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PREFACE

In these days of dizzying scientific progress some apology is called for when offering to the
mathematical public a work written twelve years ago. It certainly bears the stamp of a juvenile hand,
and | had always hoped to revise it, but my inclination to a real effort grew ever slighter, and the
manuscript was becoming an albatross about my neck. There were two possibilities: to forget about it

completely, or to publish it as it stood; and | preferred the second.

There were, when it was first written, other reasons for delaying publication. The study of
Eisenstein series is a preliminary to the development of a trace formula, and the trace formula has
been a long time evolving. Not only does it present serious analytic difficulties, but also the uses to
which it should be put have not been clear. A sustained attack on the analytic difficulties is now being
carried out, by Arthur and others, and, thanks to a large extent to developments within the theory
of Eisenstein series itself, we nhow have a clearer picture of the theorems that will flow from the trace
formula. However a great deal remains to be done, and a complete treatment of Eisenstein series, even

imperfect, may be useful to those wishing to try their hand at developing or using the trace formula.

Much of the material in §2-36 is included in Harish—-Chandra’s notes (Lecture Notes 62). He,
following an idea of Selberg with which | was not familiar, uses the Maass—Selberg relations. Since
I was not aware of them when | wrote it, they do not figure in the present text; they would have

simplified the exposition at places.

In §2-86 Eisenstein series associated to cusp forms are treated. However the central concern is with
the spectral decomposition, and for this one needs all Eisenstein series. The strategy of these notes is,
the preliminary discussion of §2-86 completed, to carry out the spectral decomposition and the study

of the general Eisenstein series simultaneously, by an inductive procedure; so §7 is the heart of the text.

It has proven almost impenetrable. In an attempt to alleviate the situation, | have added some
appendices. The first is an old and elementary manuscript, dating from 1962. Its aim when written
was to expose a technique, discovered by Godement and Selberg as well, for handling some Eisenstein
series in several variables. The method, involving a form of Hartog’s lemma, has not yet proved to be
of much importance; but it should not be forgotten. In addition, and this is the reason for including it,
it contains in nascent form the method of treating Eisenstein series associated to forms which are not
cuspidal employed in §7.

The second appendix may be viewed as an introduction to §7. The principal theorems proved there

are stated as clearly as | could manage. The language of adeéles is employed, because it is simpler and
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because it is the adelic form of the theorems which is most frequently applied. | caution the reader that
he will not appreciate the relation between §7 and this appendix until he has an intimate understanding

of §7. The appendix should be read first however.

It is also difficult to come to terms with §7 without a feeling for examples. Some were given in my
lecture on Eisenstein series in Algebraic Groups and Discontinous Subgroups. Others exhibiting the
more complicated phenomena that can occur are given in the third appendix, whose first few pages

should be glanced at before §7 is tackled.

The last appendix has nothing to do with §7. It is included at the suggestion of Serge Lang, and is

an exposition of the Selberg method in the context in which it was originally discovered.

In the introduction | thank those who encouraged me during my study of Eisenstein series. Here
I would like to thank those, Godement and Harish-Chandra, who encouraged me after the notes
were written. Harish—-Chandra’s encouragement was generous in the extreme and came at what was

otherwise a difficult time. Its importance to me cannot be exaggerated.

It has been my good fortune to have had these notes typed by Margaret (Peggy) Murray, whose

skills as a mathematical typist are known to all visitors to the IAS. | thank her for another superb job.
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1. Introduction.

One problem in the theory of automorphic forms that has come to the fore recently is that of
explicitly describing the decomposition, into irreducible representations, of the regular representation
of certain topological groups on Hilbert spaces of the form £?(T'\G) when I is a discrete subgroup of
G. Usually T is such that the volume of I'\G is finite. Except for some abelian groups, this problem
is far from solved. However, Selberg has discovered that the gross features of the decomposition
are determined by simple properties of the group I" and this discovery has led to the development,
mostly by Selberg himself, of the theory of Eisenstein series. Of course he has preferred to state the
problems in terms of eigenfunction expansions for partial differential equations or integral operators.
At present the theory is developed only for the connected reductive Lie groups which, without real loss
of generality, may be assumed to have compact centres. Even for these groups some difficulties remain.
However, some of the problems mentioned in [19] are resolved in this paper, which is an exposition of
that part of the theory which asserts that all Eisenstein series are meromorphic functions which satisfy
functional equations and that the decomposition of £L?(I'\G) is determined by the representations
occurring discretely in £2(T'\G) and certain related Hilbert spaces. For precise statements the reader

may refer to Section 7.

At present it is expected that the main assertions of this paper are true if the volume of I'\G is
finite. It is of course assumed that G is a connected reductive Lie group. Unfortunately not enough is
known about the geometry of such discrete groups to allow one to work with this assumption alone.
However, the property which is described in Section 2 and which | thereafter assume I" possesses is
possessed by all discrete groups known to me which have a fundamental domain with finite volume.
Indeed it is abstracted from the results of Borel [2] on arithmetically defined groups. Section 2 is
devoted to a discussion of the consequences of this property. In Section 3 the notion of a cusp form
is introduced and some preliminary estimates are derived. In Section 4 we begin the discussion of
Eisenstein series, while Section 5 contains some important technical results. In Section 6 the functional
equations for Eisenstein series associated to cusp forms are proved. For series in one variable the
argument is essentially the same as one sketched to me by Professor Selberg nearly two years ago, but
for the series in several variables new arguments of a different nature are necessary. In Section 7 the
functional equations for the remaining Eisenstein series are derived in the course of decomposition

L%(T'\G) into irreducible representations.

I have been helped and encouraged by many people while investigating the Eisenstein series

but for now | would like to thank, as | hope | may without presumption, only Professors Bochner
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and Gunning for their kind and generous encouragement, three years ago, of the first results of this

investigation.



Chapter 2 3

2. The assumptions.

Let G be a Lie group with Lie algebra g. It will be supposed that G has only a finite number
of connected components and that g is the direct sum of an abelian subalgebra and a semi-simple Lie
algebra g®. It will also be supposed that the centre of G*, the connected subgroup of G with Lie algebra
g®, is finite. Suppose a is a maximal abelian subalgebra of g° whose image in ad g is diagonalizable.
Choose an order on the space of real linear functions on a and let () be the set of positive linear functions
a on a such that there is a non-zero element X in g such that [H, X| = «(H )X forall H ina. Q is called
the set of positive roots of a. Suppose a’ is another such subalgebra and ¢’ is the set of positive roots
of a’ with respect to some order. It is known that there is some g in G® such that Adg(a) = a’ and such
that if o/ € Q' then the linear function « defined by a(H) = o/ (Adg(H)) belongs to Q. Moreover any
two elements of G* with this property belong to the same right coset of the centralizer of a in G*. G
itself possesses the first of these two properties and it will be assumed that it also possesses the second.

Then the centralizer of a meets each component of G.

For the purposes of this paper it is best to define a parabolic subgroup P of G to be the normalizer
in G of a subalgebra p of g such that the complexification p. = p ®g C of p contains a Cartan subalgebra
j. of g. together with the root vectors belonging to the roots of j. which are positive with respect to
some order on j.. Itis readily verified that the Lie algebra of P is p so that P is its own normalizer. Let
n be a maximal normal subalgebra of p* = p® N g® which consists entirely of elements whose adjoints
are nilpotent and let m’ be a maximal subalgebra of p whose image in ad g is fully reducible. It follows
from [16] that p = m’ + n and that m’ contains a Cartan subalgebra of g. Let a be a subalgebra of the
centre of m’ N g® whose image in ad g is diagonalizable. If m is the orthogonal complement of a, with
respect to the Killing form on g, in m’ then a N m = {0}. There is a set @ of real linear functions on a

suchthatn =3, n, where
n, = {X € n|[H,X] = a(H)X forall H in a}.

a or A, the connected subgroup of P with the Lie algebra a, will be called a split component of P if the
trace of the restriction of ad Y ton,, is zero forany Y in mand any « in ). There is a Cartan subalgebra
j of g and an order on the real linear functions on j. such that a C j C m’ and such that @ consists of the
restrictions of the positive roots to a except perhaps for zero. Let @/, be the set of positive roots whose

restriction to a equals «; then

1/dimn,, Z o

a’eqQy,



Chapter 2 4

is zero on j N'm and equals o on a. Thus if ZQGQ cqa = 0and ¢, > 0 for all « then

Z Z (dimng,) teqa’ =0

acQ a’eq’,

which implies that ¢, = 0 for all a. In particular zero does not belong to ) so that n' is the centralizer

and normalizer of ain g.

Since m’ contains a Cartan subalgebra it is its own normalizer. Let us show that if M’ is the
normalizer of m’ in P then the connected component of M’ is of finite index in M’. M’ is the inverse
image in G of the intersection of an algebraic group with AdG. Since AdG contains the connected
component, in the topological sense, of the group of automorphisms of g which leave each element of
the centre fixed the assertion follows from Theorem 4 of [23]. Since the Lie algebra of M’ is m’ it follows
from Lemma 3.1 of [16] that M’ is the inverse image in G of a maximal fully reducible subgroup of the
image of P in AdG. Let N be the connected subgroup of G with the Lie algebra n. Since the image of
N in AdG is simply connected it follows readily from [16] that M’ and N are closed, that P = M’ - N,
and that M’ NN = {1}.

We must also verify that M’ is the centralizer of a in G. M’ certainly contains the centralizer of
ain G. Let b be a maximal abelian subalgebra of g° which contains a such that the image of b in ad g is
diagonalizable. Certainly m’ contains b. Let b = b; + b, where b is the intersection of b with the centre
of m’ and b, is the intersection of b with the semi-simple part of m’. b, is a maximal abelian subalgebra
of the semi-simple part of m’ whose image in adm’ is diagonalizable. It may be supposed (cf. [11],
p. 749) that the positive roots of b are the roots whose root vectors either lie in n., the complexification
of n, or lie in m/, and belong to positive roots of by. If m lies in M’ then Adm(b;) = b;. Moreover
replacing if necessary m by mmg where mg lies in the connected component of M’ and hence in the
centralizer of a we may suppose that Adm(bs) = by and that Adm takes positive roots of b, to positive
roots of by. Thus Adm(b) = b and Adm leaves invariant the set of positive roots of b; consequently, by
assumption, m lies in the centralizer of b and hence on a. It should also be remarked that the centralizer

of A meets each component of P and GG and P meets each component of G.

If M is the group of all m in M’ such that the restriction of Adm to n, has determinant +1 for
all a then m is closed; since ) contains a basis for the space of linear functions on a the intersection
AN Mis{l}. Letay,---,a, be such a basis. To see that AM = M’ introduce the group M; of all m
in M’ such that the restriction of Adm to n,, has determinant +1 for 1 < i < p. Certainly AM; = M.
So it has merely to be verified that M, which is contained in M, is equal to M;. Since the Lie algebra

of both M and M; is m the group M contains the connected component of Af;. Since AN M; = {1}
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the index [M; : M| equals [AM; : AM] which is finite. It follows readily that M = M;. Itis clear that
M and S = M N are uniquely determined by P and A. The pair (P, S) will be called a split parabolic
subgroup with A as split component. Its rank is the dimension of A. Observe that A is not uniquely
determined by the pair (P, 5).

The next few lemmas serve to establish some simple properties of split parabolic subgroups
which will be used repeatedly throughout the paper. If (P, S) and (P, S1) are any two split parabolic
subgroups then (P, S) is said to contain (P, S1) if P contains P; and S contains .S;.

Lemma 2.1. Suppose (P,S) contains (Py,S1). Let A be a split component of (P, S) and Ay a split
component of (P1,S1). There is an element p in the connected component of P such that pAp—!

18 contained in A;.

Since S is a normal subgroup of P, pAp—! will be a split component of (P, S). According to
Theorem 4.1 of [16] there is a p in the connected component of P such that a; +m C Adp(a +m). Thus
it suffices to show that if a; + my is contained in a + m then a is contained ina;. Ifa; +m; Ca+m
then a and a; commute so that a is contained in a; + m;; moreover m contains m; because m Ns; =

(a+m)NsNs; 2 (a; +my) Ns; = my. Consequently a is orthogonal to m; with respect to the Killing

form and hence is contained in aj;.

Lemma 2.2. Suppose P is a parabolic subgroup and a is a split component of P. Let {oq , -+, }
be a minimal subset of Q such that any « in Q can be written as a linear combination Zle e

with non-negative integers m;. Then the set {1 ,---, oy } is linearly independent.

This lemma will be proved in the same manner as Lemma 1 of [13]. Let (A, ) be the bilinear
form on the space of linear functions on a dual to the restriction of the Killing form to a. It is enough
to show that if ¢ and j are two distinct indices that ;. — «;, neither equals zero nor belongs to () and
that if « and 3 belong to ) neither o — 3 nor 3 — «a belongs to @ or is zero then («, 5) < 0. If this is so
and Y7 a;c;, = 0let F = {i|a; >0} and F' = {i|a; < 0}. Set

A= Zaio% == Z a; o,
i€F i€ F

then

0 S ()\,A> = —Z Z (Iiaj<05i7705j7> S 0

iEF jEF
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which implies that A = 0. As a consequence of a previous remark a; = 0,1 <7 < p. Certainly o;, — v

)

is not zero of ¢ # j; suppose that o;, — a;, = « belongs to (). Then

p
k=1
or

(m; — Doy, + (mj + 1)ay, + Z myoy, =0
k#i,j

sothatm; — 1 < 0. Hence m; = 0 and
o = (m]— + 1)04]', + Z mpQg,
k#i,j

which is a contradiction. Suppose « and § belong to Q and neither o — 3 nor 3 — a belongs to QQ or is
zero. Choose the Cartan subalgebra j as above and let (X', /) be the bilinear form on the space of linear

functions on the complexification of j N g° dual to the Killing form. If 11 is the restriction of i/ to a then
(o, p) =1/ dimn, Z (O/al/)
a’eqQy,
In particular of 3’ belongs to Qj; then
(0, 8) =1/dimng > (o, )
a’eq’,

Because of the assumptions on o and 3, o/ — 3’ is neither a root nor zero; thus (cf. [15], Ch. IV) each
term of the sum and hence the sum itself is non-positive. It is clear that the set {a; , - - -, a;, } is unique
and is a basis for the set of linear functions on a; it will be called the set of simple roots of a. It is also
clear that if P, contains P and A is a split component of P; contained in A then the set of simple roots

ay is contained in the set of linear functions on g; obtained by restricting the simple roots of a to a;.

Lemma 2.3 Suppose

is a sequence of parabolic subgroups with split components
AL DAy D - DAL

and
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If {ou1,,- -+, ap } is the set of simple roots of a and {c; ,- -+, o } restricted to a; is the set of simple

roots for aj, 1 < j <k, then
aj={H €al|a;(H)=0, i<j}

and if
—{a€Q|a ) # 0 for some Hina;}

then

=) ne, 1<j<k
aEQ;

Conversely if F' is a subset of {1,---,p}; if

‘a={H ca|a;(H)=0 for all i € F};

Q' ={a € Q|a(H) #0 for some H € "a};

and if *m is the orthogonal complement of *a in the centralizer of *a in g then " ="a+"*m+*"n is

the Lie algebra of a parabolic subgroup *P of G which contains P and has *a as a split component.

In the discussions above various objects such as A4, @, n have been associated to a parabolic
subgroup P; the corresponding objects associated to another parabolic group, say F;, will be denoted
by the same symbols, for example A;, Q1, ny, with the appropriate indices attached. It is enough to
prove the direct part of the lemma for £ = 2. Since P, properly contains P, and since, as is readily
seen, P; isthe normalizer of n;, j = 1, 2 the algebra n, must be properly contained in n;. Consequently
there is an a € ) whose restriction to a, is zero and a = Zle m;a;, With non-negative integers m;.

Let a;, be the restriction of a; to az and let &y, = Z?:z n;a;, ; then

p
0= Z(mj + mlnj)o_ej;
j=2
som; = 0,7 > 2and o = myay,. Since dimay — dima; = 1 the direct part of the lemma is proved.
Proceeding to the converse we see that if *P is taken to be the normalizer of *p in GG then *P is parabolic

by definition. *P contains the connected component of P and the centralizer of A in (; so it contains
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all of P. Moreover the image of *a 4+ *m in ad g is fully reducible and *n is a normal subalgebra of *p; so

to prove that *a is a split component of *P it has to be shown that if o belongs to *Q’ and
Qo ={B€Q|a(H) = B(H) forall H in*a},

then the trace of the restriction of ad X to ., ng is zero for all X in“m. It is enough to show this
when X belongs to the centre of *m. But then X commuteswith aand soliesina+m;say X =Y + Z.
If i belongs to F' the trace of the restriction of ad X to n,, is o; (Y') dimn,, ; on the other hand it is
zero because n,, belongs to “m. Thus «; (Y') = 0 for all i € F', so that Y belongs to “a and hence is

zero. Since the assertion is certainly true for Z it is true for X.

There are some simple conventions which will be useful later. If j. and j. are two Cartan
subalgebras of g. and an order is given on the set of real linear functions on j. and j.. then there is
exactly one map from j.. to j.. which takes positive roots to positive roots and is induced by an element
of the adjoint group of g.. Thus one can introduce an abstract Lie algebra which is provided with a set
of positive roots and a uniquely defined isomorphism of this Lie algebra with each Cartan subalgebra
such that positive roots correspond to positive roots. Call this the Cartan subalgebra of g.. Suppose
(P, S) is a split parabolic subgroup with A and A’ as split components. Let j be a Cartan subalgebra
containing a and let j’ be a Cartan subalgebra containing «’. Choose orders on j. and j., so that the
root vectors belonging to positive roots lie in p.. There is a p; in P such that Adp; (a) = d/; since the
centralizer of A meets each component of P there is a p in the connected component of P such that
Adp(H) = Adp:(H) for all H in a. Let Adp(j) = j”. There is an element m in the adjoint group of m,
such that Adp Adm(a) = o/, Adp Adm(j) = j’,and Adp Adm’ takes positive roots of j’ to positive roots
of j. Themapsofa — j — j.and a’ — j* — j.. determine maps of a and a’ into the Cartan subalgebra of
g. and if H belongs to a then H and Adp; (H) have the same image. The image of a will be called the
split component of (P, .S). Usually the context will indicate whether it is a split component or the split
component which is being referred to. If I is a subset of the set of simple roots of the split component it
determines a subset of the set of simple roots of any split component which, acccording to the previous
lemma, determines another split parabolic subgroup. The latter depends only on F' and will be called

simply the split parabolic subgroup determined by F'; such a subgroup will be said to belong to (P, S).

If (P,S) is a split parabolic subgroup with the split component a let a3, - - -, v, be the linear
functions on a such that (a;, ;) = 6;5, 1 <4, 7 < p. Of course a1, - - -, o, are the simple roots of a.

If —oo < ¢ <cg <oolet

at(cr,c0) ={H € a!cl <aj(H)<c, 1<i<p}



Chapter 2 9

and let

fa(cr,c0) ={H €alci < ai(H) <cp, 1 <i < p}

It will be convenient to set a™(0,00) = a* and Ta(0,00) = *a. If A is the simply-connected abstract
Lie group with the Lie algebra a then A will also be called the split component of (P,S). The map
H — exp H is bijective; if A is a linear function on a set £\ (exp H) = exp(A(H)). If 0 < ¢; < 2 < 00
we let

At(er,e0) ={a € A!cl <&, (a) < e, 1 <0 <p}

and

TA(er,e0) ={a€ Aler <&a,(a) <cp, 1 <i<p}
We shall make frequent use of the two following geometrical lemmas.

Lemma 2.4. For each s < oo there is a t < oo such that at(s,00) is contained in ta(t,00). In

particular a™ is contained in Ta.

For each s there is an element H in a such that a™ (s, 0o) is contained in H +a™; thus it is enough
to show that a* is contained in *a. Suppose we could show that (o, a’) > 0,1 < 4, j < p. Then
a; =Y U_ a%a; witha} > 0and it follows immediately that a™ is contained in *a. Since (a; , ;) <0

if ¢ # j this lemma is a consequence of the next.

Lemma 2.5. Suppose V' is a Fuclidean space of dimension n and A1 ,---, )\, is a basis for V such
that (X, ,\j,) <0 ifi#j. If \;, 1 <i<mn, are such that (X ;, \;) = d;; then either there are two
non-empty disjoint subsets Fy and Fy of {1,---,n} such that FyUF; = {1,--- ,n} and (A\; ,\;) =0
ifie Fi, j€ Fyor(A;,A;)>0 foralli and j.

The lemma is easily proved if n < 2 so suppose that n > 2 and that the lemma is true for n — 1.
Suppose that, for some i and j, (A ;, A ;) < 0. Choose k different from ¢ and j and project { A, M # k}
on the orthogonal complement of A, to obtain {y,, | ¢ # k}. Certainly for ¢ # k the vector A is

orthogonal to A, and (A ¢, pm,) = ftem. Moreover

(e, om,) = (Xey, Am,) — (N, Ak, ) (A, Ak, ) /(Mg Ak) < (Ao, Am,)

with equality only if A, or ), isorthogonal to ), . By the induction assumption there are two disjoint
subsets of F{ and F of {¢|1 < ¢ < n, ¢ # k} such that (y,, pu,,) = 0if £ € F| and m € F}. For such
apair (fe,, fim,) = (Ao, Am,); so either (A\;,A\g) = 0forall ¢ € F{ or (A, ,A\i,) = 0 forall m € Fj.

This proves the assertion.
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Suppose that a is just a split component of P and F is a subset of Q. Letc¢ = {H € a\ o(H) =
0 for all & € F'}; if F is a subset of the set of simple roots ¢ is called a distinguished subspace of a. Let
g. be the orthogonal complement of ¢ in the centralizer of ¢ in g and let G, be any subgroup of G with
the Lie algebra g. which satisfies the same conditions as G. Then p N g, is the Lie algebra of a parabolic
subgroup P’ of G, and b, the orthogonal complement of ¢ in q, is a split component of P’. We regard
the dual space of b as the set of linear functions on a which vanishonc. Let 3, ,---, 3, be the simple
roots of b; {3 ,-- -, B, } is a subset of ). There are two quadratic forms on the dual space of b, namely
the one dual to the restriction of the Killing form on g to b and the one dual to the restriction of the
Killing form on g, to b. Thus there are two possible definitions of 3+, -- -, 3, and hence two possible
definitions of *b. In the proof of Theorem 7.7 it will be necessary to know that both definitions give the

same 'b. A little thought convinces us that this is a consequence of the next lemma.

The split parabolic subgroup (P, .S) will be called reducible if g can be written as the direct sum
of two ideals g; and gy in such away that p = p; +po withp; = pNg; ands = s; + 52 withs; =sNg,.
Then n = ny + ny with n; = nNg,. If ais asplit component of (P, S) and m’ is the centralizer of a in g
then m’ = m} + m{, with m; = m’ N g;. Since m = m’ N s, it is also the direct sum of m; and my and a,
being the orthogonal complement of m in w’, is the direct sum of a; and as. If (P, S) is not reducible it

will be called irreducible.

Lemma 2.6. Suppose that the split parabolic subgroup (P,S) is irreducible and suppose that 7 is a
representation of g on the finite-dimensional vector space V' such that if « is a linear function on
a and

Vo={ve V!W(H)v = a(H)v for all H in a},

then the trace of the restriction of m(X) to V,, is zero for all X in m. Then there is a constant c

such that trace{n(Hy) m(H2)} = ¢(H1, Ha) for all Hy and Hy in a.

If g contains a non-trivial centre then g is abelian and a = {0}; so there is nothing to prove. We
suppose then that g is semi-simple, so that the Killing form (X,Y") is non-degenerate. Consider the

bilinear form trace 7 (X) 7n(Y) = (X, Y) on g. Itis readily verified that
(X, Y], 2) + (Y, [X, Z2]) = 0

Let 7" be the linear transformation on g such that (X,Y) = (T'X,Y); then (T'X,Y) = (X,TY) and
T([X,Y]) = [X,TY]. If H belongs to a and X belongs to m the assumption of the lemma implies that
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(H,X) = 0. Moreover choosing a basis for V' with respect to which the transformations 7(H), H € a,

are in diagonal form we see that (X,Y") = 0 if X belongs to p and Y belongs to n. If o belongs to @ let
n, ={X €g|[H,X]=—a(H)X forall H in g}

andletn™ =3 _on,. If X belongstoa+m+n~ and Y belongs ton~ then (X,Y) = 0. Thus if
belongsto athen (T'H,Y) = 0for Y inm+n+n~,sothat 7'H lies in a. For the same reason 7m C m
and Tn C n. Let Ay, -, A, be the eigenvalues of T'and let g; = {X € g| (T'— ;)" X = 0 for some n}.
gi, 1 <i<risanideal ofgand g = @g;,p = D(pNgi), and s = B(s N g;). We conclude that = 1.
The restriction of T' to a is symmetric with respect to the restriction of the Killing form to a. Since the
latter is positive definite the restriction of 7" to a is a multiple of the identity. This certainly implies the

assertion of the lemma.

Now suppose I' is a discrete subgroup of G. When describing the conditions to be imposed on

I" we should be aware of the following fact.

Lemma 2.7. If I is a discrete subgroup of G, if (P1,51) and (P2, S2) are two split parabolic
subgroups, if ' N P; C S;, i = 1,2, if the volume of I' N S;\S; is finite for i = 1,2, and if P, DO Ps,
then S1 D Ss.

Let S = S1 NSy thenT'N P, C S. S is a normal subgroup of Sy and S\S; is isomorphic
to 51\51.52 and is consequently abelian. It follows readily from the definition of a split parabolic
subgroup that the Haar measure on S5 is left and right invariant. This is also true of the Haar measure

on S\ S, and hence it is true of the Haar measure on S. Thus

/ ds; = / dss / ds = u(S\S5) u(T' N S\S)
FﬂSQ\SQ S\SQ FﬂSQ\S

Consequently p(S\S2) is finite and S\ Sz is compact. Since the natural mapping from S\ S, to S1\S1 .52
is continuous 57\ 5155 is also compact. But S7\51.5; is a subgroup of S;\ P; which is isomorphic to

Ay and A; contains no non-trivial compact subgroups. We conclude that S is contained in S;.

