi and if (γiγ̄i)
1/2 is the positive square root,

the contribution of a given γ to (ii) is

1

2
meas(Z(A)B(F )\B(A))

∏r

i=1

{
−ζvi((γiγ̄i)

−1/2)

(γiγ̄i)
n−1

2 meas(Z(Fvi)\B(Fvi ))

γni

i − γ̄ni

i

γi − γ̄i

}

times the product over the non­archimedean places of

∫

B(Fw)\G(Fw)

fw(g−1γg)dg.

The conclusion to be drawn is that the contribution of (ii) is uniformly bounded.

On the other hand the well­known formulae described in Paragraph 6 show that the term (i) is equal to

meas(Z(F )G(F )\G(A))
∏r

i=1

ni

measZ(Fvi)\G
′(Fvi)

times
∏

w
fw(1).

Here G′ is the multiplication group of the quaternion algebra over Fvi and w runs over the non­archimedean

places. It is clear that fw(1) 6= 0 if w 6= v. Since we may take

fv(g) = d(πv)(πv(g)u, u)

with a unit vector u we also have fv(1) = d(πv) 6= 0. We infer that a suitable choice of n1, · · · , nr will make (i)

arbitrarily large and the trace non­zero. We conclude that for such a choice of n1, · · · , nr there is a constituent π′

of the representation onLsp(ζ) such that if π′ = ⊗wπ
′
w then π′

vi
= πvi , 1 ≤ i ≤ r, π′

v = πv , and πw is unramified

if w is non­archimedean but different from v.

There is one more conclusion to be drawn from the equality A = B.

Lemma 11.6 (a) Suppose E is a quadratic extension of the global field F and Π = π(µ, µσ) with µσ 6= µ. Then Π

is the lifting of a unique π.
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(b) Suppose E is cyclic of prime degree ` and Π is a cuspidal automorphic representation of G(AE) with

Πσ ' Π. Then Π is the lifting of ` cuspidal automorphic representations π.

Let N be the number of π which lift to Π. The equality A = B now reduces to N = 1 in case (a) and to

N = ` in case (b).

The following lemma is important for a complete understanding of the notion of lifting. It is trivial if ` is

odd, but does not appear to be so if ` is even. Indeed the proof is lengthy enough that it seemed best to omit it

from these notes and to include it in [18], in which it more easily finds a place.

Lemma 11.7 Suppose ω is a non­trivial character of F×NIE\IF and π is a constituent of Lsp(ζ), for some quasi­

character ζ of F×\IF . Then π ' ω⊗π if and only if ` = 2 and there is a character θ ofE×\IE such that π = π(τ)

with

τ = Ind(WE/F ,WE/E , θ).

There is now no problem in verifying the properties (A)­(G) of global liftings. If π is not cuspidal then it is

a constituent of ρ(µ, ν), for some pair of idèle­class characters. Its lifting is then a constituent of ρ(µ′, ν′), with

µ′ = µ ◦NE/F , ν
′ = ν ◦NE/F , and, by [25], is also automorphic. If π is cuspidal, then by Lemmas 11.3 and 11.4

it has a lifting. The global unicity is a consequence of the local unicity.

If Π is isobaric and not cuspidal then Π = π(µ, ν) and Πσ ∼ Π if and only if µσ ∼ µ and νσ ∼ ν or

µσ ∼ ν, νσ ∼ µ. Thus (B) too follows from Lemmas 11.3 and 11.4. We observe also that, since the notion of a

quasi­lifting is independent of σ, the notion of a global lifting is independent of σ. It then follows from the proof

of Proposition 11.5 together with Corollary 7.3 and Lemmas 7.4 and 7.5 that the notion of a local lifting is also

independent of σ.

Those parts of (C) which are not manifest follow from Lemmas 11.3, 11.6, 11.7 and Lemma 12.3 of [14]. (F)

has been proved, and (D) and (E) follow from the corresponding properties of local liftings.

We have still to verify property (e) of local liftings.

Lemma 11.8 Suppose Fv is a local field, ρv an irreducible two­dimensional representation of the Weil group of

Fv , and Ev a cyclic extension of Fv of prime degree `. If ρv is dihedral or tetrahedral then π(ρv) exists and the

lifting of π(ρv) is π(Pv) if Pv is the restriction of ρv to the Weil group of Ev.

The existence of π(ρv) follows from the results of §3 and of §12 of [14]. Indeed we may choose global F,E

and ρ so that Fv, Ev, and ρv are obtained by localization at the place v, which we take to be non­archimedean,

the lemma being clear otherwise. Since it is clear from property (G) of global liftings, given in §3, that π(P ) is the

lifting of π(ρ), we infer that π(Pv) is the lifting of π(ρv).
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[32] A. Weil, Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math Ann., Bd. 168

(1967), 149–156.