If T" is a discrete subgroup of G and (P, S) is a split parabolic subgroup then (P, .S) will be
called cuspidal if every split parabolic subgroup (P’, S’) belonging to (P, S) issuch that ' N P’ C 5/,
' N N'\N' is compact, and I' N S’\'S” has finite volume. A cuspidal subgroup such that I' N S\ S is
compact will be called percuspidal. Since the last lemma implies that .S is uniquely determined by P
and I" we will speak of P as cuspidal or percuspidal. If P is a cuspidal subgroup the group N\ S which

is isomorphic to M satisfies the same conditions as G. It will usually be identified with M. The image
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© of I' N S'in M is a discrete subgroup of M. If (*P,*S) is a split parabolic group belonging to (P, S)
then (TP, TS) = (*N\P N*S, *N\S) is a split parabolic subgroup of *M. If (P, S) is a cuspidal group
of G then (TP, TS) is a cuspidal subgroup of *M with respect to the group *©.

Once we have defined the notion of a Siegel domain we shall state the condition to be imposed
on I'. Fix once and for all a maximal compact subgroup K of G which contains a maximal compact
subgroup of Gy. If (P, .S) is a split parabolic subgoup, if ¢ is a positive number, and if w is a compact

subset of S then a Siegel domain & = &(c,w) associated to (P, S) is
{9=sak|s€w, acAt(c,0), ke K}

A is any split component of (P, 5).

A set E of percuspidal subgroups will be said to be complete if when (Py,.S1) and (P, .S2)
belong to E thereis a g in G such that gP g~ = P, and gS;g~ ! = S, and when (P, S) belongs to E
and v belongs to T the pair (yP~~!,vSy~1) belongs to E.

Assumption. There is a complete set of E of percuspidal subgroups such that if P is any cuspidal
subgroup belonging to an element of E there is a subset {Py,---,P.} of E such that P belongs to
P, 1 <i <, and Siegel domain &; associated to (N\Py NS, N\S;) such that M = J;_, ©6;.
Moreover there is a finite subset I of E' such that E=\J, cr Upep vP~y~L.

Henceforth a cuspidal subgroup will mean a cuspidal subgroup belonging to an element of £
and a percuspidal subgroup will mean an element of E. It is apparent that the assumption has been
so formulated that if *P is a cuspidal subgroup then it is still satisfied if the pair I', G is replaced by
the pair *©,* M. Let us verify that this is so if E is replaced by the set of subgroups *N\ P N*S where
P belongs to E and *P belongs to P. It is enough to verify that if (*P,*S) is a split parabolic group
belonging to (P, S1) and to (P, Ss) and gPig~! = P, gS1g7! = S, then g lies in *P. Let *a be
a split component of (*P,*S); let a; be a split component of (P;,.S;) containing *a; and let b be a
maximal abelian subalgebra of g® containing a; whose image in ad g is diagonalizable. Choose p in *P
so that (pPap~!, pSop~1) has a split component a; which contains *a and is contained in b and so that
Adpg(a;) = ay and Adpg(b) = b. Replacing g by pg if necessary we may suppose that p = 1. Choose
an order on the real linear functions on b so that any root whose restriction to a; lies in @), is positive.

If the restriction of the positive root « to *a lies in *Q) then the restriction to a; of the root o/ defined by

o (H) = a(Adg(H))
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lies in Q1 and is thus positive. The roots whose restrictions to *a are zero are determined by their
restrictions to the intersection of b with the semi-simple part of *m. It is possible (cf. [11]) to choose an
order on the linear functions on this intersection so that the positive roots are the restrictions of those
roots « of b such that «/, with o/ (H) = «(Adg(h)), is positive. It is also possible to choose an order
so that the positive roots are the restrictions of the positive roots of b. Consequently there is an m in
*M such that Admg(b) = b and Admg takes positive roots to positive roots. Then mg belongs to the

centralizer of b and hence to *P; so the assertion is proved.

Some consequences of the assumption which are necessary for the analysis of this paper will
now be deduced. If (P,.S) is a split parabolic subgroup of G the map (p, k) — pk is an analytic map
from P x K onto G. If A is a split component of (P, .S) then every element p of P may be written
uniquely as a product of p = as with a in A and s in S. Although in the decomposition g = pk the
factor p may not be uniquely determined by ¢ the factor a = a(g) of the product p = as is. In fact
the image of a(g) in the split component of (P, S) is. Henceforth, for the sake of definiteness, a(g)
will denote this image. Every percuspidal subgroup has the same split component which will call §.

Suppose the rank of hispand o 1, - - -, o, are the linear functions on f dual to the simple roots.

Lemma 2.8. If P is a percuspidal subgroup there is a constant ji such that &, , (a(v)) <p, 1< <
p, for all v in T.

If C is a compact subset of G so is KC and {a(h)|h € KG} is compact; thus there are two
positive numbers p; and po with gy < ps such that it is contained in YA (uq, p2). If g = ask with a in

A, sin S,and k in K and h belongs to C then a(gh) = a(kh) a(g), so that

,Ullfa,i(a) < ga,i (a(gh)) < H2€a,i(a)7 1<e<p,

In particular in proving the lemma we may replace I' by a subgroup of finite index which will still
satisfy the basic assumption, and hence may suppose that GG is connected. If P is a cuspidal subgroup
let A =TnNS. If Pis percuspidal there is a compact set w in S such that every left coset Ay of A in
I" contains an element 7’ = sa(y)k with s in w. For the purposes of the lemma only those ~ such that
~" = ~ need be considered. It is not difficult to see (cf. [22], App. Il) that there is a finite number of
elements §;,---,d, in T'N N such that the connected component of the centralizer of {d;,---,d,} in
I'N N is N¢, the centre of N. A variant of Lemma 2 of [18] then shows that I' N N\ N¢ is compact so
that, in particular, there isan element § # 1 in I' N N¢. If Q¢ is the set of « in @ such that n, Nn® # {0}
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there is a constant v such that, for all v in T, &, (a(’y)) < v for at least one « in ¢. If not there would

be a sequence {v,} with {£;*(a(7¢))} converging to zero for all « in Q°, so that

vy =Ky (a7 () (s 0s0) ale)) ke

would converge to 1 which is impossible.

If g = @®]_,9; with g; simple, then p = ®]_,p N g; so that n® = ®;_n°Ng;. Ifjisa Cartan
subalgebra containing a, if an order is chosen on j as before, and if tv is a subspace of n“ N g, invariant
under Ad p for p € P then the complexification of tv contains a vector belonging to the lowest weight

of the representation g — Ad(g~!) of G on g;. Since this vector is unique n° N g; C ng, for some 3; in

Q. The lowest weight is the negative of a dominant integral function; so 5, = le b{ o ; with bZ > 0.

Thus there is a constant v/ such that, for all v in T,
i _ <
in &, (a(y)) <v
In any case Lemma 2.8 is now proved for percuspidal subgrouops of rank one.

If G is a maximal compact normal subgroup of G then in the proof of the lemma G may be
replaced by Go\G and I" by Go\I'Gy. In other words it may be supposed that G has no compact
normal subgroup. Let Z be the centre of G. If we could show that I' N Z\ Z was compact we could
replace G by Z\G and I" by Z\I"'Z and assume that G has no centre. We will show by induction on
the dimension of G that if I'\G has finite volume then I' N Z\ Z is compact. This is certainly true if G
is abelian and, in particular, if the dimension of G is one. Suppose then that GG is not abelian and of
dimension larger than one. Because of our assumptions the group G has a finite covering which is a
product of simple groups. We may as well replace GG by this group and I' by its inverse image in this
group. Let G =[], G; where G, is simple, 1 <14 < r. We may as well assume that G is abelian for
some i. Choose ¢ in I" but not in Z. It follows from Corollary 4.4 in [1] that the centralizer of § in I is
not of finite index in I" and hence that for some v in I' §~'y~16~ = ¢ does not lie in the centre of G.
Lete = H?:l g; and suppose that ¢; does not liein the centre of G; for 1 <i < mwhere1l < m < n. It
follows as in [20] that the projection of 'on G’ = [];~, G; is discrete and that the volume of ' N G"\G”
is finite if G = H?:mﬂ G;. Since G” contains a subgroup of Z which is of finite index in Z and
otherwise satisfies the same conditions as G the proof may be completed by induction.

If G has no centre and no compact normal subgroup I is said to be reducible if there are two
non-trivial closed normal subgroups G; and G, such that Gy N Gy = {1}, G = G1G2, and T is

commensurable with the product of 'y = I' NG and I'y; = I' N Ga. T is irreducible when it is not
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reducible. Since if one of a pair of commensurable groups satisfies the basic assumption so does the
other, it may be supposed when I' is reducible that it is the product of I'; and I';. If we show that I’y
and TI'y satisfy the basic assumption we need only prove the lemma for irreducible groups. If *P is a
cuspidal subgroup for I' then *P = *P;*P;, with *P; = *P N G; and *N = *N;*N, with *N; = *N N G;.
Since I'N*NV\*N is thus the product of I'*N; \ *N; and I'N*N, \ *N,, both factors are compact. Moreover
if %S; = *SNG;thenT'; N*P; C *S; and I' N *P C *S1%S,. If *A is a split component of (*P,*S) and *4;
is the projection of *A on G; then *A;*A, is a split component of *P and determines the split parabolic
subgroup (*P, *S1*%S2). Since the measure of I' N *S; %S5\ %51 %S5 is clearly finite Lemma 2.7 implies that
S = *51%S,. It follows readily that (*P;, *S;) is a cuspidal subgroup for I';, i = 1, 2. Once this is known

it is easy to convince oneself that I';, « = 1, 2, satisifes the basic assumption.

To make use of the condition that I is irreducible another lemma is necessary.

Lemma 2.9. Suppose I' is irreducible. If P is a cuspidal subgroup of I' and o 1,---, 04 are the

linear functions on a dual to the simple roots then (o ;, o ;) > 0 for alli and j.

To prove this it is necessary to show that if the first alternative of Lemma 2.6 obtains then T’
is reducible. Let F; and F5 be the two subsets of that lemma and let P, and P, be the two cuspidal
subgroups determined by them. We will show in a moment that n is the Lie algebra generated by
Zlenai, and that if i € Fy, j € F, then [n,, ,n,, | = 0. Thus n = n; @© ny if n; is the algebra
generated by ngFi n,,. Moreover n; is the maximal normal subalgebra of p; N g® containing only
elements whose adjoints are nilpotent. The centralizer of g, is a fully reducible subalgebra of g and
lies in the normalizer of ny. The kernel of the representation of this algebra on ny is a fully reducible
subalgebra g». The normalizer g’ of g, is the sum of a fully reducible subalgebra g; and g». g’ contains
ny in the centralizer of a; and thus contains p;. Since p; is parabolic g’ = g. Since g, contains n, and

I'N N; # {1} fori = 1,2 it follows from Theorem 1’ of [20] that I is reducible.

To begin the proof of the first of the above assertions we show that if « is in @ then (a, ;) > 0

for some j. If this were not so then, since o = 2321 m;a;.,

q
0<(a,) = Zmﬂaj,,a) <0
j=1

Choose a Cartan subalgebra j of g containing a and choose an order as before on the real linear functions

onj.. If &’ is a positive root and the restriction « of o to a is neither zero nor o; , 1 < i < g, then for
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some j thereisa 3’ in Q;j such that o/ — 3’ is a positive root. Indeed if this were not so then, since

B — ' is not a root for any such /', we would have (¢/, 3’) < 0. Consequently,
<Oé,()éi7>§0, IS'LSQ7

which is impossible. Let n’ be the algebra generated by Z?Zl N, ; it is enough to show that n,, the
complexification of n’, equals n.. We suppose that this is not so and derive a contradiction. Order the
elements of () lexicographically according to the basis {c ,-- -, } and let o be a minimal element
for which there is a root o/ in @/, such that X, a root vector belonging to ¢/, is not in n... Choose a j
anda 3" inQy,, sothata’ — ' isaroot. The root vectors of X, and X,/ g both belong to n;, and thus
X which is a complex multiple of [ X3/, X,,,_s/] does also. As for the second assertion we observe
that if
1€ Fy, j€Fy,

and
o €@y, B eq,,
then o/ — 3 is neither a root nor zero. Moreover
0= > (\8).
B'eqQy,.
Js
So each term is zero and for no 3’ in @, is o’ + " aroot. This shows that

[nai,,najy] = 0.

Suppose that I' is irreducible and that the assertion of Lemma 2.8 is not true for the percuspidal
subgroup P. Thereisasequence {y,;} CT'andak, 1 < k < p, such that

]Lnolo é‘a,k (a(’)/j)) =00

It may be supposed that £ = 1. Let *P be the cuspidal subgroup belonging to P determined by
{ay, |i # 1}. Lety; = njaym;k; with n; in *N, a; in *A, m; in "M, and k; in K. Replacing v; by &;7;
with 6; € *A = I' N *S and choosing a subsequence if necessary we may assume that {n;} belongs
to a fixed compact set and that {m;} belongs to a given Siegel domain associated to the percuspidal

subgroup Tp = *N\P' N *S of *M. P’is a percuspidal subgroup of G to which *P belongs. If TA” is
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the split component of TP and A’ = Aisthe split component of P’ then a/(vy;) = aﬁa’(mj). There is

a constant ¢ such that
€a s (a/(%’)) > céa,(ay)

This follows immediately if : = 1 since

504,1 (al(ﬁ}/j)) = 504,1(‘1/)

and from Lemma 2.5if 7 > 1. Since

there is a positive constant r such that

Ter (a;) > €a, (a;).

However
ga,l(aj) = ga,l (a(%’));
o]

im 50&171 (CL/(’)/])) = 00, 1 S Z S p’
J—0o0

which we know to be impossible.

The next lemma is a simple variant of a well known fact but it is best to give a proof since it is
basic to this paper. Suppose P is a parabolic with split component a. Letj be a Cartan subalgebra such
that a C j C p and choose an order on the real linear functions on j. as before. Let o ¢,-- -, 4 be the
linear functions on a dual to the simple roots and let & ; be the linear function on j which agrees with
a; on a and is zero on the orthogonal complement of a. There is a negative number d; such that d;a ;
is the lowest weight of a representation p; of GGy, the connected component of GG, acting on the complex

vector space V; to the right.

Lemma 2.10. If X\ is a linear function on a such that there is a non-zero vector v in V; with

vp;(a) = &x(a) for all a in A then

q
A= diOé,i + Z?’L]’Oéj7
j=1
with n; >0, 1 < j < q. Moreover if v; is a non-zero vector belonging to the lowest weight then

{9 € Go |vipi(g) = pv; with u € C}
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is the intersection with Gy of the split parabolic subgroup P; determined by {o;, ‘j #i}.

Let
a; :{HE Cl‘Oéﬁ(H),j 752}

and let )} be the set of positive roots of a which do not vanish on g;. Set

- _ ,‘
ni_§:na7

a€Q)
then

g=n; +a;+m;+n;

Let
V;, = {’U | ’l)pZ(X) =0for X € ni}.

If W is a subspace of V/ invariant and irreducible under a; +m; then the vector belonging to the lowest
weight of the representation of a; + m; on W must be a multiple of v; and the lowest weight must be

d;a'. Consequently V/ is the set of multiples of v;. Let Vi(”) be the linear space spanned by
{vipi(X1) - pi(Xy) | X; € gand k < n}
and let (™)V; be the linear space spanned by
{vipi(X1) - pi(Xk) | X;j € n; and k < n}.

We show by induction that Vi(”) C (MV;. This is certainly true for n = 1 since k may be zero. If

Xi,-+-,X,_1 belong ton;” and X, belongs to g then
vipi(X1) - pi(Xy)
is equal to
vipi(X1) -+ pi(Xn—2) pi([Xn—1, Xn]) +vipi(X1) - - pi(Xn—2) pi(Xn) pi(Xn—1).

Applying induction to the two terms on the right we are finished. The first assertion of the lemma
follows immediately. Let

P/ ={g€ Gy ! vipi(g) = pv; with p € C}

The intersection of P; with Gy is just the normalizer of n; in Gy. Thus it leaves V; invariant and is

contained in P;. To complete the proof we need only show that p!, is contained in p,. If m is a maximal
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fully reducible subalgebra of p/ containing a; +m; then { X € m/ | v; pi(X) = 0} isanormal subalgebra
of m/ and its orthogonal complement in m; with respect to the Killing form lies in a; + m; because it
commutes with a;. Thus its orthogonal complement is a; and [a;, m/] = 0; so m, = a + m,. Letn] be a
maximal normal subalgebra of p. such that ad X is a nilpotent for all X in n,. Then n is contained in
n; and p; = m; + n’. It follows that p; = p;.

Before stating the next lemma we make some comments on the normalization of Haar measures.
We suppose that the Haar measure on G is given. The Haar measure on K will be so normalized that

the total volume of K is one. If P is a cuspidal subgroup the left-invariant Haar measure on P will be

/G ¢(g) dg = /P /K o(pk) dp dk.

Let p be one-half the sum of the elements of Q and if a = exp H belongs to A letw(a) = exp (— p(H)).

so normalized that

Let dH be the Lebesgue measure a normalized so that the measure of a unit cube is one and let da be

the Haar measure on A such that d(exp H) = dH. Choose, as is possible, a Haar measure on S so that

/}3¢(P)dp=/S/quﬁ(sa)wz(a)dsda.

Choose the invariant measure on I' N N\ NV so that the volume of I' 1 N\ IV is one and choose the Haar

measure on N so that

/N ¢(n)dn = /I‘ON\N 5G;N ¢(0n) dn.

Finally choose the Haar measure on M so that

/S #(s)ds = /N /M é(nm) dn dm

Lemma 2.11 Let P be a percuspidal subgroup and w a compact subset of S. There are constants c
and r such that for any t <1 and any g in G the intesection of I'g and the Siegel domain &(w,t)

associated to p has at most ct™" elements.

It is easy to convince oneself that it is enough to prove the lemma when G is connected. In this
case the representations p; introduced before Lemma 2.10 are representations of G. Choose a norm on

V; so that p; (k) is unitary for all k& in K. If g = sa(g)k then

vi pi(g) = €2, (a(9)) vi pi(k),

so that
[oi pi(g)ll = €21, (a(9)) lvill-
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If T is a linear transformation then ||7'|| denotes as usual the norm of 7. Choosing a basis of v;;,
1 <5 < ny, for V; such that

Vij Pi (CL) = 5/\in (CL) Vij

for all ¢ in A, we see that there is a constant ¢; such that, for all v in V; and all a in A,

; > i y .
lopi(@)ll = ex( min &x,;(a))o]

Moreover, it follows from Lemma 2.10 that there is a constant s such that, for all a in A" (¢, 00),

i (a) > t5 €% (a).
B, S (@) 2 785 (0)

Let ¢ be such that, for all sinw and all v in V;,
lopi(s)]| = caflv]]-
Suppose g and ¢’ = g, with v in I', both belong to &(w, t). Certainly

llvi p(g")Il = €2, (a(g") Ilvill-

On the other hand

[0i pi(v9)[| = crea t® € (alg)) lvipi (V)]

and
loipi (VI = €2 (a()) [lvill-

It follows from Lemma 2.8 that there are constants c3 and ¢4 and s; such that
o (alg) <est™ &a,(a(7)) €a, (alg)) < cat™ Ea, (alg))-
Since g = v~ !¢/, the argument may be reversed. Thus there are constants cs, cg, and s, such that
cs > o, (a(v)) >cet®, 1<r<p.
Let us estimate the order of

U(t) = {y=sak|s €wy, a €t A(cst*,c5), k € K}
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with w; a compact subset of S. There are certainly constants by, by and 71, r2 such that TA(cg 52, c5) is
contained in AT (b;t", byt"2). Choose a conditionally compact open set in G such that U N yU # ¢

implies 7, = 75; then by can be so chosen that v € U(¢) implies
U € CUQ(t) A+(b1tn s bgtm)K,

where

WQ(t) = {SlaSQCL_l | S1 € W1, S2 €Ewa, a € A+(b1trl,b2trz}

and ws, is the projection of KU on S. Consequently the order of U(¢) is at most a constant times the

product of

/ w?(a) da
AT (b1t72,bat"2)

and the volume of w4 (t). A simple calculation, which will not be given here, now shows that the order
of U(t) is bounded by a constant times a power of ¢. If it can be shown that for each g in &(w, t) and
each v in I' the number of elements § in A = I" N P such that §vg belongs to &(w, t) is bounded by
a constant independent of ¢, v, and g then the lemma will be proved. If vg = sak then §s must be in
w. If there is no such § the assertion is true; if there is one, say dy, then any other § equals ¢§’d with
dwNuw # ¢.

Corollary. Let P, and Py be percuspidal subgroups and let *P be a cuspidal subgroup belonging
to Py. Let &1 be a Siegel domain associated to Py, let T62 be a Siegel domain associated to
TPQ =*N\P> N*S, let w be a compact subset of *N, and let b, s, and t be positive numbers. Let
Jrc12 be the split component OfTPQ. There is a constant r, which depends only on G and s, and a
constant ¢ such that if g € &1, v € T, and vg = namk with n in w , a in *A*(t,00), m in TGQ, k
in K, and n(a) < bn* (Tas(m)) then

n(a(9)) < en” (Taz(m))
Moreover if *P = G the constant r can be taken to be 1.

Ifaq,---,ap are the simple roots of a;, then

n(ai(g)) = Sup €ar (a1(9));

similarly, if 3, ,---, 3,, are the simple roots of Tag,

n(Tas(m)) = sup &5, (Taa(m)).

1<i<q
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Suppose that
n< g, (Taa(m), 1<i<yq,
for all m in ¥&. If m is given as in the lemma, let M = n(Tag(m)); then
logpu < €5, (Tas(m)) <logM, 1<i<q.
Since
logt <logé&,, (a) <logb+ slog M
and since ax(vg) = aTaz(m) there is a constant r;, which depends only on G and s, and a constant r,
such that
|log &a,. (a2(’yg))] <rilogM+mry, 1<i<p.

In particular there is a constant r3, which depends only on GG and s, and two positive constants ¢; and
co such that

o (a2(79)) > a1 M7
and

fai(a2(79)) < caM™,
for 1 < i < p. Choose u so that uPu~! = P;; then a;(uygu™') = az(vg). Let v; have the same
significance as above except that the group P is replaced by P,. Then there is a constant r4, which

depends only on G and s, and a constant c3 such that

8 (ar(9)) lvill = llvi pi (v o (uygu™"Yu) | = es ML (aa(vg)) lvill-

Thus there is a constant 5, which depends only on GG and s, and a constant ¢4 such that

o (a1 (g)) <cyg M5,
Appealing to Lemma 2.4 we see that é}xﬂ.(al(g)) is bounded away from zero for 1 < ¢ < p. Since
log&a, (a1(g)) is a linear combination of log &, , (a1(g)), 1 < i < p the first assertion of the lemma is
proved.

To complete the proof of the lemma we have to show that if G; and G5 are Siegel domains
associated to P, and P, respectively then there is a constant ¢ such that if g belongs to G; and vg
belongs to G, then

n(ai(g)) < en(az(v9))
Using Lemma 2.10 as above we see that &, , (a1(g) a5 '(vg)) is bounded away from zero and infinity
for 1 <i < p. Thus &, (a1(g)as ' (vg)) must be also.

The next lemma will not be needed until Section 5.
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Lemma 2.12. Suppose P and P’ are two percuspidal subgroups and & and &' are associated Siegel
domains. Let F and F’ be two subsets, with the same number of elements, of the set of simple roots
of b and let *P and *P’ be the cuspidal subgroups belonging to P and P’ respectively determined by
F and F'. If 0 < b < 1 there are constants t and t' such that if g belongs to & and &, (a(g)) >t
when o does not belong to F and &, (a(g)) > £s(alg)) when 3 belongs to F and o does not, if ¢’
belongs to &' and satisifes the corresponding conditions, and if vy belongs to F and vg = ¢’ then
v*Py~t = *P'. Moreover if P = P’ and, for some g in G, g*Pg~' = *P’ and ¢*Sg~— = *S’ then
*P="*P, xS =*5".

Suppose, for the moment, merely that g belongs to G, ¢’ belongs to &', and vg = ¢’. Choose u

so that wy belongs to G and so that uP’u~! = P. Choosing v; in V; as above we see that

&', (alg)) il = €5, (aly™ ™) lwipi(wyg) || = ¢ €57, (aly™u™)) €5 (a(9)) uil

if w; is such that

ggfi (a(y'u™"))w; = v pi(y Tu).

Of course a similar inequality is valid if g and ¢ are interchanged. Since u may be supposed to lie in a
finite set independent of v we conclude as before that a='(g) a’(¢’) lies in a compact set. Moreover, as
in the proof of Lemma 2.11, v~ ! must belong to one of a finite number of left-cosets of A. Consequently

w;, 1 <7 < p, must belong to a finite subset of V; and there must be a constant ¢ such that

Jw; pi(ug'u™")|| < &, (d'(g"))

Moreover, it follows from the proof of Lemmma 2.10 that there are positive constants b and r such that if

w; is not a multiple of v; then
[wi pi(ug'u™)|| > bed (a/(g') £, (d'(9")).

Choose t’ so large that b’ > ¢ and choose ¢ in an analogous fashion. If g and ¢ satisfy the conditios of

the lemma then v~ '« ~! must belong to ﬂai cr Pi, where P; is defined as in Lemma 2.10. It is easily

seen that
=) P
OliYEF
so v~ 'u~! belongs to *P. Index the system of simple roots so that

gal, (a’(g’)) > 5a2, (a’(g/)) > > gap, (a/(g/))
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There is an integer ¢ such that F = {a 41 ,-- -, ap, }. If ' is very large then

€ar (alg)) > &a, (al9))

ifi <g<yj. Thusif 3 ,---,[, isthesystem of simple roots indexed so that

&s, (alg)) = &p, (alg)) = -+ > &g, (alg)),

then
(B, Be =1{a1, a4}

Since {B,41.,-*+,Bp,} = F the sets F' and F” are equal and v*P’u~! = *P. Then
,y—l*P/,Y — ,y—l u—l*Pu,y — *P

To prove the second assertion we observe that (*P’,*S’) belongs to (P,S) and to
(gPg=',gSg™1'). We have proved while discussing the basic assumption that this implies that g
belongs to *P’.

The next lemma will not be needed until Section 6 when we begin to prove the functional
equations for the Eisenstein series in several variables. Let P be a cuspidal subgroup of rank ¢ with
a as split compoment. A set {3, ,---, 3, } of roots of a is said to be a fundamental system if every
other root can be written as a linear combination of 3, , - - -, 3, with integral coefficients all of the same
sign. It is clear that if P, and P, are two cuspidal subgroups, g belongs to G, Adg(a;) = ag, and

B ={p,---, 08, } isafundamental system of roots for as, then

g_lB = {ﬁl, © Adgv e 7Bq, ° Adg}
is a fundamental system. The Weyl chamber W associated to a fundamental system is
{Hea|B,(H)>0,1<i<q},

so that
Ad(g_l)WB = Wg—lB

It is clear that the Weyl chambers associated to two distinct fundamental systems are disjoint. The only
fundamental system immediately at hand is the set of simple roots and the associated Weyl chamber

isa™. If P, and P, are as above we defined Q(a;, a2) to be the set of all linear transformations from a;
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to ay obtained by restricting Adg to a, if g in G is such that Adg(a;) = as. P; and P, are said to be

associate if (a1, az) is not empty.

Suppose Py is a percuspidal subgroup and P is a cuspidal subgroup belonging to F. Let
{a1,,---,a,, } be the set of simple roots for ) and suppose that P is determined by {cg41,,-- -, . }.
If 1 < j < g let *P; be the cuspidal subgroup determined by {o; ,aq41,, -+, ap,}. Suppose *a; is
contained in a. To prove the next lemma it is necessary to know that for each P and j there is an
element g in *); such that Adg(a N *m;) is the split component of a cuspidal subgroup which belongs
to Py N *M; and such that if « is the unique simple root of a N *m; then a o Adg~! is a negative root
of Adg(a N *m;). Unfortunately the only apparent way to show this is to use the functional equations
for the Eisenstein series. Since the lemma is used to prove some of these functional equations a certain
amount of care is necessary. Namely if ¢ > 1 one needs only the functional equations of the Eisenstein
series for the pairs (*0;, *M;) and since the percuspidal subgroups have rank less than those for (I', G)
one can assume them to be proved. On the other hand if ¢ = 1 the lemma is not used in the proof of
the functional equations. In any case we will take this fact for granted and prove the lemma. Everyone

will be able to resolve the difficulty for himself once he has finished the paper.

Lemma 2.13. Let Py be a percuspidal subgroup and let F = {Py,---,P.} be a complete family
of associate cuspidal subgroups belonging to Py. If P belongs to F' and E is the collection of
fundamental systems of roots of a then a is the closure of | Jgcp Wn. If B € E then there is a

unique i, 1 < i <r, and a unique s in Q(a;,a) such that saj = Wp.

Suppose as before that P is determined by {og41,, -, a, }. If 1 < j < g let g; be one of the

elements of *M; whose existence was posited above. Denote the restriction of Adg; to a by s; and let

sj(a) = b;. Denote the restriction of o ,---, a4 to aalso by oy ,---,a4. Then a; o sj_l restricted
to b; N "m; is the unique simple root. Thus the simple roots 3 ,---, 3, of b; can be so indexed that
aj os; " =—0;and a; os; ' = f; +bi;3; with b; > 0if i # j. More conveniently, 3, o s; = —a;,

and 3; o s; = oy, + b;ja;,. To prove the first assertion it is enough to show that if H belongs to a and
a(Hy) # 0 for all roots « then there is some i and some s in 2(a;, a) such that s~1(H,) belongs to a; .

There is a point H; in a™ such that the line through H, and H; intersects none of the sets
{Hca|a(H)=p(H) =0}

where « and ( are two linearly independent roots. If no such ¢ and s exist let Hs be the point closest

to Hy on the segment joining Hy and H; which is such that the closed segement from H; to Hs lies
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entirely in the closure of
-
U U s
1=1s€Q(a;,a)

H, isnot Hy. Let H, lie in the closure of ta;r with ¢ in Q(ax, a). Replacing Hy by t~(Hy) and P by Py

if necessary it may be supposed that Hs lies in the closure of a™. Choose j so that
(1[7(H2)>O7 1§€§q7 6#37

and o (Hz) = 0. Then o (Hy) < 0, so that if H lies on the segment joining Hy and H» and is

sufficiently close to H, then s; H liesin bj; this is a contradiction.

It is certainly clear that if B belongs to E then there is an i and an s in (a;, a) such that
saj = Wp. Suppose that ¢ belongs to Q(ay,a) and ta} = Wx. Then s~ t(af) = af. If sis the
restriction of Adh to a;” and t is the restriction of Adg to a; then h=1gP.g~'h = P,. The previous
lemma imples that i = k and that h~!g belongs to P;. Since the normalizer and centralizer of a; in P;

are the same it follows that s~ '¢ is the identity.

If ais as in the lemma the transformations sy, - - -, s, just introduced will be called the reflections
belonging, respectively, to a4 ,---,a, . We have proved that if a and b belong to {a;,---,a,} then
every element of Q(a, b) is a product of reflections; if s is the product of n but no fewer reflections then
n is called the length of s. Two refinements of this corollary will eventually be necessary; the first in

the proof of Lemma 6.1 and the second in the proof of Lemma 7.4.

Corollary 1. Every s in Q(a,b) can be written as a product s, ---s281 of reflections in such a

way that if sy lies in Q(a;,,a;,) and belongs to the simple root oy, of a;,, then sp_q--- 51(“?1

) is
contained in

{H € a;, ‘Oék(H) > 0}.

Of course n is not necessarily the length of s. Let Wy = sa™. Take a line segment joining
a point in the interior of Wx to a point in the interior of b™ which does not meet any of the sets
{H € b|a(H) = B(H) = 0} where « and 3 are two linearly independent roots. If the segment
intersects only one Weyl chamber the result if obvious. The lemma will be proved by induction on
the number, m, of the Weyl chambers which it intersects. If m is greater than one, let the segment
intersect the boundary of b* at Hy. Index the simple roots 3, ,-- -, 3,, of b so that 8, (H,) = 0 and
B;,(Hp) > 0if j > 1. Then if H belongs to b* the number 3, (sH) is negative, so that if r is the
reflection belonging to 31 the number (—3; or~')(rsH) is positive. Let ¢ = rs; if r belongs to Q(b, ¢)
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then ¢ belongs to Q(a, ¢). Since there is a line segment connecting W and r~!(¢) which meets only in
m — 1 Weyl chambers, there is a line segment connecting ¢ and ta™ = rWWx which meets only m — 1
Weyl chambers. If the corollary is true for ¢, say ¢t = s,,_1---s; and s,, = r~' then s = s, --- s and

this product satisfies the conditions of the corollary.

Suppose a4, -- -, a, are, as in the lemma, split components of Py, - - -, P, respectively. Suppose
that, for 1 <1 < r, S; is a collection of m-dimensional affine subspaces of the complexification of g;
defined by equations of the form a(H) = p where « is a root and p is a complex number. If s belongs
to S; and t belongs to S; we shall define (s, t) as the set of distinct linear transformations from s to
{H | — H € t} obtained by restricting the elements of (a;, a;) to 5. Suppose thateachsin S = J_, S;
is of the form X (s) + s where s is the complexification of a distinguished subspace of ) and the point
X (s) is orthogonal to s; suppose also that for each s in S the set €2(s, s) contains an element sy such
that

so(X(s)+H) =—-X(s)+H

for all H ins. Thenif r € Q(v,s) and t € (s, t) the transformation tsyr belongs to Q(t,t). Every
element s of (s, t) defines an element of (3, t) in an obvious fashion. s is called a reflection belonging
to the simple root « of 5 if the element it defines in (3, t) is that reflection. It is easy to convince oneself

of the following fact.

Corollary 2. Suppose that for every s in S and every simple root o of S there is a t in S and a
reflection in Q(s,t) which belongs to a. Then if s and t belong to S and s belongs to (s, t) there
are reflections Ty, -+ ,r1 such that if v belongs to (s, si) and sy in Q(sk,sx,) defines the identity

in Q(5k, 5k) the transformation s equals the product S, _17n—1 - T28177.

As before the minimal value for n is called the length of s.
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3. Cusp forms.

As usual the invariant measure on I'\ G is normalized by the condition that

/Gqﬁ(g) dg = /F\G { EF: ¢(vg)} dg

If ¢ is a locally integrable function on I'\G, P is a cuspidal subgroup, and 7' = NA, then

do)= [ oltg)dg = / b(ng) dn

A\T CNN\N

is defined for almost all g. A function ¢ in L(I'\G), the space of square-integrable functions on I'\ G,
such that qB(g) is zero for almost all g and all cuspidal subgroups except G itself will be called a cusp
form. It is clear that the space of all cusp forms is a closed subspace of L(I'\G) invariant under the
action of G on L(I'\G); it will be denoted by L, (I"\G). Before establishing the fundamental property

of Lo(I"\G) it is necessary to discuss in some detail the integral

(\F) 6)(9) = /G o(gh) f (1) dh

when ¢ is a locally integral function on I'\G and f is a once continuously differentiable function on G

with compact support.

Suppose P is a percuspidal subgroup of GG and F' is a subset of the set of simple roots of h. Let

P; be the cuspidal subgroup belonging to P determined by the set F'. Let

d2(g) = /F L

and let ¢; = ¢ — ¢». Then (A(f)¢)(g) equals
(3.0) Lo s m = [ o g™ man+ [ on(n) 17 0y an.

The second integral will be allowed to stand. The first can be written as

/N1 (TAN)\G

If we make use of the fact that

{/mN . $1(néh) > flg~'d1néh) dn} dh.

5€FON1\FON 61 €EI'NNy

and

/ b1 (nh) dn = 0,
FﬂNl\Nl
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this repeated integral can be written as

/N1<F0N>\G { /rmvl\zvl (k) £(g.nh) dn}

with
flghy= > flg7len)— > f(g~'ndh) dn

S€PNN ran;\rnn 7 M

:/F Z {f(g_léh)—f(g_lénh)}dn

ONIANL seraN

It should be recalled that /N is a normal subgroup of N and I"' N NV; a normal subgroup of I' N V.

If & = &(t,w) is a Siegel domain associated to P it is necessary to estimate f(g, k) when g is in
S(t,w). Itmay be supposed that (I'N N)w contains N. Since f(g,h) = f(g,h)ifd € I'NN we can take
h = niaimik; withny inw N N, ay in A, my in M, and k; in K. Suppose g = sak = a(a™'sa)k = au
with sinw and a in A" (¢, 00); then u lies in a compact set U; which depends on w and ¢. The integrand

in the expression for f(g, h) equals

Z {f(u_la_15ah1) — f(u_la_lénahl)}

éel'nN

with by = a='h. If wy is a compact subset of N; such that (I' N N1)wy = Ny itis enough to estimate
this sum for n in wy. Let U be a compact set containing the support of f. If a given term of this sum is

to be different from zero either a—'dah; or a='dnah, must belong to U;U. Then either
(a_léaa_lnla)(a_lmlal)

or

1

(a'énaa " nia)(a " mya)

belongs to P N U UK. It follows that there is a compact set V' in N depending only on & and U such
that a—!da belongs to V. Choose a conditionally compact open set V; in N so that if § belongsto I' N NV
and §V; NV; is not empty then § = 1; there is a compact set V5 in NV such that a =V} a is contained in Vs
if a belongs to A*(t,00). If a='da belongs to V then §V; is contained in aV Vaa~!. Consequently the
number of terms in the above sum which are different from zero is at most a constant times the measure
of aV'Vaa™! and a simple calculation shows that this is at most a constant times w2 (a). Finally there
is a compact subset wo of AM such that every term of the above sum vanishes unless m;a; belongs to

aw?2.
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If {X,} is a basis of g there is a constant i such that [A\(X;) f(g)| < pforalliand g. If X € g
then A\(X) f(g) is defined to be the value of j—{(g exptX)att=0. Then

|f(u"ra" ahy) — f(u™ta " onahy)|
is less than or equal to
1
/ IA(Ad(h7") Ad(a™)X) f(uta ' SexptXahy)|dt
0
if n = exp X. Since n lies in a fixed compact set so does X. Moreover
hi = a ‘njaa " 'myai kg

lies in a compact set depending only on G and U. Consequently the right hand side is less than a
constant, depending only on &, U, and p, times the largest eigenvalue of Ad(a~1!) on N;. In conclusion

there is a constant ¢, depending only on G, U, and p, such that for all g in G and all h

79, )] < cw(a(g){ min €a, (al9))}

Moreover the first integral in the expression for A(f) ¢(g) is equal to

/ w2(b){/ {/ ¢1(ninbmk) f(g,ninbmk) dnl} dn} dbdm dk
aws X K Nl(l"ﬂN)\N Fan\Nl

or, as is sometimes preferable,

/m <K 0 /FON\N &1 (nbmk) f(g, nbmk) dk | dbdm d

The absolute value of the first integral is at most

cw—2(a(g)) { arf,l%gan €ar (alg)) }_1 /GWQXK uﬂ(b){ /FON\N |1 (nbmk)]| dn}db dmdk.

If ws is a compact subset of N such that (I' N N)ws = N this expression is at most

Qg QF

(32) o ao)] min o o)} [  aman

For the same reasons the absolute value of the second integral is at most

OligF

(3.0 w? (a<g>>{ win &, (a(g)) } /  lewlan.
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Lemma 3.1. Let ¢ belong to Lo(I'\G), let f be a once continuously differentiable function with
compact support, and let P be a percuspidal subgroup. If & = &(t,w) is a Siegel domain associated
to P there is a constant ¢ depending only on & and f such that for g in &

IMF) d(9)] < cw™ (alg)) n~ " (alg)) l1#]l-
Here ||¢|| is the norm of ¢ in L(T"\G) and if a belongs to A then

n(a) = X §a; (a)

It is enough to establish the inequality on each

;= {9 €6t (alg) 2 &, (al9). 1 <j < p}

For simplicity take ¢ = 1. In the above discussion take F' = {«; |j # 1}. The second term in (3.a) is

zero; so to estimate A\(f) ¢(g) we need only estimate (3.b). The integral is at most

(L oo}

Since wsaw- K is contained in a fixed Siegel domain &(¢',w’) for all a in A™ (¢, ), the second integral
is at most a constant times ||¢[|2. If wy and w5 are compact subsets of A and M respectively such that
wo is contained in wyws the first integral is at most
{ / dn} { / w?(ab) db} { / dm}.
w3 wa ws
Since

min gai (CL) = 50’1,(0’) = n(a(g))

ai,QF
if g = sak isin G, the lemma follows.
Itis a standard fact that A(f) is a bounded linear operator on L(I'\G). It is readily seen to leave

Lo(T'\G) invariant.

Corollary. If f is once continuously differentiable with compact support then the restriction of A(f)
to Lo(T'\G) is a compact operator.

Since w™!(a) n~!(a) is square integrable on any Siegel domain the corollary follows immediately
from Ascoli’s lemma, the above lemma, and the fact that I'\G is covered by a finite number of Siegel

domains. The significance of the corollary is seen from the following lemma.
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Lemma 3.2. Let G be a locally compact group and 7 a strongly continuous unitary representation
of G on the separable Hilbert space 0. Suppose that for any neighbourhood U of the identity in G

there is an integrable function f on G with support in U such that

f(9) >0, f(g)=Flg™). /G flg)dg =1

and w(f) is compact; then U is the orthogonal direct sum of countably many invariant subspaces
on each of which there is induced an irreducible representation of G. Moreover no irreducible

representation of G occurs more than a finite number of times in 3.

Of course 7 ( f) is defined by

w(f)o = /F f(9) 7(g) vdg

if v belongs to V. Consider the families of closed mutually orthogonal subspaces of V' which are
invariant and irreducible under the action of GG. If these families are ordered by inclusion there will be
a maximal one. Let the direct sum of the subspaces in some family be 2. In order to prove the first
assertion it is necessary to show that 20 equals U. Suppose the contrary and let 20 be the orthogonal
complement of 20 in 2. Choose a v in 20’ with ||v|| = 1 and choose U so that [[v — 7(g)v|| < 5 if gisin
U. Choose f as in the statement of the lemma. Then || (f)v—v| < 3 sothatx(f)v # 0. The restriction
of 7(f) to 2" is self-adjoint and thus has a non-zero eigenvalue p. Let 20, be the finite-dimensional
space of eigenfunctions belonging to the eigenvalue . Choose from the family of non-zero subspaces
of 207, obtained by intersecting 20;, with closed invariant subspaces of 20’ a minimal one 23, Take the
intersection U, of all closed invariant subspaces of 20’ containing 20, Since U, # {0} a contradiction
will result if it is shown that *Uj is irreducible. If 20y were not then it would be the orthogonal direct
sum of two closed invariant subspaces U, and U5. Since °U; N QI]L is contained in Yy N ?113; = 20, for

i =1and 2, the space V; N W/, is either {0} or 20;,. But w(f)U; C U; so
W, = (V1 NW,) © (V2N W),)

and, consequently, U; N QHL = QI]L for ¢ equal to 1 or 2. This is impossible. The second assertion
follows from the observation that if some irreducible representation occurred with infinite multiplicity

then, for some f, 7(f) would have a non-zero eigenvalue of infinite multiplicity.

Before proceeding to the next consequence of the estimates (3.b) and (3.c) we need a simple

lemma.
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Lemma 3.3. Let 6 ... &) be Siegel domains, associated to the percuspidal subgroups
P ... PM) respectively, which cover I'\G. Suppose ¢ and r are real numbers and ¢(g) is a

locally integrable function on I'\G such that

16(9)| < en”(a'P(g))

if g belongs to & . If *P is a cuspidal subgroup and

‘o(a,m, k) = / p(namk="') dn
TO*N\*N

for a in *A, m in *M and k in K then there is a constant r1, which does not depend on ¢, such
that for any compact set C in *A, any percuspidal subgroup ip of *M, and any Siegel doman s

associated to TP there is a constant c1, which does not depend on ¢, such that
é(a,m, k)| < ey (Ta(m)
if a belongs to C and m belongs to ¥&. In particular if *P = G then 1 can be taken equal to r.

If w is a compact subset of *V such that (I' N *N)w = *N then

*b(a,m, k)| < sup [¢(namk")]

new

If ¢ = namk~"' choose v in I" so that vg belongs to &(* for some i. According to the corollary to

Lemma 2.11 there is a constant r, such that for any C, TP, and TGS there is a constant ¢, such that

n(a?(vg)) < ean(Ta(m))™

Since n(a(i) (’yg)) is bounded below on & for each 1, it can be supposed for the first assertion that
r > 0. Thentake r; = rre and ¢; = ccj. If *P is G the lemma also asserts that if G is any Siegel domain
associated to a percuspidal subgroup P then there is a constant ¢; such that |¢(g)| < c1n” (a(g)) on &.
Given g in & again choose + in T so that g belongs to () for some i. The corollary to Lemma 2.11

asserts that there is a number ¢, independent of ¢ and g such that

;' <nHalg)) n(a(g)) < e

Take ¢; = cch if r > 0 and take ¢; = cc;, " if r < 0.
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Lemma 3.4. Suppose 5V, ... &™) gre Siegel domains, associated to percuspidal subgroups, which
cover I'\G. Supose that ¢(g) is a locally integrable function on T'\G and that there are constants ¢
and r such that |¢(g)| < en” (a(i)(g)) if g belongs to S . Let U be a compact subset of G, let p be
a constant, let {X;} be a basis of g, and let f(g) be a once continuously differentiable function on
G with support in U such that |IN(X;) f(g)| < p for all g and i. If S is a Siegel domain associated
to the percuspidal subgroup P and if k is a non-negative integer there is a constant ¢y, depending

onc, ,U, u, G, and k but not on ¢ or f, such that

IXB(F) d(9) — N (f) di(9)] < crm”F(alg))

on

6, ={ge 6|t (alg)) > &, (alg)), 1 <7 <p}.

In accordance with our notational principles

~

dilg) = /F o S

if P; is the percuspidal subgroup belonging to P determined by {«;, \j # i}. The assertion of the
lemma is certainly true for £k = 0. The proof for general k& will proceed by induction. For simplicity

take ¢ = 1. Since
A .
() 0); = A(f) é
it will be enough to show that if there is a constant s such that for any Siegel domain & associated to P

there is a constant ¢ such that |¢;(g)| < ¢/n® (a(g)) on &4 then for any & there is a constant ¢} so that

IACS) 8(9) — A(f) d1(9)] < ¢4 " (alg))

on &;. Of course it will also have to be shown that the constants ¢, do not depend on f or ¢. Indeed

we apply this assertion first to ¢ with s = r and then in general to \*(f)¢ with s = r — k. Since

Af) d(g) = A(f) #1(9)

is nothing but the first term on the right side of (3.a) it can be estimated by means of (3.b). Thus

NP6 = M) lo)] < 2 (el) &2 (elo) [ (il an

if g belongs to G;. First observe that if g belongs to G, then

n(a(g)) = &a,. (alg))
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There is a Siegel domain &’ such that when a = a(g) and g belongs to & the set wsaws K belongs to
&’. Let w, and ws be compact subsets of A and M respectively such that ws is contained in wyws; then

the integral is less than or equal to a constant, which does not depend on ¢, times
/ w?(ab) n®(ab) db
wyq
which is certainly less than a constant times w?(a) 1°(a).

Corollary. Suppose V' is a finite-dimensional subspace of Lo(I'\G) invariant under X(f) for f
continuous with compact support and such that f(kgk=t) = f(g) for all g in G and all k in K.
Then given any real number r and any Siegel domain & associated to a percuspidal subgroup P

there is a constant ¢ such that, for all ¢ in V and all g in G,

lo(9)] < en”(al9)lle(9)]-

Since for a given ¢ there are constants ¢; and r; such that w1 (a) < ¢;n™ (a) for a in AT (t, ),
the corollary will follow from Lemmas 3.1 and 3.3 if it is shown that there is a once continuously
differentiable function f; satisfying the conditions of the lemma such that A(fy)¢ = ¢ for all ¢ in V.
Let {¢1,- -, ¢} be an orthonormal basis for V and let U be a neighbourhood of the identity in G such
that

IA(g)¢s — ¢sll < (2n)~"

if g belongsto U and 1 < ¢ < n. Then, for any ¢ in 5,

1
IA(g) @ — oIl < Slloll

if gisin U. Choose f to be a non-negative function, once continuously differentiable with support in w,
suchthat [, f(g) dg = 1and f(kgk™%) = f(g)forall gin G andall k in K. Then the restriction of \(f)
to v is invertible. Thus there is a polynomial p with no constant term such that p(/\(f)) is the identity
on V. In the group algebra p(f) is defined; set fo = p(f). If V was not a space of square-integrable
functions but a space of continuous functions and otherwise satisfied the conditions of the lemma then

a simple modification of the above argument would show the existence of the function fj.

If P is a cuspidal subgroup then the pair M, © satisfies the same conditions as the pair G, T'. It
will often be convenient not to distinguish between functions on ©\ M, T\ S, and AT\ P. Also every
function ¢ on G defines a function on P x K by ¢(p, k) = ¢(pk™1). Since G = PK, functions on G

may be identified with functions on P x K which are invariant under right translation by (k, k) if k
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belongs to K N P. If V is a closed invariant subspace of L(©\M) let (V') be the set of measurable
functions ® on AT\ G such that ®(mg) belongs to V" as a function of m for each fixed g in G and

/ |®(mk)|? dm dk = ||®|)* < 0o
O\Mx K
If H belongs to a., the complexification of a, and ® belongs to (1) consider the function

exp ((H(h), H) + p(H (1)) ) ®(h)

on G. If g belongs to G it is not difficult to see that there is another function &, (k) in &(V') such that

exp ((H(hg), H) + p(H(hg))) (hg) = exp ((H(R), H) + p(H (1)) ) 1 (k)

®, depends on @, g,and H. If we set &; = 7(g, H)® then n(g, H) is a bounded linear transformation
from &(V) to &(V), m(g192, H) = 7(g1,H) 7(g2, H), and w(1, H) = I. In fact it is easy to see that
m(g, H) is a strongly continuous representation of G on &(V') for each H in a.. The representation is
unitary if H is purely imaginary. If f isa continuous function on G with compact support then 7(f, H)

can be defined as usual by
w(r. )@ = [ flo)nto. 1) 0 dg

It is readily seen that for almost all ¢

exp ((H(gh), H) + p(H(gh)) ) (v(f. H)®) (9)

is equal to
[ ex (ta(ah). )+ p(H (1)) @001 £(1) .

If F'is a finite set of irreducible representations of K let W be the space of functions on K spanned
by the matrix elements of the representations in F'. W will be called an admissible subspace of the
space of functions on K. Let &(V, W) be the space of functions ® in &(V') such that, for almost all g,
®(gk) belongs to TV, that is, agrees with an element of 11/ except on a set of measure zero. With no
loss it may be assumed that it always belongs to W. &(V, W) is just the space of functions ® in &(V')
such that the space spanned by {A(k)® |k € K} is finite dimensional and contains only irreducible
representations of K equivalent to those in F'. If f is a continuous function on G with compact support

and f(kgk™1) = f(g) for all g and k then = (f, H) leaves &(V, W) invariant.

Suppose *P is a cuspidal subgroup belonging to P. If ® belongs to &(V), define a function
on *M x K by ®(*m,k) = ¢(*pk~1) if *p in *P projects onto *m. Since G = *PK this defines an
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isomorphism of &(V') with a space of functions on *M x K. Indeed let fp= *N\P N *S then fPisa
cuspidal subgroup of *M and TM is the same as M. Also TP x K isa cuspidal subgroup of *M x K
for the group *© x {1}. If L is the space of square integrable functions on K then the image of (1)
is the set of all functions in &(V ® L) which are invariant under right translations by (k*, k) where k
belongs to K N *P and *k is the projection of £ on *M. Denote the group of such elements by *K, and
let *K be the projection of K N *P on *M. The group *K plays the same role for *M as K does for G.
Suppose ® belongs to &(V, W). Then

O(*mky, kka) = ®('m k1 ky kY.

For fixed *m and k this function belongs to the space of functions on*K x K of the form ¢(k; k;l) with
¢ in W. Atypical element of W is of the form o;;, that is, the matrix element of a representation in F.

Since

O'ij(k‘lk‘;l) = Zaiﬁ(kl) U@j(k‘é_l)
0

it belongs to the space W* if W* is the space of functions on *K x K spanned by the matrix elements
of those irreducible representations of *K x K obtained by taking the tensor product of an irreducible
representation of K N *P contained in the restriction to K N *P, which is isomorphic to *K, of one of
the representations in F' with a representation of K contragredient to one of the representations in F'.
Thus the image of &(V, W) is contained in &(V ® L, W*); indeed it is readily seen to be contained in
¢(V @ W, W*) and to be the space of all functions in &(V ® W, W*) invariant under right translation

by elements of *K;. On occasion it will be convenient to identify &(V, W) with this subspace.

Since the representation of M on L(©\M) is strongly continuous there is associated to each
element X in the centre 3’ of the universal enveloping algebra of m a closed operator A\(X) on L(©\ M).
Indeed if 7 is any strongly continuous representation of M on a Hilbert space L there is associated to

each X in 3 a closed operator 7(X). If L is irreducible then

where each L; is invariant and irreducible under the action of M, the connected component of M.
The restriction of 7(X) to L, is equal to a multiple, £;(X)I, of the identity. The map X — &;(X) is
a homomorphism of 3’ into the complex numbers. Let us say that the representation belongs to the

homomorphism ;. Suppose the closed invariant subspace V' is a direct sum @©V; of closed, mutually
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orthogonal subspaces V; each of which is invariant and irreducible under the action of M. As we have
just remarked each V; is a direct sum

T4
@

1Vi ]
of subspaces invariant and irreducible under the action of M. Suppose V;; belongs to the homomor-
phism &;;. V will be called an admissible subspace of L(©\ M) if V is contained in £L(©\ M) and there

are only a finite number of distinct homomorphisms in the set {&;; }.

Lemma 3.5. If V is an admissible subspace of Lo(O\M) and W is an admissible subspace of the
space of functions on K then E(V,W) is finite dimensional.

In the discussion above take *P equal to P. Then &(V,W) is isomorphic to a subspace of
E(V @ W, W*). Itis readily seen that IV @ W is an admissible subspace of Ly(© x {1}\M x K) and
that W* is an admissible subspace of the space of functions on *K x K. Since it is enough to show that
¢(V ® W, W*) is finite dimensional we have reduced the lemma to the case that P and M are equal
to G. Suppose V = @V;. If V! = &V, where the second sum is taken over those V; which contain
vectors transforming according to one of the representations in F' then &(V, W) = &(V',W). In other
words it can be supposed that each V; contains vectors transforming under K according to one of the
representations in F'. For each i let

V; = @?;1‘/;]'

where each V;; is invariant and irreducible under the action of G, the connected component of G, and
belongs to the homomorphism &;;. It is known ([10], Theorem 3) that there are only a finite number
of irreducible unitary representations of G which belong to a given homomorhpism of 3, the centre
of the universal enveloping algebra of g, and which contain vectors transforming according to a given
irreducible representation of K N Gy. Thus there is a finite set £ of irreducible representations of G
such that for each ¢ there is a j such that the representation of Gy on V;; is equivalent to one of the
representations in E. As a consequence of Lemma 3.2 applied to GG there are only a finite number of
V;. Itis known however (cf. [10], Theorem 4) that for each ¢ the space of functions in V; transforming
according to one of the representations in F' is finite dimensional. This completes the proof of the
lemma. Since &(V, W) is finite-dimensional it follows from the proof of the corollary to Lemma 3.4 that

it can be considered as a space of continuous functions.

Suppose ¢(g) is a continuous function on 7'\ G such that for each g in G the function ¢(mg) on
©\M belongs to V' and the function ¢(gk) on K belongs to V. For each a in A consider the function
p(sak) on T\S x K or on AT\P x K. If kg belongsto K N P = K N S then ¢(sky "akok) = ¢(sak)
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since skg ‘akoa~'s~!is in N. Thus it defines a function @ (a) on AT\G which is seen to belong to
¢&(V,W). The space of all such functions ¢ for which ¢/(-), which is a function on A with values in

&(V, W), has compact support will be called ©(V, W).

Lemma 3.6. Suppose V is an admissible subspace of Lo(O\M) and W is an admissible subspace
of functions on K. If ¢ belongs to ®(V,W) then ZA\F &d(vg) is absolutely convergent; its sum
gg(g) is a function on "\G. If &q is a Siegel domain associated to a percuspidal subgroup Py and

if v is a real number there is a constant ¢ such that |p(g)| < en” (ao(g)) for g in So.

There is one point in Section 6 where we will need a slightly stronger assertion than that of the

lemma. It is convenient to prove it at the same time as we prove the lemma.

Corollary. Let ¢(g) be a function on T\G and suppose that there is a constant t such that ¢(namk) =
0 unless a belongs to AT (t,00). Let Py,---, Py, be percuspidal subgroups to which P belongs and
suppose that there are Siegel domains T61, ‘e ,TGm associated to TPi = N\P; NS which cover
O\M. Suppose that there is a constant s such that given any constant ry there is a constant c;

such that, for 1 <1< m,
[6(namk)| < e n*(@) ™ (Tai(m)

if m belongs to TGi. Finally suppose that there are constants u and b with 1 > b > 0 such that
¢(namk) =0 if n(a) > u and the projection of m on O\M belongs to the projection on O\M of

{meTe; [n(faim)) < n’(a)}

for some i. Then

> b(v9) = dlg)

A\T
is absolutely convergent and if Gg is a Siegel domain associated to a percuspidal subgroup Py and

1 is a real number there is a constant ¢ such that |p(g)| < en” (ao(g)) for g in So.

It is a consequence of Lemma 3.5 and the corollary to Lemma 3.4 that the function of the lemma
satisfies the conditions of the corollary. Let w be a compact subset of NV such that (' N)w = N. If g is
in Sq let U be the set of all elements v in T such that vg = namk with n in w, a in A*(t,00), m in TGi

for some i, and k in K. Since any left coset of A in I" contains an element ~ such that vg = namk with
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ninw, ainA, min T&; for some i, and k in K and since ¢(namk) = 0 unless a belongs to AT (¢, 00) it

is enough to estimate

> lé(vg)

yeU
We first estimate the number of elements in U(v), which is the set of all v in U such that yvg = namk
with n in w, a in AT (t,00), m in @, for some i and such that n(Tai(m)) < w,and k in K. Suppose
TG,- = TG,-(Tw,-, Tti) and let w; = wTw,-. If v belongs to U(v) then, for some i, vg = n;aa;k; with n;
inw;, ain A% (t,00), a; in TA;“(Tti, o0) and such that n(a;) < v, and k in K. Since a; is considered as
an element of TAi the number 7(a;) is the maximum of £, (a;) as « varies over the simple roots of Tai.

Consider the point aa; in A;. Let oy, - - -, ay, be the simple roots of h which vanish on a; then
a,(00;) = a, (a5) = T8,

forl1 <j <gq.Ifj > qthen
1

€u; (a;) = H &% (as)

k=1

with 6, < 0;thusif = > {_, d; then

gocj, (aai) = gocj, (a) gaj, (az) > tné (az) > tU5

Consequently ~g is contained in the Siegel domain &;(w;, tv5) associated to P; if tv® <
min{Tti, cee Ttm}. In any case it follows from Lemma 2.11 that there are constants ¢, and r, which are
independent of g such that U(v) has at most c;v" elements. If ¢(namk) is not zero either n(a) < u
or n(Ya;(m)) > n°(a), where n(a) is the maximum of £,(a) as « varies over the simple roots of a.

Consequently given any number r; there is a constant ¢} such that
[6(namk)| < 0™ (Tas(m)

If N(g) is the largest integer such that vg = namk with n inw, a in A" (¢,00), m in T&; for some i, k

in K, and ¢(vg) # 0, implies n(Tai(m)) > N(g) then

Y o9l Sciea Y (n+1)an
yeU n=N(g)

which in turn is at most

— 22 (ry + 15 — 1) (N(g) + 1)
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if N(g) > 1,71 <0, >0,and r; +ry + 1 < 0. Since the corollary to Lemma 2.11 implies that there

are positive constants cs and r3 such that

N(g)+1>c3n™(ao(g))

the lemma and corollary are proved.

Let P be a cuspidal subgroup and let ¢(g) be a measurable function on 7'\ G. Suppose that given
any Siegel domain & associated to a percuspidal subgroup TP of M and any compact subset C of A

there are constants ¢ and r such that
|p(namk)| < " (Ta(m))

if a belongs to C' and m belongs to T&. If V is an admissible subspace of Lo(©\M) and W is an
admissible subspace of the space of functions on K and if ¢ belongs to ©(V, W) then

/ (g) 3(g) dg
G

is convergent. If it vanishes for all choices of V and W and all ¢ then we say that the cuspidal

component of ¢ is zero.

Lemma 3.7. Let &M ... &™) be Siegel domains, associated to the percuspidal subgroups
P ... P respectively, which cover T\G. Suppose that ¢(g) is a continuous function on I'\G

and that there are constants ¢ and r such that

16(9)| < e (a(g))

if g belongs to & . If the cuspidal component of

M) = /F oy g

is zero for every cuspidal subgroup P then ¢(g) is identically zero.

It is a consequence of Lemma 3.3 that it is meaningful to speak of the cuspidal component ofgﬁ
being zero. The lemma will be proved by induction on the rank of the percuspidal subgroups of G.
If they are of rank 0 so that I'\G is compact then ¢ is itself a cusp form. It follows from Lemma 3.2
and the corollary to Lemma 3.1 that the subspace of L(I'\G) spanned by the space &(V, W) with V" an

admissible subspace of L, (I"\G) and W an admissible subspace of the space of functions on K is dense
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in L(I'\@). Since in this case ®(V, W) = &(V, W) and ¢(g) = ¢(g) when P = G, the assumptions of
the lemma imply that ¢ is orthogonal to every element of L(I"\G) and is consequently zero.

If the rank of the percuspidal subgroups of G is p, suppose that the lemma is true when the

percuspidal subgroups are of rank less than p. Let *P be a cuspidal subgroup and consider

~

“o(a,m, k) = /I‘O*N\*N d(namk™1) dn

According to Lemma 3.3 *$(a, m, k) is for each fixed a in *A a function on *© x {1}\*M x K which
satisfies the given conditions on its rate of growth on Siegel domains of *M x K. If fPisa cuspidal

subgroup of *M there is a cuspidal subgroup P to which *P belongs such that Tp= *N\P N*S. Then

~

T(*qg)/\(avmu k) = / “o(a,nm, k) dn

onfmin

:/ dn{/ gzﬁ(nlnamk_l)dnl} dn
*@mTN\]LN TN*N\*N

= / d(namk™1) dn,
TAN\N

so that
(3.d) T(°0)" (a,m, k) = dlamk™")

Suppose that V'’ is an admissible subspace of Ly(© x {1}\M x K)and W' is an admissible subspace
of the space of functions on *K x K. As in the remarks preceding Lemma 3.5, *K is the projection on
*M of K N *P. If ¢ belongs to ©(V', W’) then

/ w(m, k) ¢lamk™") dm dk
TTX{I}\*MXK

is equal to

/ {/ zp(mko,kko)dko} é(amk=1) dm dk.
TT><{1}\*M><K *Ko

This equality will be referred to as (3.€). Suppose ((a) is a continuous function on *A with compact
support. Then we can define a function £(g) on T\ G by setting
§(namk ™) = ((a) | (mko, kko)
*K(J

If £ is the set of irreducible representations of “K* x K whose matrix elements span W', let F' be a

finite set of irreducible representations of K which contains the representations contragredient to the
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irreducible representations of K occurring in the restrictions of the representations of F’ to K. If W
is the space of functions on K spanned by the matrix elements of the representations in F' then, for
each g in G, £(gk) is a function in TV. It is also easy to see that there is an admissible subspace V' of
Lo(©\M) such that V" is contained in V' @ W if F is suitably chosen. Then &(g) belongs to ©(V, W).

Consequently

lA wQ(a) C(a){ ATx{l}\*MXK vim. k) (E(amk_l) dm dk} da

is equal to

©-r

£(9)

T\G

(9)dg =0

Since ((a) is arbitrary we conclude that the left side of (3.e) is zero and hence that for each a in *A the
function *gz%(mm, k) on *M x K satisfies the conditions of the lemma. By the induction assumption
*&(a, m, k), and hence *(i(g), is identically zero if the rank of *P is positive.

Suppose fy,-- -, fo are once continuously differentiable functions on G with compact support.

Let 1 = A(f1) - A(fx)o. It follows from Lemma 3.4 that there is a constant ¢; such that

61(9)] < c1n” " (a(g))

if g belongs to (¥, 1 < i < m. Let ¢ be some fixed integer greater than r so that ¢ (g) is bounded and

hence square integrable on I'\G. If P is a cuspidal subgroup different from G then

G =Af1) - AMfr)d =0

so that ¢ is a cusp form. fi,--- f, can be so chosen that f;(kgk—') = f(g) for all g and all k¥ and for
1 < j < ¢and ¢;(h) is arbitrarily close to ¢(h) for any given h in G. Consequently if it can be shown
that ¢, is identically zero for all such f,-- -, f, it will follow that ¢ is identically zero. Suppose V is an
admissible subspace of Ly(I'\G), W is an admissible subspace of the space of functions on K, and ¢

belongs to &(V, W); then

(g) 1(g) dg = / D) - A 0lg) Blg) dg = 0

G I\G
since A(f;) -+ A(f7)v also belongs to &(V,W). The functions f; are defined by f/(g) = Filg™).
Since, as follows from Lemma 3.2, the space spanned by the various &(V, W) is dense in Lo(I'\G) the

function ¢; must be identically zero.

We also see from the above proof that if ¢(g) satisfies the first condition of the lemma and if the
cuspidal component of ¢ is zero for all cuspidal subgroups of rank at least ¢ then ¢ is identically zero
for all cuspidal subgroups of rank at least ¢q. Let us now prove a simple variant of the above lemma

which will be used in Section 4.
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Corollary. Suppose that ¢ belongs to L(I'\G) and that if P is any cuspidal subgroup, V' an admis-
sible subspace of Lo(O\M), W an admissible subspace of the space of the functions of K, and ¢
an element of ®(V, W) then

D(g) d(g) dg =0

'\G

The function ¢ is then zero.

It is enough to show that if f is a once continuously differentiable function on G with compact
support such that f(kgk—1) = f(g) for all g and k then \(f)¢ is identically zero. Let ¢ = A(f)o.
Then, if ¢ belongs to ©(V, W) and 11 = \(f*)1,

/T LU G dg= | ile) Blg)dy

TG

= ¥1(g) d(g) dg

I\G
=0
since 11 also belongs to © (V, W). If we can obtain a suitable estimate on ¢;, we can conclude from the

lemma that ¢, is identically zero. But A(f) ¢(g) is equal to

[otosamman= [ om{3 s m}an

Consequently |A(f) ¢(g)| is at most

([ oorat { [} Lo il

Let U be the support of f and suppose that for all i in G the set {v \ ~vh € gU} has at most N(g)
elements; then the above expression is less than or equal to a constant times N (g). Let &y = Sy(w, t)
be a Siegel domain associated to the percuspidal subgroup Fy; at the cost of increasing the size of G
it may be supposed that Aqgw = Sp. Let wy and wo be compact subsets of Sy and Ag respectively such
that KU is contained in w;wy K. Choose a number ¢’ such that AE{(t’, oo) contains the product of wy
and A7 (t,00) and let &), = G (w, ). Every element~’ of I" such that 4/ belongs to gU can be written
as a product d-y in such a way that vh belongs to &, and dw N waowlagl is not empty if ag = ag(g). It
follows from Lemma 2.11 that the number of choices for v is bounded independent of h. The condition

on § is that a; ' dag is contained in ay 'wagay 'w ™ ag. But the union over all ay in A7 (¢,00) of these
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sets is contained in a compact set. We conclude first of all that the projection of 6 on M = M\ S must
belong to a fixed compact set and therefore must be one of a finite number of points. Consequently §
can be written as a product of d; 0, where d5 is one of a finite set of points, J; belongs to I' "N Ny, and
aglélao belongs to a fixed compact subset of Ny. The discussion preceding Lemma 3.1 shows that the
number of choices for §; is at most a constant times w=2(ag). Thus, on Gy, N(g) can be taken as a

constant times w2 (ao(g)). The required estimate is now established.
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4. Eisenstein Series.

Let P be a cuspidal subgroup of G, let V' be an admissible subspace of L(©\M ), and let W be
the space of functions on K spanned by the matrix elements of some representation of K. It will follow
from Lemma 4.3 that &(V, W) is finite-dimensional and thus by the argument used in Section 3 that
every element of &(V, W) is continuous. We assume then that €(V, W) is a finite-dimensional space of

continuous functions. If ® is an element of &(V, W) and H belongs to a., the series
(4.0) >~ exo ((H(19), H) + p(H(19)) ) @(79)
A\T

is called an Eisenstein series.

Lemma 4.1. The series (4.a) converges uniformly absolutely on compact subsets of the Cartesian
product of
A={H ca.| Rea;, > (a;,p), 1 <i<rankP}

and Gy. If the sum is E(g,®, H) then E(g,®, H) is infinitely differentiable as a function of g and
H and is analytic as a function of H for each fixed g. Moreover if Py is a percuspidal subgroup of
G and Sy a Siegel domain associated to Py there is a locally bounded function c¢(H) on L which
depends only on the real part of H such that, for g in &g,

[B(g, @, H)| < c(H) exp ({Holg), Re H) +20(Ho(g)) — p(Hy(9)))

where H((g) is the projection of Ho(g) on a.

Let B be the universal enveloping algebra of g. The map

Y — Z—J;( exptY) = A(Y) f(9)

of g into the space of the left-invariant vector fields on G can be extended to an isomorphism X — A(X)

of B with the algebra of left-invariant differential operators on G and the map

Y — z—i(exp(—tY)g) =\ (Y)

of g into the space of right-invariant vector fields on G can be extended to an isomorphism X — X (X)
of B with the algebra of right-invariant differential operators on G. If f is an infinitely differentiable

function on GG with compact support and if

F(g,®, H) = exp ((H(9)7H> + p(H(g))) ®(9)
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with @ in &(V, W), then as we have observed above

(4:) A(f) Flg,®, H) = exp ((H(g), H) + p(H(9)) ) F(g,7(f, H)®, H)

It is easily verified that if ¢(g) is any locally integrable function on G then

Arguing as in the corollary to Lemma 3.3 we see that for a given Hj there is an infinitely differentiable
function fq with compact support such that fy(kgk—1) = fo(g) for all g in G and all k in K and such
that 7 ( fo, Hyp) is the identity on &(V, W). For H close to Hy, 7( fo, H) is non-singular and we see from
(4.b) that for any such H

A(X) Flg, @, H) = exp ((H(g), H) + p(H(9)) ) f (9, 7(X, H)®, H)

if we define 7(X, H) to be (XN (X) fo, H) 7' (fo, H). Of course (X, H) is independent of the choice
of fo. The map (X, ®) — 7(X, H)® can be extended to a linear map of B ® &(V, W) into &(V), if B,
is the space spanned by

(X1 Xp|k<m,z;€9, 1<i<k}

then %8B, is invariant under the adjoint group of G. If £ € K and ¢ is a differentiable function then

A(AK(X)) A(k) 6(g) = A(k) M(X) ¢(9),

so that the map of B,,, ® &(V, W) into &(V') commutes with K. If W is the space of functions on K
which is spanned by the matrix elements of the representation of K in 8,, ® W and if the degree of
X is at most m, then w(X, H)¢ belongs to &(V, W;). Consequently the second assertion of the lemma

follows immediately from the first.

To prove the last assertion we will estimate the series

Z ‘ exp ((H(’yg),H> + p(H(Vg))) @(79)‘

A\D

which equals

(4.0) >~ exp ((H(19), Re H) + p(H(79)) ) [®(79)],
A\D



Chapter 4 48

so that it may as well be supposed that H is real. To prove the first assertion it is enough to show that
the second series is uniformly convergent on compact subsets of 2l x G. It follows from Lemma 2.5

that if C' is a compact subset of 2 there is a constant p such that

a;(H(vg)) <p, 1<i<gq,

for v in I" and g in C. This number ¢ is of course the rank of P. If C} is a compact subset of 2 and if

Hjissuchthat a;(Hy) < Rea;(H)forall HinC;and 1 <i < gthen

|exp ((H(19), ) + p(H(19)) )| < cexp ({H(vg), Ho) + p(H(19)))

for all H in C; and all g in C. Here ¢ is some constant depending on u. To prove the first assertion it
is then enough to prove that the series (4.c) converges uniformly for Hy fixed and for ¢ in a compact

subset of G.

Given H, choose fy(g) as above so that 7 ( fo, H) is the identity on &(V, W). Then

Flo9.%,Ho) = [ P399, folg™'h) .

Let C; be the support of fy and let C'3 = C'Cy; then if g belongs to C the series on the right is dominated
by

A\T Y ¢
if M = supy ¢ |f(h)]. If the numbers of elements in {v | vg € Cs} is less than or equal to N for all g

in G and if Cy is the projection of C3 on I'\ GG, the sum above is at most N times

J.

where Cj5 is the projection on T\G of I'C;. To prove the first assertion it has merely to be shown that

Z]F(yh,(l),Ho)\dhg/ |F'(h,®, Hy)| dh
4 A\D Cs

the integral on the right is finite. Before doing this we return to the last assertion. If H is in a sufficiently

small neighbourhood of H, then = ( fy, H) is non-singular on &(V, W) and if ® € &(V, W) then
2||w(f, Ho)®@|| = [|®]].

Given ¥ in &(V, W) and H in this neighbourhood choose ® so that 7 ( fy, H)® = . Then

\F(yg, 0, H)| < /G F(vh, ®, H)| | fo(g~'h)| dh,
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so that to estimate the series (4.c) and establish the last assertion it will be enough to show that there is

a locally bounded function ¢; (H) on 2 such that for g in &y, ® in €(V, W), and H real and in 2

(4.d) /th & H)||folg~"y " h)| dh
A\T

is at most
e1(H) @] exp ((Holg), H) + 2p(Ho(9)) — p(Hi(9))).

The expression (4.d) equals

/A\G (h, @, H) {Z’fog 7 h '}dhécw*(ao@))/ |F(h, ®, H)| dh

C(g)

if g isiin &y. The set C(g) is the projection on 7'\ G of I'¢C> and ¢ is some constant. The inequality is
a consequence of the estimate used to prove the corollary to Lemma 3.7. Lemma 2.10 can be used to

prove that I'gC’ is contained in
{sexp (H + H{(g))k|s€ S, ke K, H € ta(—oo, )}

where 1 is some constant. The integral is at most exp ((H()(g), H) — p(Hé(g))) times

/ exp ((X, H) — p(X)) |da| |®(mk)|dm dk.
Fa(—oo,u) O\M XK

The second integral is at most .(©\ M)z ||®|| and the first is a constant times
—1
H{(az,(H)_ <a17p>) eXp/J'azv(H)}

This completes the proof of both the first and the last assertion.

Two remarks should now be made. The first is that if C' is a compact subset of I'\G and ¢ is a

positive number there is a constant c and a point Hy in a such that if
Re (v, (h)) > (i, p) +¢
for1 <i<gand ®isin &(V,W) then, for ginC,

|E(g,®, H)| < c||®[| exp(Ho, Re H).
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The second is that if X belongs to 98, then
ANX) E(g,®,H) = E(g,7(X,H)®,H).

Both statements have been essentially proved in the course of proving the above lemma.

We can in particular choose V and W to be the space of constant functions on M and K

respectively. Itis clear that if ®(g) = 1 and H is real then
E(g,®,H) > F(g,®, H)

This observation will allow us to prove a vairant of Lemma 4.1 which will be used in the proof of
the functional equations for the Eisenstein series in several variables. Suppose that *P is a cuspidal
subgroup belonging to P and ¢(g) a function on *A*T"\G. The orthogonal complement Taof *ain acan
be regarded as the split component of TP = *N\PN*S. Itiscontained in Th, the orthogonal complement
of *a in b, which in turn can be regarded as the split component of the percuspidal subgroups of *M .
Suppose that there is a point i in Ta such that if TGSO is a Siegel domain associated to the percuspidal

subgroup TPO of *M then
[o(mi)| < cexp ((THo(m), TH) + p(THj(m))

if m belongs to HO and k belongs to K. Here ]LH[’)(m) is the projection of THO(m) on Ta. Suppose *H

belongs to *a.. Let us verify that the series

> exp < (vg),"H) + p("H(y ))¢>(vg)>

*A\T
converges absolutely if H = *H + T belongs to a. Suppose that Py, ---, Py are percuspidal
subgroups of GG to which *P belongs and T61, e ,TGT are Siegel domains of *M, associated to the
groups TPm, e ,TPOT respectively, such that U;le TG,- covers *O\*M. Let Py, ---, P, be the cuspidal
subgroups with the split component a belonging to Ry, - - -, Py, respectively. The function |¢(g)| is

bounded by a constant multiple of
Z > e < i(69), TH) + p(THéz(ég)))
=1 A;\*A

which equals

> >0 exp ((TH(om). 1) + p(H3,(0)))

=1 A 0
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if g = namk with n in *N, a in *A, m in *M, and k in K and if THéi(g) is the projection of Hy;(g) on

Ta. Since

(Hi(g), H) + p(Hi(9)) = ("H(9),"H) + p(*H(9)) + (Hi(g), T H) + p(TH};(59))

the assertion is seen to follow from the lemma. The assertion has now to be refined slightly.

Suppose that in Lemma 2.10 the parabolic group is a percuspidal subgroup. If s belongs to
(b, h) then X can be taken to be the linear function defined by A\(H) = d;«;(sH). We infer from
the lemma that o ;(H) — « ;(sH) is non-negative on h*. It will be seen eventually that if a and b are
distinguished subspaces of h then 2(a, b) is the set of linear transformations from a to b obtained by
restricting to a those elements of Q(f, h) which take a onto b. It follows readily that if H belongs to a*

and s belongs to Q(a, b) then H — sH belongs to .

Suppose that *P and P are as before but that the function ¢(g) on *A*T"\ G satisfies

pmi) <e>> 30 exp ((THo(m), s(TH) + p(H(m)) ).
=1 seTQ(u,ui)
Here a;,- - -, a, are the distinguished subspaces of h such that “)(a, a;), which is the set of all linear
transformations from a to a; induced by elements of £2(h, ) that leave each point *a fixed, is not empty.
Combining the result of the previous paragraph with the convexity of the exponential function we see

that
> exp (<*H (v9), "H) + p("H (vg))) ¢(79)

*A\D

converges if *H + T belongs the the convex hull of

U U '@

=etoaam)
There is no need to be explicit about the sense in which the convergence is uniform.

For the further study of Eistenstein series some facts about differential operators on G must be
reviewed. In [9] it has been shown that 3, the centre of 9B, is isomorphic to the algebra J of polynomials
onj. invariant under the Weyl group €2 of g.. Let this isomorphism take X in 3 to px. For our purposes
the form of the isomorphism is of some importance. If P is a split parabolic subgroup of G with A as a

split component and if «isin @ let

n, ={X eg|[H,2] = —a(H)X forall H in a}.
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Ifn~ = ZaeQ n,, then g. = n. + a. +m. 4+ n_ . If the universal enveloping algebras of n, a, m, n™ are

I, A, M, N~ respectively then the map
X1 ®Xo® X300 Xy — X1 XoX3Xy

extends to a vector space isomorphism of M@ AR M@ IN~ with B. Identify theimage of 1 QARM 1
with 2 ® 991, If X belongs to 3 then X is congruent modulo 1.8 to a unique element X; in 2 ® 90,
say X = X7 + Xo. If 3’ is the centre of 91 it is clear that X; belongs to 2l ® 3’. The advantage of this
decomposition for us rests on the fact that if X belongs to 3 then A\(X) = N (X’) if X is the result of
applying to X the anti-automorphism of 8 which sends Y in g to —Y". Thus, if ¢(g) is a function on
N\G, \(X) ¢(g9) = N (X]) ¢(g). Letj. = a; @ j. where j., is the Cartan subalgebra of m.. There is of
course an isomorphism of 3’ with the algebra 3’ of polynomials on j’, invariant under the Weyl group
of m.. Let X — px be that isomorphism of 2 with the algebra of polynomials on a. which assigns to
Y in a the polynomial py (H) = (H, H) + p(H). Since j. is the direct sum of a. and j/, a polynomial on
either of the latter defines a polynomial onj.. If X =Y X; ® Y; belongsto A ® 3’ letpx = > px,py;-
The image of 2l ® 3’ is the set J; of all polynomials on j. invariant under the Weyl group ¢’ of a. + m...
If X belongsto 3 and X = X; + X as above then px = px,. J1 is a finite module over J and so is
the set of all polynomials on j.. If X — £(X) is a homomorphism of J or J’ into the complex numbers
there is a point Z in j. or in j., respectively such that {(X) = px (Z).

If P is a cuspidal subgroup and V' is an admissible subspace of £L(©\M) then V' can be written
as a direct sum,

Biz1Vi

where V; is closed and invariant under the action of the connected component of M and \(X)¢ =
px(Z!)¢ if ¢ belongs to V; and X belongs to 3’. 3 is some point in j,. Although V; is not admissible
we can still define ¢(V;, W) and &(V, W) = ®]_, €(V;, W). If ® belongs to &(V;, W), X belongs to 3,
and X = X, 4+ X5 as above then

)‘(X) F(qu)vH) = )‘,(X{)F(qu)vH)
= DX (U)) exp ({H(g). H) + p(H(9)) ) py, (Z) @(a)
= ZpUJ(H)pY](Z;) F(g7(I)7H)

:pX(Zi) F(qu)vﬂ)
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if X, =% ,U;®Y;and Z; = H + Z]. Thus

(4'6) )‘(X)E(gvcva):pX(Zi)E(gv(I)vH)

Lemma 4.2. Let P be a cuspidal subgroup of G; let ¢ be an infinitely differentiable function on
N\G; and suppose that there is an integer £ and a Z in j. such that, for all X in 3, (/\(X) —
[5% (z))£¢ =0. Let k =[Q: Q]. If {p;} is a basis for the polynomials on a of degree at most k*(,
if {Z1,---,Z} is a set of representatives of the orbits of Q' in QZ, and Z; = H; + Z| with H; in

a. and Z, inj,, then there are unique functions ¢;; on NA\G such that
/ / / k2£
(N(X") = px(Z]))" ij =0

if X belong to 3’ and
#l9) =D exp ((Hg). H) + p(H(9) ) { 205 (H(9) 6us(0)}.

If {Y1,---,Y,} generate A ® 3’ over the image of 3 and if {X,---, X, } generate 3 the linear
space 20 spanned by

(VXD N (XN (V) o1 <y <41 <5 <u}

v

if finite-dimensional and is invariant under X' (X’) for X’ in 2A® 3’. Since A ® 3’ is commutative one
has a representation of this algebra on 20. Let £ be a set of representatives for the left-cosets of ' in Q
and if s € Q and p is a polynomial on j. let p*(W) = p(sW) for W inj.. If X belongs to 2A ® 3’ the

polynomial

seK
has coefficients in J; by means of the isomorphism between J and 3 it defines a polynomial ¢ with

coefficients in 3 and ¢(X) = 0. If p(U, Z) is the polynomial

II (U -»x(s2))

seK

with constant coefficients then, restricted to 23,

kl
(p(X(X’), Z) - N (;;(X'))) — 0.
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So
T V(X)) = px(s2)) =0
SER
From this it follows immediately that 20 is the direct sum of spaces 20, - - - , 20; with
W, = {¢ € W[ (N(X) —px(Z:)" " =0forall X inA® 3'}.

Then ¢ can be written uniquely as 2221 ¢} with ¢/ in 20;. Suppose v belongs to 20, for some i. If g is
fixed in G let ¢(a, g) be the function ¥ (ag) on A. If X belongs to 2 then

(MX) —px (Hi))kzg P(a,g) =0
This implies that
vexp H,g) = exp ((H, Hi) + p(H)) 3 (9) pi (H

where the functions v (g) are uniquely determined and infinitely differentiable. If ' = exp H' let

exp ((H — H',H;) + p(H — H')) ppo(H — H') = an exp ((H, H;) + p(H)) p;(H)

since ¢ (a’ " 'a,d’g) = 1(ag) we have
> Tmjla) ¥i(a'g) = ¥, (9).
J

Consequently
9) =Y Tim(a(9)) ¥, (9)

is a function on A\G and
= > Uin(9) pun(0) = exp ((H(9). H) + p(H(9)) ) { 3 50 ps (H(9)) }.

Since the functions v;(g) are readily seen to be functions on N\G the lemma follows.

Two remarks should be made in connection with this lemma. The first is just that if ¢ is a function
on T\G then, for all i and j, ¢;; will be a function on AT\G. For the second, suppose that ¢ = 1 and
suppose that there is a subset {Z;,---,Z,} of {Z;,---,Z,} such that ¢;; is identically zero unless
1 < ¢ < u. Suppose moreover that for 1 < ¢ < w there is a unique element s; in K such that s; 7 = Z;
and that

Hy=H;, 1<j<t
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implies Z; = Z;. Referring back to the proof we see that
p(N'(X"), Z) = N (p(X")) = 0;

SO

If X belongs to 2 we see also that

Hence
AX) 6 = px () &
and
(4.5) 6l9) = Y exp ((Hlg). Hi) + p(H(9)) ) é1(0).

where ¢;(g) is a function on N A\G such that
N(X') ¢; = px(Z]) ¢

is X belongs to 3'.

If /is a fixed integer, Z4,-- -, Z,, pointsinj.,and o1, - - -, o, irreducible representations of K let
S:')(Zla"' 7Zm; 01, ,0n; 6)

be the set of infinitely differentiably functions ¢ on I'\ G such that

(AX) = px(Z:)) ¢ =0

m

(2

for every X in 3, {\(k)¢ | k € K} spans a finite-dimensional space such that the restriction of A(k),
k € K, tothis space contains only irreducible representations equivalent to one of oy, - - - , o,,, and there
is a constant r such that for any Siegel domain &, associated to a percuspidal subgroup P, there is a

constant ¢ such that

16(9)| < en”(a(g))

for g in G. The following lemma is essentially the same as the one stated in [14].
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Lemma 4.3. The space
S:')(Zla"'va; 01, ",0n; 6)

18 finite-dimensional.

There is no less of generality in assuming that Z; and Z; do not belong to the same orbit under
Qunless i = j. Then

S:')(Zla"'va; 01, ,0n; 6)

is the direct sum of

Sj(ZiaO—la"'van; 6)7 1§2§m

In other words it can be assumed that m = 1. Let
fj(Z,O'l,”’ ;Ons 6) - fj

The first step is to show that the set $), of all functions ¢ in $ such that

/ d(ng)dn =0
TNN\N

for all cuspidal subgroups except G itself is finite-dimensional. From Lemma 3.4 we see that $, N
Lo(I'\G) is finite-dimensional. Consequently to prove that $) is finite-dimensional it would be enough
to show that ) is contained in Lo (I'\G). If s is a real number let $(s) be the set of functions in £,

such that for any Siegel domain & there is a constant ¢ such that

16(9)| < en®(alg))

for g in &. Since

$Ho = U $o(s)

seR
it must be shown that §(s) is contained in Lo(I'\G). This is certainly true if s = 0 and if it is true for
sy itistrue for all s less than s;. Ifit is not true in general let sy be the least upper bound of all the s for

which itis true. If f is once continuously differentiable with compact support and, for all g and &,

flkgk™) = f(g)

then A(f) takes $) and ), into themselves. Indeed according to Lemma 3.3 if ¢ belongs to §o(so + 3)
then A(f)¢ belongs to $y(so — 3) and hence to $ N Lo(I\G). There is a sequence {f,} of such

functions such that A(f,,)¢ converges uniformly to ¢ on compact sets. Since {A(f,)¢} belongs to
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$o N Lo(I'\G) which is finite-dimensional so does ¢. This is a contradiction. We have in particular
proved the lemma if the percuspidal subgroups of GG are of rank 0 so that we can use induction on the
rank of the percuspidal subgroups of G. To complete the proof it will be enough to show that the range

of the map ¢ — gﬁwhere
do)= [ olng)dn
INN\N

is finite-dimensional for every cuspidal subgroup of rank one. According to the previous lemma there

is a finite set { Z, - - -, Z;} of elements of j.. such that if Z; = H; + Z/ then ¢(g) may be written as

Zexp( ) HY) 4 p(H ){Zp] ). 6u(9) |

where the ¢,; are functions on AT\G. We shall show that, for each i and j, ¢;; lies in a certain
finite-dimensional space. Consider ¢;; as a function on © x {1}\ M x K. The percuspidal subgroups
here have rank one less than for G. It will be enough to show that there are points Wi, ---, W,, inj.,

representations 7y, - - -, 7, of N\N (K N P) x K, and an integer ¢ such that ¢;; belongs to
S:')(Wla o '7Wu; T1y 5 Twy El}

This follows almost immediately from Lemma 4.2 and Lemma 3.3.

Observe that if ¢ belongs to
Sj(Zlv"' 7Zm; 01, ,0n; 6)

and ¢ belongs to
fj(Zlu Ty Zm;O'l, e 70-71;6) N ’QO(F\G) = Sjo

then, by the corollary to Lemma 3.3,

¥(g) d(g) dg

NG
is defined. Thus there is a unique ¢’ in £, such that ¢ — ¢’ is orthogonal to J; ¢’ is called the cuspidal
component of ¢. It is easy to see that if V' is any admissible subspace of Ly(I'\G) and W is any
admissible subspace of the space of continuous functions on K and 1 belongs to &(V, W), then

¥(g) dlg) dg = ¥(g) ¢ (g) dg.

G NG

These two lemmas will now be used to study the Eisenstein series. Suppose P(!) and P(?) are

two cuspidal subgroups and V(1) is an admissible subspace of £(0M\ M ™)), As before write V(1) as
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S VY where A(X) ¢ = px (Z217) ¢ if ¢ belongs to V) and X belongs to 3(V. Z{" is some point

in j((;l). Because we have two cuspidal subgroups it is notationally convenient to replace the prime

that has been used earlier by the superscript (1) or (2). If ® belongs to @(Vi?), W) and H® and alt

satisfies the conditions of Lemma 4.1 consider

/ E(ng,®, HM)dn = / E(tg,®, HM) dt
CAN@\N (2 A\T(2)

which is equal to

/ > exp ((H(l)(vtg% HW) + p(H“)(vtg))> O (tg) dt.
ABNTE No\r

Replace the sum by a sum over double cosets to obtain

> / exp <(H(1)(vtg),H(”> + p(H(l)(vtg))) D(tg) dt.
AM\T/AE) T AB YT TAMNTE)

The terms of this sum will be considered individually.

If

®(g,H,7) = / exp ((H(l)(vtg),ﬂ(”> - p(H(l)('ytg))> O(ytg) dt

AR Ay~ AMAN\T@)

and if Wy,---, W, is the set of representatives of the orbits of Q) in Q(H® + Zi(ol)) and W; =

H](.Q) + Wj(Q), we can write

k

@(g, H.9) = Y exp ((HP(9). H) + p(HP () ){ 2o px(HP (9)) d0(9) -

Setting
G k(m, k) = ¢ju(mk™),

we obtain functions on

0® x 1N\M®P x K.

There are irreducible representations r, - - -, 7,, of
(NO\N@ (K nPY)) x K
and an integer £ such that ¢; ;. belongs to

2P 71, s b),
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Let ¢;',k be the cuspidal component of ¢; ;.. If V' is an admissible subspace of
Lo(0®) x 1N\M®P x K)
and W’ an admissible subspace of the space of continuous functions on
(NO\N@(KnPY)) x K
and if ¢ belongs to &(V, W), then

/ ®(exp HPmk™, HV; v) ¢ (m, k) dm dk
O\ M@ xK

is equal to
Zexp (H®, By + p(H?)) {Zp (H?) / ¢;7k(m,k‘)zﬁ(m,k)dmdk}.
= 0@\ M@ xK

The first integral is an analytic function of H(!) on
(1)_{H(1) Ea(1)| Rea (1)) > (o) LP), 1§i§q(1)}

if (1) is the rank of P(1), It vanishes identically if it vanishes identically on some open subset of A(%).
If s; and s, belong to &, a set of representatives for the left cosets of (2 in ©, and s belongs to Q%)
then the equation

ss1(HY + 2y = so(HV + 29)

is satisifed on all of a(*) or on a proper subspace of a(!). Let 2; be the open set of points H(") in A1)

such that for any s, s1, and ss,
ssi(HY + 2y = so(HV + 2)

only if this equation holds identically. On this set of points the number ¢ above is constant. We can

then choose fixed elements s, - - -, s; in Q and take, for H(") in 2,
1
W; = s;(HY + zD),
It is readily seen that

Zpk(H§2)) / ¢ 1 (m, k) p(m, k) dm dk

k O\ M@ x K
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is a continuous function on ;. It vanishes unless Z](-Q) is one of a finite number of points. Since Z](Q)
is a linear function of H(V) it will be a constant if this integral does not vanish identically. Then s;(2l;)
will be contained in a(®). Since s; is non-singular this can only happen if the rank of P(?) is at least as

great as the rank of P(1). We conclude that the cuspidal component of ®(g, H"), +) and thus of

/ E(ng,®, HM)dn
TAN@\N()

is zero if the rank of P(?) is less than the rank of P(1),

We now treat the case that V(1) is contained in Lo(©™M\ M ™). 1t will be shown later that if the
rank of P(?) is greater than the rank of P(!) then the cuspidal component of ®(g, H"), v) vanishes
identically. Anticipating this result, we consider the case of equal rank. Let s, - - -, s,,, be the elements
of & = {s1,---,5,} such that s;(aV)) = a?). Let HJ@) now be the projection of s;(H() + Z{")) on
aﬁz). If1 <j; <mandm < j» < n the equation H](f) = Hj(zz) cannot be identically satisfied. Let 2,
be the set of points in H") in 2, such that H](f) £ Hj(zz) if 1 < j; <mandm < j» < nand such that

s (HW + Z00) = 3, (HO + 2,7))
or
Si1 (H(l)) = Sjs (H(l))7 1<ji,j2<m

only if this equation holds identically on a'"). Suppose H") belongs to 2, and
S5 (H(l)) = Sja (H(l))7 1<71,j2<m

then sjlsj;l belongs to Q2(?), so that j; = j». According to the remark following Lemma 3.7 Dj k= gzﬁ;’k

and then according to the remark following the proof of Lemma 4.2
O(g,H,7) =Y _exp ((H(z)(9)7 s;HW) + p(H® (g))) i (9)
j=1

Grouping together those s; which determine the same element of Q(a(l), a(2)) we can write the right

hand side as

> exp ((HP (), sHY) + p(HP(9)) ) @, (g:7).
seQ(a(l) 7(1(2))

®,(mk~1;~) belongs to
Lo(0@ x {1N\M®? x K).
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This sum is of course zero if P(Y) and P(?) are not associate.

In general for any ® in ¢(V(), 1) we see that, for H(1) in 2,

/ E(ng,®, HM)dn
TAN @\ N (@)

is equal to

S > exp ((H® (), SHY) + p(HP(g)) ) @4(957)

A@\T/AM seQ(all) a(2)

In order to simplify the statements of our conclusions let us introduce the notion of a simple admissible
subspace. Let P be a cuspidal subgroup and letj. = a. + j.. where j. is the Cartan subalgebra of m.. If
Z'isapointinj’,and Zi,---, Z! is the orbit of Z’ under those elements in the group of automorphisms
of g. generated by GG and the adjoint group of g. which normalize both j. and a. then the sum V" of all
closed subspaces of L (©\M) which are invariant and irreducible under the action of the connected
component of M and which belong to one of the characters X — px (Z!) of 3’ will be called a simple
admissible subspace of Ly (©\M). Since V is invariant under M it is an admissible subspace. A simple
admissible subspace of the space of continuous functions on K is the space of functions spanned by
the matrix elements of an irreducible representation of K. If P(Y) and P(? are two associate cuspidal
subgroups and Z( is a point of ;" let Z( be the image of Z(!) under some element of © which
takes a®) onto a®. If V() and V(2 are the simple admissible subspaces defined by Z(1) and Z(?
respectively then V(1) and V() are said to be associated. As a convention two associate admissible
subspaces will always be simple. It will be enough to state the results for simple admissible subspaces
because every admissible subspace is contained in a finite sum of simple admissible subspaces. In
particular if V(!) and W are simple admissible subspaces and V(2 is the simple admissible subspace

associate to V1), if & belongs to &(V™) W), and if H(®) belongs to U(?) then

o Lo g & (10 HO) 501 01)) @(019)
is equal to
(4.1) S e ((HP(9),sHD) + p(HD(9)) ) (N (s, HD)@) (g).

s€Q (a1, a(2)
Here N, (s, H) is, for each H in 2l and each s, a linear transformation from ¢(V(Y W) to
&(V 2 W); itis analytic as a function of H).

It is necessary to establish the formula (4.h) on all of . To do this it is enough to show that all but

one of the terms in (4.h) vanish identically on 2. Choose some s, in Q(a("), a(?): since 25 is connected
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the corresponding term of (4.h) will vanish identically if it vanishes for real values of the argument. If
HW is real and in 2, then

<80H(1),8H(1)> < <30H(1),30H(1)>

if s belongs to Q(a!), a(?) but does not equal sg. In (4.h) take
g = expa(soHM)mk,

where a is a positive real number, exp a(soH ")) belongs to some split component A?) of P(?) m
belongs to M (2), and k belongs to K, and replace H») by bH 1) where b is a positive real number such

that bH (") belongs to 2A,. Then multiply by
exp (— ab(soHW s HW) — ap(soH(l)))
and take the limit as a approaches infinity. The result is
N, (s0; HV) ®(mk).
On the other hand if the same substitution is effected in (4.g) the result is bounded by a constant times

/ exp <<H(1)(h(t,7)),bH(1)> + p(H(l) (h(t,y)))) dt
A Ny=1IAMAN\T(2)

with h(t,y) = vt exp a(so HM)mk, because ®(g) is a bounded function. Of course this integral is finite
and it equals the sum over A®) Ny~ TAMN\AR) /T 0 NG of

/ exp <<H(1) (h(n,’yd)), bH(1)> + p<H(1) (h(n,’y&))) dn.
5—1y=1AM AN\ N D)

Choose u in the connected component of G so that u~* P(?)y and P! both belong to the percuspidal
subgroup P. Suppose that split components a(*), a® and a have been chosen for P, P(2) and
P respectively so that Ad(u~")a® and a(") are both contained in a. p contains a subalgebra b such
that a C b C g, and b is a maximal subalgebra of g, such that {AdH | H € b} is diagonalizable. By
Bruhat’s lemma [12] vdu can be written as pvp; where p belongs to P, p; to w—! P2y and v belongs to

the normalizer of b. Then each integral above is the product of

exp ((HO (p),bHY) + p(H D (p)) )

and the integral over
sy TAMAS N N(l)\N(l)
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of
exp <H(1) <vp1u_1nuexp a(Ad(u_l)(soH(l)))u_lmk;)’bH(l) + Hp>

if H, is such that (H, H,) = p(H) for H in h. Let Ny = u~*N®y and replace the integral by an
integral over
t_lp_lA(l)pt N No\No.

Now v~ 'p~ ' AMpy N N is contained in v=1p~1S(Mpy N Ny and both these groups are unimodular. So

the integral is a product of
,u(v_lp_lA(l)pv N No\v_lp_lS(l)pv N Np)

and an integral over v~ 1Sy N Ny\ Ny since p~1SMp = SM1f p; = nymya; with ng in Ny, my in

p M@y, and a; in u=' APy the integrand is
exp <H(1) (vn exp (aAd(u_l)(SOH(I)))mlalu_lmk> bHW 4 Hp>.

If H belongs to b then
n — exp(—H)nexp H = &(n)

defines a map of v=1S™Mv N Ny\ Ny onto itself; let dn = exp p1 (H) dé(n). Then this integral is the
product of

exp (ab(Ad(vu‘l)(soH(l)), HWY + ap(Ad(vu_l)soH(l))) + ap; (Ad(u‘l)(soH(l)))

and
/ exp(HY (vnmyayu™tmk), bH®Y + H,) dn.
’Ufls(l)’vﬂN()\No

This integral is of course independent of a. If Ad(vu~1)(soH ")) does not equal H") choose b so large
that
p(Ad(vu)(soHM)) + pr (Ad(u=1) (s0HM)) — p(soHY)

is less than
b(soH™M, s HMY — b(Ad(vu~ 1) (soHM), HMV)

Then the result of multiplying (4.9) by

exp (— ab(soHW s HW) — ap(soH(l)))
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and taking the limit as a approaches infinity is zero. Thus if N, (so, H(l)) is not identically zero there
is some ¢ in A such that Ad(vu—") maps a® onto a(!) and is equal to the inverse of sy on a(?. If
yéu = pup; then yu = pv(p;u~1d~1u) and v can be chosen to depend only on «. Thus there is at
most one term of (4.h) which does not vanish identically. Before summarizing the conclusions reached
so far let us make some remarks which are useful for calculating the transformations Ny(s,H(l))
explicitly. If N, (s, H() does not vanish identically let v = p(vu~?!)(up;u1); simplifying we can
write v = nija;wns with ny in N aq in AD | ny in N, and with w such that Adw takes a(®) onto

a and is inverse to s on a®. Then (4.g) equals the product of

exp ((HM (1), HV)) + p(H (a1)) )
and the sum over (T'N N@))(A®) ny~TAM )\ AG) of
/ exp ((H(l)(wngéng), HW)Y + p(H(l)(wng&lg)) & (wnydng) dn
51y AM NN\ N(2)
Although we will not press the point here it is not difficult to see that the sum is finite and that
5 Iy TAMAs N N@ isequal to 61y~ (N N T)ys N N). Consider the linear transformation on
&(VM W) which sends ® to & with ®'(g) equal to the product of

exp (= (HP(g),sH®) = p(HP(9)) )

and

/ exp ((H(l)(wng), HYY 4 p(H(l)(wng))> ®(wng) dn.
w1 NDwAN@\N @

@’ isafunctionon A?) N2\ G. Considered asafunctionon M(?) x K, itisafunction on w=' @M w\ M (2,
Since the sum is finite w~ 0w and ©(? are commensurable. We can define the subspace of V(2 ()
of Lo(w™1O@w\M @) associate to V1) and @’ belongs to ¢(V(? (w), W). Denote the linear trans-
formation from ¢(V(Y), W) to €(V 3 (w), W) by B(w, HV). Let

,u(é_lv_l(N(l) NT)véN N(z)\cs_l’y_lN(l)Vé N N(Q)),
which is independent of §, equal y; then
N, (s, HD) & (m, k)
equals

> pexp ((HM (ar), HD) + p(H<”(a1>)) B(w, HY) ®(5m, k)
(TNN@)) (AR Ny—TAM A\ AR
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if 4 is the projection of 6 on M(?), The sum is a kind of Hecke operator. However this representation

of the linear transformations will not be used in this paper.
If s belongs to Q(a™, a?)) let

N(s,HV)= >~ N,(s, HY).
AM\T/A®)

Lemma 4.4. Suppose PV and PP are two cuspidal subgroups and suppose VY is a simple
admissible subspace of LO(G(U\M(D) and W is a simple admissible subspace of the the space of

continuous functions on K. If PV and P are not associate then the cuspidal component of

/ E(ng,®, HM)dn
TAN @\ N (@)

is zero; however if P and P®3) are associate then

/ E(ng,®, HM)dn
TAN @\ N (@)

s equal to

S exp ((HPg,sHD) + p(HP(9)) ) N(s, HY) 9 (g)
seQ(a<1)7a<2))

where N (s, HY) is for each HY in AN a linear transformation from (VW W) to &(V ) W)

which is analytic as a function of HM.

This lemma is not yet completely proved; the proof will come eventually. First however let us

establish some properties of the functions N (s, H(1)).

Lemma 4.5 (i) There is an element H(()l) in aV and a constant ¢ = c(e) such that, for all s in
Q(a),a),
IN(s, HD)|| < cexp(HSY, Re HD)

for all HY in AD) with oy (HM) > (o, p) + €.

(ii) Let F' be a subset of the simple roots of b and let
‘a={H € h|a(H)=0ifa € F}

Suppose *a is contained in aV) and a® and s in Qa™,a?)) leaves each point of *a fized. Let

P and *P?) be the unique cuspidal subgroups belonging to P and P respectively with
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a as a split component. If *P(M) and *P3) are not conjugate under T then N(s, HM) = 0;
if *P1) = *PR) = *P then N(s, HY) is the restriction to €V W) of N(TS,TH(U).
(i) If s belongs to Q(aM),a®) then N(s, HV) is analytic on the convex hull of AV and
—s 1 (AP and
N(s,HV) = N*(s71, —sHW),

Let us start with part (ii). First of all we have to explain the notation. If*P(1) = *P(2) = *P |et
fpi) = *N\PO =g, i =1,2.

TP x K is a cuspidal subgroup of M x K with split component Ta(® if a(?) is the orthogonal sum
of “aand Ta(®). The restriction of s to Ta(?) defines an element Ts of Q(Ta®, Ta®). S0 TP and T @
are associate. As we remarked in Section 3, the space (’E(V("), W) can be identified with a subspace of
(’E(V(i) x W, W*). Although the subspace W* is not simple it is a sum of simple admissible subspaces
so that if TEH(D) belongs to T2A()), which is defined in the obvious manner, the linear transformation
N(Ts, THD) from (VD) @ W, W*) to ¢(V® @ W*,*W @ W*) is still defined. If H(1) belongs to
AW and HD = *HO + THO then THD belongs to T2 and part (ii) of the lemma asserts that
N(s, HD) is the restriction to &¢(V ), W) of N(Ts, TH®). To prove it we start from the formula

(4.9) N(s,HV)y= >~ N, (s, HV).

AMW\T/A®)
If N, (s, HY)) is not zero we know that v = pyups with p; in P, py in P(), and v such that the
restriction of Ad(v) to a(® is the inverse of s. We are here considering a(!) and a(?) as subsets of g. Let
a1 and *a(® be the image of *a in a(!) and a(® respectively. Adw takes *a(!) to *a(?) in such a way that

positive roots go to positive roots. Thus
v(*PP)w~! = (PW).

So
7(*P(2)))’y_1 — >1<P(1)7

which proves the first assertion. If *P(1) = *P(2) = *P then y*Py~! = *P so - belongs to *P. The sum
defining N (s, H")) may be replaced by a sum over a set of representatives of the cosets A(D\*A /A (),

Moreover if v; and 5 belong to *A and 6,728 = 42 with §; in A, §5 in A then project on

0 = ("ANN)\A
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to obtain *01 *y; %99 = "y with *); in
FAGD = (A A NNAD, =1, 2.

Conversely if *5;%y;*8; = *y, then there isa ¢ in *A N *N C A so that 86,7102 = 7». Finally if H
belongs to a® and ~ belongs to *P then

exp ((H, sHM) 4 p(H)) N, (s, HY) ®(mk™1),
with m in *M and k in K, is equal to

/ exp ((H(l)(yt exp Hmk™ 1), HY + H,)) ®(vtexp Hmk™") dt.
A@Ny=1IAMAN\T ()

Since A® N ~~1A(M~ contains *N N T and
u(*N NT\*N) = 1,

the integral is the product of

exp (("H, sCHO)) + p("H))

and

A T T exp (TH(TyTtexp THmk™), TH® + H,)) @(TyTtexp THmE) dlt.
ANy =L(TAMW )\ I T(2)

Here H = *H + T H with *H in *a and T/ in Ta®. This integral equals
exp ((TH, s(THM)) + p(TH)) No, (15, THD) @ (m, k).

Thus N, (H®, s) is the restriction of NW(TH(”, 5). Substituting in (4.i) we obtain the result.

Before proving the rest of the lemma we should comment on the formulation of part (ii). Suppose
P and yoPyo_l = P’ are two conjugate cuspidal subgroups. Then 70870_1 = 5§’ and we may suppose
that split components A and A’ for (P,.S) and (P’, S') respectively have been so chosen that vy Ay, ' =
A’. Every function ¢ on AT\ G defines a function ¢/ = D¢ on A'T"\G by

¢'(9) = w(a' (7)) ¢(v '9)-

Let us verify that
/ |p(mk)|* dm dk = / ¢ (m'E)|* dm/ dk
O\M x K

O\ M'xK
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Since we may suppose that M’ = fyoMfyo‘l, the right side is equal to

W (d (1)) / (6 (mg )2 u(m) dim dk
O\M x K

which equals

A 60) [ 1omb) p(m) dmdk

MxK

d(yomyy t)

pim) = ==

Themapn — ’yon’yo_l of N to N’ is measure preserving since ' N N ismappedto'N N and TN N\ N
and I' N N’\ N’ both have measure one. Since the map H — Ad~yy(H) of ato a’ is an isometry the map

a — %a%—1 of A to A’ is measure preserving. If ¢)(g) is a continuous function on G with compact

| vta)ds
/]Vdn/lw2(a) da /M dm/dew(’yonamk:)

/ dn'/ w2(a') da'/ dm/ dquﬁ(n'a'%m’yo_l’ygk).
’ ’ M K

The latter integral is in turn equal to

support then
is equal to

which equals

o2 00) [ an' [ Aayaa [ dm [ dktoamt a5 mn).

We conclude that
u(m) = w?(d’ (10))

and the assertion is verified. In the same way if ¢ is a function on ©\M and ¢/ = D¢ is defined by

¢'(m') = w(a' (7)) (g 'm0)

then
/ $(m)[2 dm = & ()2 d.
o\M

e\M’
The map D takes Ly(O\M) to Ly(©'\M'). If V is an admissible subspace of L(©\M) and W is an
admissible subspace of the space of functions on K then D takes &(V, W) to &V, W) if V' = DV. If
® belongs to &(V, W) let
D(H)® =exp ( — (H'(v0), H)) D®.
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Then

E(g,®,H) =) exp (<H(’yg),H> + p(H(vg))> D(v9)
A\D

or

>~ exp ((H(15"19), H) + p(H(15"19)) ) @75 7).
AN

If g = n'a’m’k’ then
%o 9= (1 '7"70) (% "a"70) (v M 0) % 'k

so that
H(yy'g) = H'(9) + H(vg ")

In particular H(y, ') = —H’(vo). Consequently the sum equals

> exp ((H'(v9), H) + p(H'(v9)) ) (D(H)®) (g) = E(g, D(H)®, H).

A\T
Thus the theory of Eisenstein series is the same for both cuspidal subgroups. This is the reason that only
the case that the cuspidal subgroups P;" and P; are equal is treated explicitly in the lemma. Finally we
remark that if ¢ belongs to ©(V, W) and ¢' is defined by ¢’ (v0g) = ¢(g) then ¢’ belongs to ©(V, W)

and

> o(vg) =D ¢'(19).

A\D A\D
Part (iii) and the improved assertion of Lemma 4.4 will be proved at the same time by means
of Fourier integrals. Suppose P is a percuspidal subgroup, V' is an admissible subspace of L, (©\ M),
and W is an admissible subspace of the space of functions on K. If ¢(g) belongs to ©(V, W) then, for
each a in A, let ®’(a) be that element of &(V, W) whose value at (m, k) is ¢p(amk~1). If ¢ is the rank of
P and H belongs go a,. let
O(H) = /CI)'(eXpX) exp (— (X, H) — p(X)) dX.

a

®(H ), which isameromorphic function on a., will be called the Fourier transform of ¢. By the inversion

formula
o0 = (55)" [, o (W) )+ p(11(0))) 001.9) a1

2
if Y is any point in a and ®(H, g) is the value of ®(H) at g. In the following ¢ will be chosen to be

infinitely differentiable so that this integral is absolutely convergent. If

a(Y) > (e, p)
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for every simple root of a then

60 =(5:)" [ B0, m)an|
™ Re(H)=Y
Since we have still to complete the proof of Lemma 4.4 we take P(9), i = 1,2, to be cuspidal
subgroups, V() to be an admissible subspace of Ly(0\ M), and W *) to be an admissible subspace
of the space of functions on K. Suppose ¢ belongs to ®(V()) W 1)) and ¥ belongs to ¢(V), W (2);
then it has to be shown that if the rank of P(?) is less than the rank of P(!) the integral

(4.5) /T(D\G ¢(9){/A(1>\Tm E(tg,qf,g@))dt} dg

vanishes for all H?) in 2(?), As usual we write this as a sum over the double cosets A\T'/A(™") of

/cb(g){/exp<H(2)('7t9)7H(2) + Hp) U(ytg) dt} dg.

The outer integral is over T()\G; the inner over A Ny~ AR\ T We shall show that each term

vanishes. A typical term equals

(4.k) exp(H® (vg), H® + H,) ¢(g) ¥(yg) dg

/A<1)071A<2)7\G
which equals

/ exp(H) (g), H? + H,) (v 9) ¥(g) dg
A@AYAMD-1\G

1

o9) = (5-)" / exp(H ™M (g), HY + H,) d(HY, g) |dH )],
21/ JRe(H()=y

with Y in AM and ¢(H™M | H(?) is obtained by integrating
exp(HY (v Ytexp HOmk™Y), HY + H,) S(HW v texp HImk™) T (mk™1)

first over A(2) Ny~ AMA\T(2) with respect to dt and afterwards over ©2)\ M (?) x K with respect to
dm dk, then (4.K) equals

(4.0) / exp(H, H® — Hp>{/ ¢HW, H) \dH(l)!}dH
a® Re HD =Y

Since £&(H™, H) vanishes when rank P(!) is greater than rank P(?), so does (4.k). Suppose now that
P and P?) are associate, then V(1) and V() are associate, and that W) = W), Then ¢(H | H(2))
equals

exp ((H®, sHY) + p(HP))(N,-1 (s, HV) 2(HWY), T)
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where s is some element of Q(a(!), a(?)) determined by ~. Substitute in (4.£) to obtain

/ exp (- (H,—s—1H<2>>){/ exp(H, HVY (N, -1 (s, HV) (HDM), ¥) ]dH(l)]}dH
a® Re HO=Y

The outer integral and the corresponding integral for
(4.m)
/ exp (— (H,—s " H)){ / exp(H, HO) (N(s, HO) o(HW), ) [aH M|} dH,
a®) Re HLO=Y

which is obtained by summing over double cosets, are absolutely convergent. On the other hand (4.k)

equals

1\¢ _ 1
( ) / exp (— (H,—s 1H<2>>/ exp(H, HO) (@(HV), N, (s~1, H?)w).
a() Re(H (1))=Y

27
The sum over double cosets equals

1

(4n) (—>q/ eXIO(—<H7—s‘1hﬂ2)>/ exp(H, HV) (®(HW),N(s~!, H?)T)
27T u(l) Re(H(l)):Y

Thus (4.m) and (4.n) are equal. From the Fourier inversion formula (4.n) equals
(@(—s'HP), N(s~1, H?)¥)

On the other hand the inner integral in (4.m) is the Fourier transform of a function analytic on 2"
and uniformly integrable along vertical “lines.” Thus its product with exp(—(H, Hé”)) is absolutely
integrable if Hél) is in A1), Referring to (4.m) we see that this product is also integrable if H(()l) isin
—s‘l(Ql(Q)). From Holders inequality the product is integrable if Hél) is in the convex hull of these

two sets and then the integral must give us the analytic continuation of
(N(s, HV)2(HW), D)
to this region. Consequently
(N*(s7H H?) &(—s T HP),¥) = (N(s,—s ' H®) &(—s"'H?), )

which proves (iii).
Finally we prove (i). We start from the observation made at the end of Lemma 4.1 that if C'is a

compact subset of I'\ G or of G then

> lexp(HW (vg), HV + H,)||9(7g)| < | @ exp(Re B, H)
A\T
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forgin C. Ifw C N and
NO =@ nNW)y

and if wg C C then

lexp(HM (ytg), HV + H,)| |®(~tg)| dt

AM\T/AR) /Nz)ﬂV‘IA“)W\T(Q’

is at most
c|®|| exp(Re HV, H{M).

This remains true if for each s in Q(a"), a(®) we sum only over those v such that N (s, H") is not

identically zero. Then
IN(s, HV) @ (g)| < c|| @] exp(HDV, HY Y exp (— (H? (), Re (s(H™Y))))

which proves the assertion since the linear functionals on &(V(?) V) obtained from evaluating a

function at a point span the space of linear functionals on Q%(V(Q), Ww).

The relation of being associate breaks up the cuspidal subgroups into equivalence classes. A set
of representatives { P} for conjugacy classes under I' in one of these equivalence classes will be called a
complete family of associate cuspidal subgroups. If By € {P} and V} is a simple admissible subspace
of Lo(00\ M) then for each P in { P} there is a simple admissible subspace associate to Vj. The family
{V'} so obtained will be called a complete family of associate admissible subspaces. Let W be a simple
admissible subspace of the space of functions on K. If P belongs to { P} and V, which is a subspace of
L(©\M), belongs to {V'}, and if ¢ belongs to ©(V, W) then é(g) belongs to L(I'\G). Let the closed
space spanned by the functions ¢ as P varies over { P} be denoted by L({P},{V'}, W). Whenever we
have {P}, {V'}, and T as above we will denote by a(!), ... a(") the distinct split components of the
elements of { P}, by P(:1) ... P(mi) those elements of { P} with a(*) as split component, and by ¢(*)
the direct sum

o, (VN W)

Moreover if H®) belongs to a() and s belongs to Q(a(®), a(?)) we will denote the linear transformation
from &) to ¢(/) which takes ® in &(V (%) 1¥) to that element of &(9) whose component in &(V (9 T7)
is N(H® s)®by M(H®, s). Of course N(H", s) depends on P(**) and P\»*) and is not everywhere
defined. Finally if

d=a" Py
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belongs to &%) we let
E(g,®,HY) = iE(g, O, HD),
k=1
Lemma 4.6. (i) Suppose {P};, {V}i, Wi, i = 1,2, are respectively a complete family of associate
cuspidal subgroups, a complete family of associate admissible subspaces, and a simple admissible
subspace of the space of functions on K ; then L({P}1,{V }1, Wh) is orthogonal to L({P}2,{V}2, W)
unless {P}1 and {P}s are representatives of the same equivalence class, the elements of {V}1
and {V}s are associate, and Wi = Wa. Moreover L(I'\G) is the direct sum of all the spaces
LH{P},{V}, W) and, for a fized {P} and {V}, dwL({P},{V}, W) is invariant under G.
(i) If {P}, {V}, and W are given and if, for 1 <i <r and 1 < k < m;, ¢;  and 1; , which
belongs to D (VR W), are the Fourier transforms of ®; x(H®) and ¥; (H®) respectively

let

O;(HY) = @) @, (HY)
and

U;(HD) = e U, ,(H)
Then

T my

(10) /F\GZZZZM )l

i=1 j=1k=1/¢=1

s equal to

1 ‘ ‘ _ .
(4p) () / (M(s, HD), @(HD), W;(~sHD)) |dH |
2m Re(HM)=Y

summed over s in Q(a®,al9)) and 1 <4, j <r. Here q is the rank of elements of {P} and

Y@ is a real point in A,

Suppose P, i = 1,2 are cuspidal subgroups, suppose V() is an admissible subspace of
Lo(©O\M®), and W is an admissible subspace of the space of functions on K. If ¢ belongs to
DV W) and 9 belongs to D (V) W 2)) et

P(g) = (i>q/ exp(HV (g), HY + H,) ®(HM, g) |dH M|,
2 Re(H(MW)=y (1)
1

Y(g) = (—)q/ exp(H® (g), H® + H,) W(H® g)|dH?)|.
2 Re H®) =Y (2
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Then
/ 3(9) ¥(g)
G
is equal to
1\¢ _
4. — E(g, ®(HM), HW HW
(4) (35 oy L 000 Bl 00, 1) g} )

if Y (1) belongs to U(Y). The inner integral is of the same form as (4.j) and as we know vanishes unless
PM and P® are associate. If P(Y) and P(?) are associate and V(") and W) are simple admissible
spaces for i = 1,2, then it is zero unless V(1) and V(2) are associate and W) = W3, Finally if P(!)
and P2 and V(1) and V) are associate and W) = W (2 = W the inner integral is readily seen to

equal

( 1 >q Z (N(H(1)73) (I)(H(l))’ \1,(_51'_{(1)))

2
s€Q(a®) a(2)
This proves part (ii) of the lemma and the first assertion of part (i). The second assertion follows readily

from the second corollary to Lemma 3.7.

To complete the proof of part (i) it is enough to show that
owl{PHAV}W)

isinvariantunder A( ) when f iscontinuous with compactsupport. If W; and W5 are simple admissible
subspaces of the space of functions on K define C(W;, W,) to be the set of all continuous functions on
G with compact support such that f(k~'g) belongs to W; for each g in G and f(gk~!) belongs to W5
for each g in G. It is enough to show that for any W; and W, the space

L PV} W)

is invariant under \(f) for all f in C(1¥;, W5). Suppose ¢(g) belongs to ©(V, W) for some V in {V'}

and some W and

1

o) = (32)" [ e (). 1)+ p(11()) @(T.g) ]

If f belongs to (W7, W5) then
N9l = [ olan) £(r)

equals 0 unless Wy = W. If Wy = W itis readily seen that A(f)¢ belongs to ©(V, W;); since

M) é=(AFe)"
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the third assertion of part (i) is proved. Moreover

(47) Do) = (52)" [ exn (). 1) + pl1(0) )@ (0. dit
e H=Y

if o (H) = n(f, H) ®(H).

Let us now introduce some notation which will be useful later. Suppose {P}, {V'}, and W are
given. Suppose that, for 1 <7 <r, <I>i(H(i)) is a function defined on some subset of agi) with values
in @, We shall use the notation ®(H) for the r-tuple (®;(HW), -+, ®,(H™)) of functions and
occasionally talk of ® as though it were a function. If & (H™®), ... ®,.(H")) arise as in part (ii) of the

lemma, let us denote

room;

> bk

i=1 k=1
by . If R2 > (p,p) the map ®(-) — ¢ can be extended to the space of all functions ®(H) =
(@1(HW), -+, ®,(H)) which are such that ®;(H ")) is analytic on

{HY € al’ || Re(HD)|| < R}

and dominated on this set by a square-integrable function of Im(H(")). The formula of part (ii) of the
lemma will still be valid. In particular the map can be extended to the set $) of all functions ®(H ) such
that ®;(H (") is analytic on the above set and ||p(Im(H ")) ®(H®)| is bounded on the above set if p

is any polynomial. § is invariant under multiplication by polynomials.
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5. Miscellaneous lemmas.

In order to avoid interruptions later we collect together in this section a number of lemmas

necessary in the proof of the functional equations of the Eisenstein series.

Lemma 5.1. Let ¢ be a continuous function on I'\G and suppose that there is a constant r such
that if & is a Siegel domain associated to a percuspidal subgroup P’ there is a constant ¢’ such
that |¢(g)| < n"(a'(g)) if g belongs to &'. Suppose that there is an integer q such that if *P is

any cuspidal subgroup then the cuspidal component of

o= [ o

is zero unless the rank of *P equals q. Let {Py,---, Ps} be a set of representatives for the conjugacy
classes of cuspidal subgroups of rank q and for each i let V; be an admissible subspace of Lo(0;\M;);
let W be an admissible space of functions on K. Suppose there is an integer N such that if

{pgk) ‘ 1 <k <t} is a basis for the polynomials on a; of degree at most N then

(5.a) / d(ng) dn = ZexP( H(J) Zp(k) (I,(a k)( )
NN \N; =

with @gj’k) in €(V;,W). Let {p; ‘ 1 < i < wu} be a basis for the polynomials on b of degree at most
N; then given any percuspidal subgroup P and any Siegel domain & associated to P there is a
constant ¢ such that on &

(5.b) 16( { Z Zexp 9),Re HY }{ i I (H(g))|}.

i=1 j=1

Suppose f isan infinitely differentiably function on G with compact supportsuch that f (kgk™!) =
f(g) forall g and k. Let ¢; = A(f)¢. If *P is any cuspidal subgroup, *V" an admissible subspace of
Lo("O\*M), *IW an admissible space of functions on K, and 1) an element of © (*V, *IW') we have

b(g)b1(g) dg = / () $(9)*d(9) dg

“T\G “T\G

If 1) belongs to ©(*V, *IV') so does A\( f*)v so that both integrals are zero if the rank of *P is not g. On
the other hand if H; belongs to the complexification of the split component of P, and @Ek), 1<k <t
belongs to &(V;, W) then the result of applying A(f) to the function

exp(H { Zp(k) (I)(k)( )}
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is the function

exp(H. {Zp(k) ))(iﬂ(k,ﬁ)(f’ H;) @E@)(Q)}
=1

where 789 (f, H;) is alinear transformation on (V"W). The matrix (%9 ( f, H;)) defines a linear
transformation on

ol _ e(VO W)

which we will denote by = ( f, H;) even though 7 ( f, H;) usually has another meaning. Given the finite
set of ponts Hi(l), S ,Hi(‘”) we readily see that we can choose f so that 7(f, Hi(J)) is the identity for
I<i<s, 1<) <s;.

/ $(ng) dn = / é1(ng) dn
AN\ N; AN \N;

for 1 < i < s, It follows from Lemma 3.7 that A(f)¢ = ¢. Arguing the same way as in the proof
of Lemma 4.1 we see that if X is in the centre of the universal enveloping algebra then the result of

applying A(X) to the function

exp(H. { Zp(k) (I)(k)( )}

is the function

exp(H { Ep(k) )) <i7r(k,2)(X’ Hi)@y))(g)}

=1
where 7% (X, H;) is a linear transformation on &(V(®) ). It then follows readily that there are
points Zy,---, Z,, in j., irreducible representations o1,---,0, of K, and an integer ¢, such that ¢
belongs to

fj(Zlv to 7Zm; 01, ,0n; 60)

If ¢ = 0 the inequality (5.b) merely asserts that ¢(g) is bounded on any Siegel domain. That this
is so follows of course from Lemma 3.5 and the corollary to Lemma 3.4. The lemma will be proved for
a general value of ¢ by induction . Suppose ¢ is positive. If {oy ,---,a,, } is the set of simple roots
of b let *P; be the cuspidal subgroups belonging to P determined by {c;, |j # i}. It follows form
Lemma 4.2 that

Ji ki 4 4
IN*N;\*N;

j=1 k=1
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where qﬁ(j’k) is a function on *4;*T;\G, the elements *H(j) 1 < j < j;, are distinct, and the set of

()“()

homogeneous polynomials ¢, is linearly independent. Let us consider qﬁ(]’ as a function

on *9; x {1}\*M; x K and show that it satisfies the conditions of the lemma. Since the functions

are linearly independent, qbgj’k)(m, k) is a linear combination of functions of the form

/ d(namk™1) dn
T'N*N;\*N;

with a in *4;. Any condition of the lemma which is satisfied by the latter functions will also be satisifed

by each of the functions ¢>(J’

. Lemma 3.3 shows that the condition on the rate of growth on Siegel
domains is satisifed. The proof of Lemma 3.7 shows that if fPxKisa cuspidal subgroup of *M; x K

then the cuspidal component of

d(nanymk™) dn { dn
L\elﬂTN\TN { /FO*N,L'\*N,L' ' } '

is zero unless the rank of TP, or equivalently TP x K, is g — 1. Finally we must find the analogue of

the form (5.a).

In order to free the indices ¢, j, and k for other use we set i = ig, j = jo, and k = kq. If P’ isa
cuspidal subgroup of rank ¢ to which *P;, belongs suppose for simplicity that P’ = P, for somei. If F
is the subset of {1, - - -, s; } consisting of those j such that the projection of Hi(j) on the complexification
of *a;, equals *H(jO) and if r(1) ... () is a basis for the polynomials on the orthogonal complement

Taz of *a;, in a; of degree at most N — M, with M equal to the degree of q( 0) , then

/ (bz(-go’k())(nm, k) dn
0, ﬂTNi\]LNi

is equal to
t; )
(5.c) S exp(TH;(m), THD) S+ (T, (m)) w9 (mk 1),
jEF k=1
Here

TP, = "N, \P, NSy, HY = *HD 4+ THY),

109
with *Hi(j) in the complexification of a;, and THi(j) in the complexification of Ta,-. The functions ‘Ilgj’k)
are linear combinations of the functions (I)Z(j’k). Considered as functions on *M,;, x K they belong to

&(V; x W, W*) as we saw when proving Lemma 3.5.
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Applying the induction assumption to each of the functions ¢Z(.j’k) we see that if T&; is a Siegel
domain associated to a percuspidal subgroup of *M; there is a constant ¢; such that if ¢ = n;a;m;k;

and m; belongs to TG,- then

u

( /WNZ_\*NZ_ ¢(ng) dn\ < ci{ Z iexp(H(g),Re H§j>>}{ > o (H(9))]}-

i=1j=1 k=1

Suppose G is a Siegel domain associated to P. It is enough to establish the inequality (5.b) on

each
&, ={g € 6| &, (alg)) > &, (alg)). 1 < j < p}.

It is not difficult to see that there is a Siegel domain TG,- associated to a percuspidal subgroup of *M;
such that G is contained in *Ni*AiTGSiK; the simple calculations necessary for a complete verification
are carried out later in this section. Since \(f)¢ = ¢ we see from Lemma 3.4 that if b is any real number

there is a constant ¢ such that
o)~ [ olng)dn| < i (alo))
I'N*N;\*N;

on &;. For b sufficiently small n° (a(g)) is bounded on & by a constant times the expression in brackets

on the right side of (5.b). So the lemma is proved.

Corollary. If, for each i and j,
Re (a,k(Hi(j))) <{ap,p), 1<k<p
then ¢ is square integrable on I'\G.

It has only to be verified that the right side of (5.b) is square integrable on any Siegel domain.

This is a routine calculation.

Lemma 5.2. Let {¢,} be a sequence of functions on T\G and suppose that for each n there is a
constant r(n) such that if & is a Siegel domain associated to a percuspidal subgroup there is a

constant ¢’ (n) such that
[6(9)] < ¢ (n) "™ (a'(9))

if g belongs to &’. Suppose that there is an integer q such that if *P is any cuspidal subgroup then

the cuspidal component of

/ ¢dn(ng) dn
AN \*N



Chapter 5 80

is zero unless the rank of *P is q. Let {Py,---,Ps} be a set of representatives for the conjugacy
classes of cuspidal subgroups of rank q and for each i let V; be an admissible subspace of Lo(0;\M;);
let W be an admissible space of functions on K. Suppose there is an integer N such that if

{pgk) ‘ 1 <k <t} is a basis for the polynomials on a; of degree at most N then

) G
On(ng)dn = exp H(]) p(k <I>
/ o, 0= 3l Z (9)

with HY) in the complexification of a; and @gi’ik) in €(V;,W). Finally suppose that

n,t

lim H(J) H(J)

n—o0

and

exist for all i, j, and k. Then there is a function ¢ on I'\G such that

lim ¢,(g9) = é(9)

n—oo

uniformly on compact sets. Moreover if G is any Siegel domain associated to a percuspidal subgroup

there is a constant ¢ such that |¢,(g)| is less than or equal to

(5.d) c{iii”@éj’m }{ZZQXP ReH(]) }{i!pk(H(g)ﬂ}

i=1 j=1 k=1 i=1j=1

The polynomials p, are the same as in the previous lemma. If f is an infinitely differentiable

function on G with compact support such that

f(kgk™") = f(g)

for all g and k then define 7( f, H;) as in the proof of the previous lemma. Choose f such that 7 ( f, H(]))

is the identity for 1 <i <s,1 < j < s;. If we take the direct sum

t
o, o5, 0 e, w))
k=1

then we can define the operator

@i, @5, on(f, HY)) = m,
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on this space. For n sufficiently large the determinant of «,, will be at least % Thus for n sufficiently
large there is a polynomial p,, of a certain fixed degree with no constant term and with uniformly
bounded coefficients such that p,, () is the identity. Because of Lemmas 3.7 and 5.1 we can ignore
any finite set of terms in the sequence; so we suppose that p,, is defined for all n. The function
fn = pn(f) is defined in the group algebra and the argument used in the proof of Lemma 5.1 shows
that \(f,,)#n = én. There is a fixed compact set which contains the support of all the functions f,, and

if X belongs to g there is a constant y such that

IAX) fr(9)| < p

for all n and all g.

(] k) is to be taken in the

In the statement of the lemma the limit as n approaches infinity of ¢
norm on &(V;, W) that has been introduced earlier. This, as we know, |mpI|es uniform convergence.
Thus if ¢ equals zero the first assertion of the lemma is immediate. The second is also; so we suppose

that ¢ is positive and proceed by induction. Let

S S

i‘ (Jk)

=1 j=1k=1

If nllngo v(n) = 0 we have only to establish the inequality (5.d) because we can then take ¢ to be zero.
Since ¢,, is zero when v(n) is, the lemma will be valid for the given sequence if it is valid for the
sequence which results when all terms with v(n) equal to zero are removed. We thus suppose that
v(n) is different from zero for all n. If the lemma were false for a given sequence with nlLH;O v(n) =0

then from this sequence we could select a subsequence for which the lemma is false and for which

lim v~ *(n) CIJS;’ZE)

n—oo

exists for all 4, j, and k; replacing the elements of this subsequence by v~ (n)¢,, we obtain a sequence
for which the lemma is false and for which nh—{go v(n) = 1. We now prove the lemma in the case that
nh—»rgo v(n) is not zero.

Let 6, ... &) be a set of Siegel domains, associated to the percuspidal subgroups
PM ... P respectively, which cover T\G. If {¢,} is any sequence satisfying the conditions of

the lemma it follows from Lemmas 3.7 and 5.1 that for 1 < n < oo there is a constant ¢; (n) such that

(5.0) 6a(0)] < ({33 exp(H® (g), Re HY) 2_3 o (H(9)) |}

=1 j=1
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if g belongs to G(*). It may be supposed that ¢ (1) is the smallest number for which (5.e) is valid. Since
we can always take S to be one of (... &) the inequality (5.d) will be proved, at least when
nh—»rgo v(n) is not zero, if it is shown that the sequence {c;(n)} is bounded. At the moment however
there are still two possibilities; either the sequence is bounded or it is not. In the second case replace
¢ by ¢ (n) b, and, for the present at least, assume that {c; (n)} is bounded. It follows from Ascoli’s
lemma and the relation A(f,,)¢, = ¢, that we can choose a subsequence {¢/, } so that

lim ¢;,(9) = ¢(g)

n—o0

exists for each g and the convergence is uniform on compact sets. Lemma 3.3 and the dominated
convergence theorem imply that if *P is a cuspidal subgroup of rank different from ¢ then the cuspidal

component of

/ p(ng) dn
CA*N\*N

is zero. Moreover

/ ¢(ng)dn = Zexp hmH(j) Zp(k) hm @Ej’k)(g).
TNN;\N;

If {¢,,} did not converge to ¢ uniformly on all compact sets we could choose another subsequence

which converged to ¢’ which is not equal to ¢; but the cuspidal component of

/ d(ng) — ¢ (ng) dn
CA*N\*N

would be zero for any cuspidal subgroup. According to Lemma 3.7 this is impossible. For the same
reasons, if

lim @Y7 =0

for all ¢, 7, and k then ¢ is zero. In order to exclude the second possibility for (5.e) it has to be shown
that if (5.e) is satisfied with a bounded sequence {c¢;(n)} and

lim @Y/ =0

n—oo

for all 7, 7, and k then
lim ¢1(n) =0

n—o0

Once the second possibility is excluded the lemma will be proved.
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We will suppose that lim ¢;(n) is not zero and derive a contradiction. Passing to a subsequence
n—oo
if necessary it may be supposed that there is a definite Siegel domain, which we again call G, among

W ... &M such that

G0 sl 3 exp(H(g) Re )} {zm D} =am)

9€6 i=1 j=1
is greater than or equal to € > 0 for all n; & is of course associated to the percuspidal subgroup P. Let

*P;, 1 <1 < p, be the cuspidal subgroup belonging to P determined by the set {«;, |j # i} and let

Si={g€ 6|, (alg) =&, . 1 <j<p}

Suppose it could be shown that there is a sequence {¢} (n)} of numbers converging to zero so that

‘ /F N Pn(ng) dn‘

is less than or equal to
(5.9) {ZZexp ReH(]) }{Z‘pk(H(g))‘}
i=1 j=1 k=1

if g belongs to &,. Then it would follow from Lemma 3.4 that there was a constant ¢ independent of

n such that, for g in S, |¢(g)| is at most

(c’l(n)—i—c’cl( ){iZexp ReH(j) }{i‘pk(f](g))‘}

=1 j=1

There is a conditionally compact subset C of & such that ¢n~!(a(g)) < 1 if gis notin C. If in the
left side of (5.d) g is allowed to vary only over the complement of C' the results would be at most

dy(n) 4+ 1ci(n). Thus if n were so large that ¢; (n) < 3e

sup 6, () 33 exptH (). H) ) {zm N} =e

gec i=1 j=1

This is however impossible since ¢,,(g) converges to zero uniformly on compact sets.

The induction assumption will be used to establish (5.g). As in the proof of Lemma 5.1 let

Ji(n)

/ On(ng)dn = Z exp(*H;(g *H(j) Zq(k) *Hi(g gfik)(g)
TA*N; \*N; =
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where ¢§jv’f) is a function on *A4,*T;\G, the elements

are distinct, and the set of homogeneous polynomials q§1), e ,qgki) is linearly independent. We have

already seen in the proof of Lemma 5.1 that if ¢<j1k) are considered as functions on *0; x {1}\*M; x K
then the sequences {qﬁ“’ )} satisfy all conditions of the lemma, with g replaced by q — 1, except perhaps
the last. We again replace i by ig, j by jo, and k by kg in order to free the indices i, j, and k. For each n
and each i define a partition P,(n) of {1,---,s;} by demanding that two integers j; and j» belong to
the same class of the partition if and only if Hﬁf;) and Hfjj) have the same projection on *a;,. Breaking
the sequence into a number of subsequences we can suppose that j;(n) = j; and P;(n) = P; are
independent of n. With this assumption we can verify the last condition of the lemma for the sequence
qb(”’k‘)). If P is a cuspidal subgroup of rank ¢ to which *P;, belongs, suppose for simplicity that P = P,
for some i. Let M be the degree of q( o) If I iis the subset of {1,- - s;} consisting of those j such that
the projection of H(J) on *a;, equals *H(]O) and if (1), ... ) s a basis for the polynomials on the

orthogonal complement Tai of *a;, in a; of degree at most N — M then

(jo,ko)
o, (nm, k) dn
[eloﬂTN7\TN7 0 )

is equal to
tz

Zexp(THi( H(]) Zr(k) ]LH \Ilgf;’ik)(mk_l).
jEF k=1

Here
TP- = *N; \P n*S;,

with *HY) in the complexification of a;, and TH(J) in the complexification of Tal It is clear that

mn,t T,

lim TH(J) exists for each j. The functions \I!(J ") are linear combinations of the functions (I’S,% ) with

n—oo

coefficients which do not depend on n; consequently

lim ¥ =0

n—oo

for each ¢, 7, and k. The inequality (5.9) follows immediately from the induction assumption.

In the next section it will be necessary to investigate the integral over I'\ G of various expressions

involving the terms of a sequence {¢,,} which satisfies the conditions of the lemma with ¢ = 1. In
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order to do this we must be able to estimate the integral of |#(g)[?> over certain subsets of G and I'\G.

For example if C' is a compact subset of GG then

[ 1on(@)P dg = 02 (m)
C

if v(n) has the same meaning as in the proof of the lemma. Suppose that S is a Siegel domain associated
to the percuspidal subgroup P. If oi; , - - -, oy, are the simple roots of f let *P; be the cuspidal subgroup

of rank one determined by {o;, | j # i} and let
i = {9 € 6|&, (alg)) = &, (alg), 1 <j < p}
It follows from Lemmas 3.4 and 5.2 that if
Duilo)= [ onlng)dn
TA*N; \*N;

and r is any real number then

[6n(9) =" Gni(9)] = O(v(n)) 0" (al9))
for all g in &;. Since 1" (a(g)) is square integrable on &; for r < 0

[ 1600) = busto)dg = 0 (m),

If1>b>0Ilet
Si(b) = {g € &£, (alg)) = &, (alg)) for some j # i}.

We shall show that
(5.h) | Tbnito)dg = 02 (m)
Si(b)
and hence that
(5.4) | Joutg)dg =0 m)
Si(b)

It will be better to prove a slightly stronger assertion than (5.h). Suppose that & = &(c,w). If g isin
G let g = namk with n in *Nj, a in *A;, m in *M;, and k in K. If TA; = AN *M, then T A, is the split
component of the cuspidal subgroup TPi = *N;\P N *S; of *M,. If g belongs to S and j # i then

oy, (Tai(m) = &, (alg)) = c.
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It follows readily from Lemma 2.6 that

o (Tai(m)) = 11 (Tai(m

j#i
with §; > 0; consequently

b (a) 2 &5 (Tai(m)) > e

with some constant ¢;. If g belongs to S;(b) then, for some j # i,

€y, (Tai(m)) TT €22 (Tas(m)) = €8, (a).
k#1

Consequently there is a constant b; > 0 such that, for some other j,

€y, (Tai(m)) = €% (a)

Suppose w; and wy are compact subsets of *N,; and TSi respectively such that w is contained in wyws;

then we can choose n in w; and m in TGi(c, wo). For each a in *4; let
Ula) = {m € 1&;(c,ws) [n(Tas(m)) > o™ (a)}.
The integral of (5.h) is at most a constant, which does not depend on n, times

(5.5) / w2(a){ / *Gni(amk)[* dm dk} da.
*Aj(cl,oo) U(a)xK

To estimate (5.j) we can replace *P; by any cuspidal subgroup conjugate to it. In particular we can

suppose that *P; is one of the groups Py, - - -, Ps. If *P; equals P;, the above integral equals
@)y S p®) (j:h) 2
2( {/ ‘ HHD Y PP (H) o, k—l)( d dkz}d
w exp nyi f) n.io \1TL m a
[Ajo(cl,oo) U(a)x K Z ¢ ,;1 ¢ 0 (

if a = exp H. Given any real number r there is a constant ¢(r) such that

1895 (m, k1)) < e(r) [958 0" (Tai(m)

n,l0 mn,t0

if m belongs to TGi. Thus if r is less than or equal to zero the above integral is

87‘0

0(u2<n>)[A( P @3° S |expl, HO) )y (D) da

j=1k=1

which is O (v?(n)) for r sufficiently small.
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For each 7 let Pi(l), e Pi("i) be a set of of percuspidal subgroups to which P; belongs which are

such that there are Siegel domains TGZ@, 1 < j < n,, associated to
]LPi(j) _ Ni\Pi(j) ns;

whose union covers ©;\ M;. It may be supposed that {Pi(l) | 1 < j < n;} contains a complete set of
representatives for the conjugacy classes of percuspidal subgroups to which P, belongs and hence that
{Pi(j) | 1 <i<s,1<j < mn;} contains a complete set of representatives for the conjugacy classes
of percuspidal subgroups. It should perhaps be recalled that we have seen in Section 2 that if two
percuspidal subgroups to which P; belongs are conjugate then the conjugation can be effected by an
element of A;. Let ¢t be a positive number and for each ¢ and j let wzm be a compact subset of Si(j); let

GZ@ be the set of all ¢ in the Siegel domain 6§j)(t, ng)) such that

Ea(a(9)) 2 €5(al(9))

if 5 is any simple root of h and « is the unique simple root which does not vanish on a;. Let us now
verify that |J;_, U;‘;l 6§j) covers I'\G if t is sufficiently small and the sets ng) are sufficiently large.
Since I"\ G is covered by a finite number of Siegel domains it is enough to show that if ¢ and the sets
ng) are suitably chosen the projection of the above set on I'\G contains the projection on I'\ G of any
given Siegel domain &. Suppose S is associated to the percuspidal subgroup P and *P;, is the cuspidal
subgroup belonging to P determined by {ay, | ¢ # k}. Itis enough to show that the projection of the

above set contains the projection on I'\ G of

G = {9 € 6|a, (al9) = &, (alg)), 1 < L < p}

for each k. Given k there is an i and a j and a ~y in I' such that 7*P,y~! = P; and yPy~! = Pi(j). Let

S = &(c,w). The projection of S, on I'\G is the same as the projection on I'\G of Y&y, The set &y, is
contained in

Wwy_lNi(j)Af;jH(c, oo)vK

(7)

%

Agj)ng)(t, ng)). The set v&;, will then be contained in AZ(.j)GZ(.j) because

since AY\5Y) is compact there is a Siegel domain &\ (t,w!”)) such that v& is contained in

£a(a? (vgr 1Y) = €0, (a(9))

if « is the unique simple root which does not vanish on q;.
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If1>b>0andu > 0let 6§j)(b, u) be the set of all g in GZ@ such that

£5(at(9)) < & (a(g)),

for all simple roots 3 of b different from «, and such that &, (ai(g)) > u. Let F' be the projection on
NG of J:_, U™, 67 (b, u). We now know that

J=

(5.k) / 6a(9) 2 dg = O(+*(n)).
[\G—F

Let F; be the projection on A;\G of |}~ GEj)(b, u). It follows from Lemma 2.12 that if u is sufficiently

large and b is sufficiently small the projections on I'\G of F; and Fj are disjoint unless i = j and that

the projection of F; into I'\G is injective. Thus if ¢(g) is any function on I'\ G for which

¥(g) dg
NG

is defined the integral is equal to

5.0 d dg.
(5.) > [ st [ v
We also know that
(5.m) | 16n(9) = duilo) dg = O (v*(m)

F;

Gnailg) = / $n(ng) dn.
FﬂNi\Ni

There is one more lemma which should be established before we go on to the proof of the

functional equations.

Lemma 5.3. Let U be an open subset of the n-dimensional complex coordinate space. Suppose that
to each point z in U there is associated a continuous function E(g,z) on I'\G. Suppose that for
each z in U there is a constant v such that if & is any Siegel domain, associated to a percuspidal

subgroup P, there is a constant c, which may also depend on z, such that

|E(g,2)| < en’(a(g))
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if g belongs to &. Suppose that there is an integer q such that if *P is any cuspidal subgroup then

the cuspidal component of

/ E(ng,z)dn
AN \*N

is zero for all z unless the rank of *P equals q. Let {Py,---, Ps} be a set of representatives for the
conjugacy classes of cuspidal subgroups of rank q and for each i let V; be an admissible subspace of
Lo(©,\M;); let W be an admissible space of functions on K. Suppose there is an integer N such
that if {pz(-k) ! 1 <k <t} is a basis for the polynomials on a; of degree at most N then

/ E(nguz) dn = Zexp< H(]) Zp(k) (P(]’k)( )
I'nN;\N; =

For each z and each i and j the point HZ-(j)(z) belongs to the complexification of a;; @gj’k)(g,z)
is the value at g of an element @Ej’k)(z) of €V, W). If Hi(j)(z) and @Ej’k)(z) are holomorphic
functions on U, with values in the complezification of a; and &(V;, W) respectively, for alli, j, and

k then E(g,z) is a continuous function on T'\G x U which is holomorphic in z for each fized g.

It follows immediately from Lemma 5.2 that E(g, z) is a continuous function on I'\G x U. Let

20 =(29,---,29) be apointin U and let
B:{z:(zl,"',zn)ﬂzi—z?] <e}

be a polycylinder whose closure is contained in U. It is enough to show that E(g, z) is analytic in B
for each g. To do this we show that if C; is the contour consisting of the circle of radius ¢ about 2!

transversed in the positive direction then

B(g,2) = (%m)/cdcl/c 0C, 1:]

when z is in B. Denote the right hand side by E; (g, z). It follows from Lemma 5.2 that if S is any
Siegel domain there are constants ¢ and r such that |E(g, z)| < ¢ (a(g)) for all g in & and all z in the
closure of B. Consequently for all z in B the function E(g, z) — Ej (g, z) satisfies the first condition of

Lemma 3.7. If *P is a cuspidal subgroup then

/ Ei(ng,z)dn
TA*N\*N

<%)n /01 dore /cn d(n{ /Fﬂ*N\*N (ng. ¢ } ﬁ — )"

is equal to
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It follows from Fubini’s theorem that the cuspidal component of

/ Ei(ng,z)dn
I'A*N\*N

is zero if the rank of *P is not . However

/ Ei(ng,z)dn
FﬂNi\Ni

isequal tothesumover j,1 <j <s;,and k, 1 < k <tof
L\" @y ™ (1 G0 VT
(552)" [ e [ dc{ exptita). 1 ()P (11(0) s I —=0
Since the expression in the brackets is a holomorphic function of ¢ this equals
2 j K
3 zexp 9), H(Q) i (Hi(g)) @9 (g, 2)
7=1k=1

and the lemma follows from Lemma 3.7.
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6. Some functional equations.

We are now ready to prove the functional equations for the Eisenstein series associated to cusp
forms. Let { P} be a complete family of associate cuspidal subgroups; let {1'} be a complete family of
associate admissible subspaces; and let W be a simple admissible subspace of the space of functions
on K. If a®V ... a(™ are the distinct subspaces of ) occurring among the split components of the
elements of { P} then for each transformation s in Q(a”), a(")) we have defined a holomorphic function
M (s, H®) on 2A® with values in the space of linear transformations from ¢(%) to ¢(4) and for each point
@ in ¢ we have defined a continuous function E(g, ®, H®) on T'\G x 2 which is holomorphic in
H for each fixed g. In order to avoid some unpleasant verbosity later we introduce some conventions
now. As usual M (s, H(i)) is said to be holomorphic or meromorphic on some open set V' containing
2(*) if there is a holomorphic or meromorphic function, which is still denoted by M (s, H®"), on V
whose restriction to A% is M (s, H®). The function E(-,®, H") is said to be holomorphic on V if
there is a continuous function on I'\G' x V which is holomorphic in H® for each fixed ¢ and equals
E(g,®, HD)onT\G x 2. Of course this function on I'\G x V is still denoted by E(g, ®, H"). The
function E(-,®, H®") is said to be meromorphic on V' if it is holomorphic on an open dense subset
V' of V and if for each point Héi) in V there is a non-zero holomorphic function f(H(i)) defined in
a neighbourhood U of H"” such that f(H®) E(g, ®, H®) is the restriction to T\G x (U N V') of a
continuous function on I'\G x (U N V') which is holomorphic on U NV for each fixed g. If V' is the
complement of the intersection of V" with a set of hyperplanes and if f(H(i)) can always be taken as a
product of linear functions we will say that the singularities of E(-, ®, H®)inV lie along hyperplanes.

A similar convention applies to the functions M (s, H®)).

Lemma 6.1. For each i and each j and each transformation s in Q(a(i),a(j)) the function
M(S,H(i)) is meromorphic on a®¥) and its singularities lie along hyperplanes. For each i and
each ® in EW the function E(',CIJ,H(i)) is meromorphic on al¥) and its singularities lie along

hyperplanes. If s belongs to Q(a®,al9)), ¢ belongs to Q(a¥),a®)), and ® belongs to @) then
M(ts, HO) = M(t,sHD) M (s, H?)

and

E(g,M(s, H")®, sH") = E(g,®, HY).

There are a number of other properties of the functions E(-, (I),H(i)) which it is important to

remark.
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Lemma 6.2. Fiz i and fix Héi) in a). Suppose that for every j and every s in Q(al,a)) the
function M (s, HY) is analytic at H(()i). Then for every ® in €@ the function E(-,®, HW) is
analytic at H(()i) and if G is a Siegel domain, associated to a percuspidal subgroup P, there are

constants ¢ and r such that, for g in S,
B9, @, Hy")| < e (a(r)).
Moreover if *P is a cuspidal subgroup the cuspidal component of
/ E(ng,q),Héi))dn
TA*N\*N

is zero unless *P belongs to {P} but

/ E(ng,@,Héi))dn
PAN GO\ N G0

1 equal to

> exp ((HOO(g) sH) + p(HO(9)) ) (EOO M (s, HD) @) (g)
s€Q(al® ald))

if EU) s the projection of €9) on &(VUH W).

It should be observed immediately that this lemma is true if Héi) belongs to A(*). Let us begin
the proof of these two lemmas with some remarks of a general nature. We recall that if ®(-) and ¥(-)

belong to the space $ introduced in Section 4 then

/ (9) ¥(g) dg
e

is equal to

s T

(6.a) ZZ Z <%>Q/R I (M(S,H(i)) @’i(H(i)),\I/j(—SH(i))) ‘dH(i)‘.

=1 j=1 SEQ(QU) 7a(j))

If, for 1 <i <, f;(H) is a bounded analytic function on
D; ={H" € al! | ||Re HV| < R}
and if ®(H) isin 9 then

f(H) (I)(H) = (fl(H(l)) q)l(H(l))v"'vfr(H(T)) q)r(H(T)))
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isin $. Suppose that, for all s in Q(a®, a)), f;(sH®) = f,(H®) and let f;(H) = f;(—H). If (6.2) is
denoted by (®(-), ¥(-)) it s readily verified that

In particular (f*(-) f(-) (), ¥(-)) is a positive definite hermitian symmetric form on $. Suppose k is

a positive number and, for each i and all H in D;, | f;(H)| < k then

Wl

(k* = f(H) fi(H))* = gi(H)

is defined, analytic, and bounded on D, and g} (H) = ¢;(H ). If the square root is properly chosen then
gi(sH) = gi(H) forall s in Q(a, a?)). Since

k2 — £ (H) fi(H) = g; (H) g;(H),
we see that
(SO 20), F() () < K (2(), ().
Consequently f defines a bounded linear operator A(f) on L({P},{V},W). If s;(f) is the closure of
the range of f;(H) for H in D, then the spectrum of A(f) is contained in [ J_, s;(f). It is clear that
X (f) = A(f*) sothat if f = f* then A(f) is self-adjoint. If H belongs to D;, let H = H; + iH> with
H, and H, in a(; then
(H,H) = (Hy,Hy) — (Ho, Hy) 4+ 2i(Hy, Hs)
so that Re(H, H) < R%. If Reu > R? let fI'(H) = (n — (H, H))~*; then A(f*) is a bounded operator
on L({P},{V}, W). Since the map ®(-) — f#(-) ®(-) is a one-to-one map of § onto itself the range of
A(f*) is dense. Consequently if f;(H) = (H, H) the map

CI)() - (fl() CDI(')v T 7fr(') (I)r('))
defines a closed, self-adjoint, linear operator Aon L({P},{V}, W) and
Af") = (w—A)~" = R(p, A)

R(p, A) is an analytic function of y off the infinite interval (—oco, R?].

Suppose ®; ;. belongs to (V%) 1) and H belongs to A*; consider

> expo ((HM (), HO) + p(HOD (19)) ) @i (10).
AGR\D
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Let & be a Siegel domain, associated to a percuspidal subgroup P, and let C be a fixed compact set. For

each ¢ let agf), e ,aéf) be the simple roots of f so numbered that 04221,7 e ,aéf) vanish on a(®); we will

also denote the restriction of agf) to a() by agi), if 1 < j < ¢. The methods used to prove Lemma 2.11

can be used to show that there is a constant x such that if g belongs to G and h belongs to C' then
ol (HM (qgh)) <z + o) (H(9))
for 1 < j <q. Let F'(h, ®; 1, H") equal
exp (HOW (), HO) + p(HED (1)) ) @4(h)

if, for all 7,
oD (HOR () < 2+ (H(g))

and let it equal zero otherwise; then set

E/(hv (I)z,kaH(z)) = Z F/(’yh < CI)Z’k,H(Z))
AGRNT

The functions E(h,®;, H") and E'(h,®;, H®") are equal on gC. The Fourier transform of
F'(h, @, H") is

q , . L y—1 ; ‘ . '
o{ [T (H? = O} exp (X, B = HO) + (H(g), B — HD)) by
j=1

if X in hissuchthat o j(X) =, 1 < j <p. and a is the volume of

{Hea?o<aW(H)<1,1<j<q).

®; = @leil@i,k

and

E'(h, @, HY) =Y " F'(g, ®i s, HY)
k=1

then Lemma 4.6 together with some simple approximation arguments shows that E'(-, @, H(")) isan
analytic function on ) with values in L({P}, {V}, W) and that

E'(h,®y, H") E'(h, v, HY)) dh
G
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is equal to
a? i i i
(6.b) > (%)q/R I (M (s, HD)®;, ;) (HD) |dHD|
s€Q(al®,al)) e H i
with

4 , 4 iy . LI ; . N N
§HD)=exp (X (g), H" ~H)+(X (9), B s HO) { T] o (1)~ HD) o) (Y +-51D) }
k=1

if Y(9) is suitably chosen and X (g) = X + H(g).
Suppose that for any choice of = and g and all ®; the function E'(g, ®;, H") is analytic in a

region V containing 2", If f is a continuous function on G choose C so that it contains the support of

f; then
(6.) A(f) E(g, @, HD) = / E/(gh, &, HO) £(h) dh
G

is a continuous function on I'\G x V which is an analytic function of H for each fixed g. In particular
if f(kgk—1) = f(g) forall gin Gand all k in K then E(g, n(f, H")®;, H®) is analytic on V for each

g. Of course

w(f, H(’) i (f, H(Z)

But f can be so chosen that 7( f, H(")) is non-singular in the neighbourhood of any given point Héi).
Consequently E(g, ®;, H(i)) is, for each g and each ®;, analytic on V. In the course of proving the
lemmas for the Eisenstein series in more than one variable we will meet a slightly different situation.
There will be a function f; such that fo(kgk™!) = fo(g) for all g and k, the determinant of the linear
transformation ( fy, H®) on &) does not vanish identically, and A(fo) E'(-, ®;, H?) is analytic on
V for all ®;, all g, and all z. Arguing as above we see that E(',w(fo, H(i))@i, H(i)) is analytic on V
and hence that E(-, ®;, H®) is meromorphic on V.

If G is a Siegel domain and C' a compact subset of G let us choose = as above. Suppose that

given any compact subset U of V' there are constants ¢ and r such that
(6.d) 1E (-, @, HO)|| < e (alg)) [|94]

if H(*) belongs to U and g belongs to &. If we refer to the formula (6.c) and the proof of the corollary

to Lemma 3.7 we see that there are constants ¢’ and ' such that

|E(g, ®;, HD)| < " (a(g)) |||
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if gisin & and H™ isin U. If all the functions M (s, H(i)) are analytic on V' we see by combining the
dominated convergence theorem and the estimates of Section 3 with the principle of permanence of
functional relations that Lemma 6.2 is valid for any point of V. On the other hand suppose only that
A fo) E'(-, ®;, H®) is analytic on V for all ®; but that for any G and any C and any compact subset U

of V' there are constants c and r such that
IN(fo) B'(- @i, HD)|| < e (alg)) |24

if gisin & and H® is in U. If all the functions M(s,H(i)) are meromorphic on V we see just as
above that Lemma 6.2 is valid at those points where the determinant of = (fy, H®) is not zero. It is
a little more difficult to obtain Lemma 6.2 for a point H” at which the determinant of (fo, H®)
vanishes. If the assumption of the lemma is satisfied we can apply Lemma 5.2 to define E(-, &, H®) in
a neighbourhood of Héi) by continuity. That every assertion of the lemma except the first is valid for
i)

each point in a neighbourhood of Hé follows imediately from the earlier lemma. Once we are assured

of this we can immediately deduce the first assertion from Lemma 5.3.

The prefatory remarks over we will now prove the lemmas for the case that the elements of { P}
have rank one. The case of rank greater than one will then be proved by induction. If the elements of
{P} have rank one then, as follows from Lemma 2.13, = is either 1 or 2 and if r is 2 then Q(a¥), a("),
i = 1,2, contains only the identity transformation. If z is a complex number let H(*) (z) be that element
of aﬁi) such that

oD (HO(2)) = 2(a®, o)z
if o(?) is the one simple root of a*). Let & be ¢V or (1) @ &(?) according as r is 1 or 2. If ris 1 and there
isan s in Q(aM, a(M) different from the identity then sH = —H for all H in a{!) so that s is uniquely
determined; in this case let M (z) = M (s, H)(z)). If there is no such s let M (z) be 0; as we shall see
this possibility cannot occur. If  is 2 and s belongs to Q(a'V), a(?)) then S(HW (2)) = —H®)(2) for all
z so that s is again uniquely determined. In this case let

0 M(s_l,H(Q)(z))
M(z) =
M (s, HV(z)) 0

If ris 1 and ® belongs to & we set
E(g,®,2) = E(9,®,HV(2))
and if ris2and ® = ®; @ P, belongs to & we set
E(g,®,2) = E(g,®1, HV (2)) + E(g, @2, H? (2))

Lemma 6.1 can be reformulated as follows.
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Lemma 6.3. The function M(z) is meromorphic on the complex plane and for each ® in & the
function E(-,®, z) is meromorphic on the complex plane. Moreover M(z) M(—z) = I and, for all
P,

E(g,M(z)‘I), —z) = FE(g9,P,2).

There is no value in reformulating Lemma 6.2. As we observed in the introduction this lemma
will be proved by the method of [19]. The space $ can be considered as a space of functions defined in
aregion of the complex plane with values in €. If ®(-) is in $ we denote ®; (H(1(2)) or &1 (HW (2)) @
Oy (HP(2)) if ris 2 by ®(z). If

(6. 0)= [ dl9)dlg)dg
r\a
then

o 1 ct100
(6.0) 6.0 =5 [ (@ 1-2) + (M(:) 0(2), 9(2) dz

2T Jo—ioo
if c is greater than but sufficiently close to
i iN—=2 /(i
(@) 72(aD, p) = (p, p).

If c; > Re )\ > cthen

o 1 c+ioco
(ROZ, A)4, ) = —/ (V2 = 22) (=), (—2)) + (M(2) B(), ¥(2)) } d

21 Jo_ioo

and the latter integral is the sum of

(6.1) (20) (@), (=) + (M(N) @(A), T(X) }
and
ci1+i00
(6.9) [ 0= A TH(0), ¥(-2) + (M) (), () } e

(R(A%, A)o, 1/1) is analytic if A2 does not belong to (—oo, R?), that is, \ is not imaginary and not in the
interval [—(p, p)2, (p, p)2]. If B(2) = ¢ ® and U(z) = ¢*” W with constant ® and ¥ then (6.g) is an

entire function of X\ and (6.f) equals
2072 (D, W) + (M(N)®,T)}

Consequently M ()) is analytic for Re A > 0, A & (0, (p, p)2].
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We next show that E(-, ®, A) is holomorphic for Re A > 0, A € (0, (p, p>%]. If z is given and @, j,
belongs to &(V %) W) let F'(g, ®; 1, H®) equal

exp ((HOM (9), HO) + p(HED)(9)) ) @i n(g)

a® (H(’Vk')(g)) < x<a(i)’a(i)>
and let it equal zero otherwise. Let
E'(g, ‘I’i,kaH(i)) = Z F'(vg, (I)i,kaH(i))
AR\

and if

myg

P =®iy Z ik

k=1

belongs to € let

E/(gv D, Z) = Z ZE/(ga (I)i,ka H(Z)(Z))

i=1 k=1

It follows from (6.b) that
/ (9,0, )) E'(g,, 1) dg
N\G

is equal to

c+ioco
o L[ @ = ) )} e (MR, ) (- 2) - 2) s

271 c—100

if cisas in (6.e). If x is sufficiently large one sees readily, making use of Lemma 4.5(i), that the above

integral equals
(6.h) e DA+ 1) 7H(®, W) + =T (7 — \)TH (M (N D, ¥) + e (A — )7L (@, M (1) V)

In general we obtain
(8”E’ O"E’

2.). 5

S (2, (W)

by differentiating (6.h) n times with respect to A and ji. Thus

Z%|/\—)\O|”

n=0

O"E'
O™

|
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is seen to converge in the largest circle about Ay which does not meet the imaginary axis or the real

axis. Since the above formulae persist in any subset of

(A ReA >0, A ¢ (0, (p, p) ?]}

in which E’(-, ®, \) is defined we conclude that £’(-, ®, A) is an analytic function in this region. Since
the analogue of (6.d) is readily deduced from (6.h) we also see that Lemma 6.2 is valid if H((f) = H(i)(z)

and z is in this region.

The next step in the proof is to show that there are a finite number of points z,- - -, z, in the
interval (0, (p, p)2] such that M (z) and E(-, ®, z) are analytic in the region Re z > 0 except perhaps at
21, -+, zn. Itis enough to establish this for the function M (z) because we can then apply Lemmas 5.2
and 5.3 to obtain the assertion for E(-, ®, z). Suppose that either there is a sequence {z,} converging

to a point z of the positive real axis and a sequence {®,,} in € with ||®,,|| = 1 such that

{IIM (2n)®nll} = {vn}

is unbounded or there are two sequences {z, } and {z/,} approaching z, and an element ® of & such
that
lim M (z,)® # lim M(z])®.

n—0o0 n—oo

In the first case select a subsequence such that lim v, = oo and

n—oo

lim v, 'M(z,)®, = ®

n—0o0
exists; then {E(-,v,'®,,2,)} satisfies the conditions of Lemma 52. In the second case

{E(-,®,2,) — E(-,®,2],)} does; let

lim M (z,)® — M(z),)® = ®

n—0o0

In either case let the limit function by ¢,. If P isa cuspidal subgroup notin { P} the cuspidal component

of

/ ¢o(ng)dn
TAN\N

is zero. However

/ ~ ¢o(ng)dn = exp < — (HOM(g), HD (29)) + p(H“”“)(g))) (ECR ) (g)
AN G R\ N Gk)
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if (%) is the projection of & on &(V (%) 1¥7). By the corollary to Lemma 5.1 the function ¢, belongs
to L(I'\G). Itis clear that it belongs to L ({P}, {V}, W). For each z in (0, (p, p)] let £(z) be the set of
all functions ¢ in L({P},{V}, W) such that

) Ylng) dn = exp (— (HOD(g), HO (=) + p(H W (g)) ) BV 0 (g)
TAN (k) \ N (k)
for some W in €. Since ¥ = 0 implies 1) = 0 the space L(z) is finite-dimensional. If ®(z) is in § then

o(9)¥(g) dg = (2(2), ¥)

G

from which we conclude that ¢ is the domain of A and Ay = 22¢). In particular L(z;) and L(z,) are
orthogonal if z; and z5 are different. Itis clear that there is a constant ¢ which is independent of z such
that || || < c||¢|| for any z in (0, (p, p)2] and all ¥ in L(z). If there was a sequence {z, } in (0, (p, p) 2],
converging to a point in (0, (p, p)2], such that £(z,) # {0} for all n it is clear that we could construct a
sequence {1, } with v, in L(z,,) and |4, || = 1 which satisifed the hypotheses of Lemma 5.2. It would
follow from the dominated convergence theorem, applied as in the corollary to Lemmab5.1 thatnli)x(r)lo U
exists in L(I'\G). This is impossible for an orthonormal sequence. Thus the set of points for which
L(z) # {0} is discrete in (0, (p, p)2]. If z is not in this set then M (w) is bounded on the complement
of the real axis in a neighbourhood of z and lim M (w) exists. It follows from the reflection principle

w—2z

that M (z) is analytic in the right half plane except at this set of points.

We have still to exclude the possibility that the above set of points has 0 as a limit point. If it
does let {z,} be a monotone decreasing sequence of points converging to 0 with L(z,) # {0} for all
n. Let {¢,,} be a sequence of functions such that v,, belongs to £(z,) and ||1,,|| = 1. Let ¥,, be that

element of £ such that
/ Un(ng) dn = exp (= (HOD (), HO (z)) + p(HM (9)) ) (0w, (g)
FmN(i,k)\N(i,k)

for all i and k. If ¥/ = || ¥, ||~ ¥, it may be supposed that lim W’ exists. To obtain a contradiction

n—oo

we make use of the formulae (5.k), (5.£), and (5.m). The first and second show us that

m 777, m 77’L m
/1"\ b (g)q/] (g)dg— i§1/i¢ (g)¢ (g) C(HI ||)
The third shows us that

/ b (9) P(9) dg = / D i(9) n(9) dg + O T l).
F; F;
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The integral on the right is equal to
&m,i &nz(g) dg
F!

if F/ is the projection of F; on T;\ G, for we can suppose that the inverse image in A;\G of F! is F;. If

Ym(9) ¥n(g) dg

NG

we then apply the estimate obtained for (5.j) we see that

is equal to
S [ w@{ [ dmalamk) b Gamk) dmdk da+ O
=1 JAS (u,00) O\ M;x K ’

The only integrals on the right which are different from zero are those for which F. belongs to

{P}. If however P; is conjugate to PU:Y) and we suppose, for simplicity, that {P,---, Ps} contains

{Pkm) |1 <k <r, 1<m < m;} the corresponding integral equals
(zZm + 2zn)” " exp ( —a  (2m + 2n) logu) (E(j’g)‘llm, E(M)\Iln).

The number a has been introduced in the expression (6.b). Summing we obtain

5m,n = (Zm + 2n)”  €xp ( - a_l(zm + zn) logu) (Y, ) + O([| W)

Setm = ntoseethat lim ||¥,,||=0and
m—0o0
1= (220) " exp(—2a7 'z log ) [ W |* + O(| ¥ ).

Hence ||V, || = O(zi); consequently if m # n
0= 2(znzm)%(zn + 2) "W, W)+ O(zél).

If we divide by zél and recall that mlqillloo(‘y;“’ U’ ) = 1 we conclude that 27% (2m + 2n) ! is bounded

for all m and n. But that is clearly in%possible.

Let
=3, D Pig

belong to € and let
M(2)® = @iy By Pik(2)



Chapter 6 102

If 2 is given and M (2) is defined let F”' (g, ®; ;, H")(2)) equal F (g, ®; 1, H"(2)) if
a® (H(iyk)(g)) < x<a(i)7a(i)>

and let it equal —F (g, ®; 5(2), —H"(2)) otherwise. Observe that the notation is deceptive. The
Fourier transform of F”' (g, ®; , H¥()\)) evaluated at H " () is equal to

(A= z)_l exp (ax()\ — z)) Qi — (A + z)_l exp ( —azx(\+ z)) U, k(N).
It follows from Lemma 4.1 that the series

Z F,/(’Yg7 (bi,kaH(i)(Z))
AGIAT

converges for Re 2 > (p, p)7; denote its sum by E” (g, ®; 5, H? (2)). If

T my
E"(g,®,2) =Y > E'(g,%:xH"(2))

i=1 k=1

then Lemma 4.6, together with a simple approximation argument, shows that £’ (g, ®, z) is square-

integrable on I'\G for Re z > (p, p)=. We need an explicit formula for

(E"(g,9,\), E" (g, %, ).

If we use formula (4.p) we see that this inner product is equal to the sum of eight integrals which we

list below.

(4) % [ =T ) e () (@, 9)

(id | =27 ) exp (anlh = ) (8 M )W)
(iid) 2_—;2 ReZ:C(A +2) M+ 2) " exp (az(i — A)) (M(N)®@, V) dz

(iv) % [0 =) e (— ar(h ) (M), M()¥)
(v) 2% (A= 2) " (= 2) " exp (ax(A+ fi — 22)) (M(2)®, ) d=

Re z=c
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-1

(vi) 30 . (A= z)_l(ﬂ + z:)_1 exp (ax(/\ — - 22’)) (M(z)@, M(,u)‘ll) dz
(vii) 2_—732 [ = ) exp (an(— X 22)) (MM (V. ) d:
(viid) % [0 ) e (- ar(h 4 4 22)) (MM, M(0)Y) dz

If we then make use of Lemma 4.5(i) these integrals can be evaluated when z is sufficiently large by

using the residue theorem. The result when A + i # 0 and A — i # 0 follows.

(4) (A + ) exp (az(A + i) ) (D, ¥)

(ii) 0

(i) 0

(iv) A+ )~ exp (— az(A+ @) (M(A\)®, M ()W)

(v) (5 =N exp (az( = A) (MA@, ¥) + (A — )~ exp (az(A — 1)) (@, M ()W)
(vi) —(A+p) texp (ax(A+ R) (M(A\)®@, M (p)¥)

(vid) —(A+ 1) texp (—az(A+ ) (M(N)®, M(p)¥)

(viii) 0

Adding up these eight terms we see that

(E"(9,®,A), E"(9,%, )
is equal to the sum of

A+ )" exp (az(A+ ) (P, ¥) —exp ( — az(A + 1)) (M(N\)®, M (p)¥)}
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and
(A=) Hexp (az(A — 1)) (®, M (1) V) — exp (az(i — A)) (M ()@, V) }.

It is known that M (z) is analytic in the right half-plane except at a finite number of points; it
can be shown in a number of ways and, in particular, will follow from the discussion below that
this is also true of E’(-,®,z) considered as a function with values in L(I'\G). The formula for
(E”(g, o, \), E" (g, \If,u)) is valid in this larger region. If A = o + i7 and . = X the above formula

reduces to the sum of
(20) Y exp(2az0)(®, V) — exp(2azc) (M ()@, M(A\)¥)}
and
(2i7) " { exp(2iazT) ((®, M(A)¥) — exp(—2iazT)(M(\)®, ¥)}.

The sum will be labelled (6.i). If we choose ® so that |®|| = 1 and ||[M (A\)®|| = || M (\)]| and then take

® = W we can conclude that
(20) " H{exp(2azo) — exp(—2azo) } [MN)|* + || M (V)] = 0.
As a consequence
IM(N)|| < max{2exp4azxo,do/|T|exp 2axc}.

We conclude first of all that || A/ ()| is bounded in the neighbourhood of any point different from zero
on the imaginary axis. Let us show next that ||E” (-, ®, \)|| is bounded in the neighbourhood of any

such point.

To be more precise we will show that E” (-, ®, \) is holomorphic in any region U in which both
M()\) and E(-,®, \) are holomorphic and in which E(-, ®, \) satisfies the analogue of Lemma 6.2 and
that if B is a bounded set of this region on which || M (\)]] is bounded then ||E” (-, ®, \)|| is bounded
on B. As above if ® belongs to € let

M(2)® = ®i_y &y Pig(2)
If 2 is given and M (%) is defined let £ (g, ®; 5, H*)(2)) equal

F(g,®; 5, HY(2)) + F(g, @i 1(2), —H"(2))
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if oD (H)(g)) > 2(al?, o) and let it equal zero otherwise. Let

Em(g’ (I)Lk,H(i)(Z)) — Z F///(g’ (I)Lk,H(i)(z)).
AGRN\T

The series converges whenever it is defined. As usual let

' my
E"(g,0,2)=> Y E"(g,0:4, H"(2)),

1=1 k=1
then
E"(g,®,2) = E(g,®,2) — E" (9,9, 2).

Consequently the function £ (-, @, z) can be defined, although it may not be square integrable, when-
ever M (z) and E(-, ®, z) are both defined. In particular it can be defined on U. We will show that if 2
is any complex number and if || M (z)|| is bounded on the intersection of B with some neighbourhood
of zg then there is another neighbourhood of z, such that ||E” (-, ®, z)|| is finite and bounded on the
intersection of this neighbourhood with B. This will establish the second part of the assertion. To
see that the first part will also follow we observe that the above statement implies that || E' (-, @, 2)|| is
bounded on any compact subset of U; thus we have only to prove that

E"(g,®,))9(g) dg
NG

is holomorphic on U if ¢ is a continuous function on I'\G with compact support. However, this
follows from the fact that if C is a compact subset of G the set {E” (g, ®,-) | g € C} of functions on U
is equicontinuous. We have to show that if {z,} is any sequence of points in B converging to z, then
the sequence {||E" (g, ®, z,)||} is bounded. Let the sets F'and F;, 1 < i < s, be the same as in (5.k),
(5.¢), and (5.m). We suppose again that F; is the inverse image of its projection F! on T;\G. The set
{P1,---, Ps} can be so chosen that it contains the set { P}; then for each j and ¢ there is a unique ¢ such
that PU-9) = P;. Let F{" (g, ®; ¢, HY)(z)) equal " (g,®; ,HY(z)) if g belongs to F; and let it equal
zero otherwise; let £ (g, ®; ¢, HY)(2)) equal

F" (g, ®;,0, H(2)) — F{" (9,250, HV(2)).

(k)

If the sets w,; " used to define the sets I} have been appropriately chosen, as we assume, the functions

FY' (9,9, H (2n)) satisfy, uniformly in n, the conditions of the corollary to Lemma 3.6. Thus if

B (9. %0, HV(2)) = ) F'(9,®50 HY(2)),
AGO\T
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we know that the sequence {||EY’ (-, ®;.,, H)(z,)|} is bounded. Let
EY" (9. %0, HY(2)) = E" (9,20, HV)(2)) — B3 (9, @50, HY) (2)).

The function EY’ (g, ®; «H)(z)) is zero on T\G — F. Thus

s m;

E'(g.0.5) dg = [ |Elg.0,2) 1 (9.9, HO(2,)
/I‘\G—F’ ( ) N\G-F ZZ 7 )

Jj=1/¢=1

2
K

It follows from (5.)) that the latter integrals are uniformly bounded. Moreover the integrals

/wwmmmg
F;

are uniformly bounded if and only if the integrals

. 2
/ ‘E (9, ®, 20) Z Z EY (g, D50, HU)(zn))( dt
j=1/4=1
are. But it follows from the definition of the sets F; that on F} the sum
SO B0 HO )

j=14=1

is zero if P; does not belong to {P} and is F""' (g, ®; ., HY)(z)) if P; = PU-Y). If the number v used in

the definition of the sets F; is sufficiently large, as we suppose, then in all cases the sum equals

/ E(ng,®, z,) dn.
IAN\N;

We can complete are argument by appealing to the estimate (5.m).

It now follows from (6.i) that
(20) " exp(2az0) (@, V) — exp(—2azc) (M (A\)®, M (AV) }
is bounded in the neighbourhood of any point Xy on the imaginary axis different from zero. Hence
Jim M) M) =1

or
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since M*(\) = M(X). Moreover if the interval [a, b] does not contain zero there is an € > 0 such that
|[M~1(X\)| is bounded for 0 < o < e and a < 7 < b; consequently

lim |[M~ (o —ir) — M (o +ir)|| = 0.
o\,0

Define M (\) for Re A < 0 by M()\) = M~(=\). Let C be the contour consisting of the lines joining

ia —€,1a + €,1ib + ¢, ib — € and then ia — £ again. Itis clear that, for 0 < |o| < &,a <7 < b,

1 1 f°
M(\) = 5= C(z — N 'M(2)dz + lim Py / {M (=6 +it) — M (6 +it)}(it — N\) "' dt.

The final integral equals
b
/ (M5 — i) — M(S + i)} dt.
So the limit is zero. This shows that the function M (\) defined in the left half-plane is the analytic

continuation of the function M ()\) defined the right half-plane. Thus M () is meromorphic except

perhaps at a finite number of points 0, %2y, - - - , =2, in the interval [—(p, p)*, (p, p) 2 ].

Let us verify that the same is true of E(-, ®, \) for all ® in €. It follows from Lemma 5.2 that
lim E(g,®,0 +it) = E(g,®,i1)
o\,0

converges for all 7 different from zero and all g and that the convergence is uniform on compact subsets
of G for each 7. If we use this fact to define E(g, ®, z) for non-zero imaginary values of z all the
assertions of Lemma 6.2, except perhaps the first, will be valid if Héi) = H® (z) with z imaginary and
different from zero. We define E(g, ®, \) when Re A < 0 by setting it equal to E(g, M (\)®, —)). With
this definition all the assertions of Lemma 6.2, except perhaps the last, are valid if Héi) = Héi) (z) with
Re z < 0 and z different from —z4, - - -, —z,,. Every assertion, except perhaps the first and last, is valid

if Héi) — H(z) with z imaginary and different from zero. However

/ E(ng, M(\)®,—X) dn
TAN (k) \ N (5k)
is equal to the sum of

exp ((HOH) (g), HO(=X) + p(HED (9)) ) (B 1 (1) @) (9)

and
exp ((HOD (g), HO(N) + p(HOH (9)) ) (ECH M (=A) M (1) @) (9)
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which, since M (—\) M (X) = I, is equal to the sum of

exp ((HOM(g), HO(N) + p(HOM) (g)) ) (B @) (g)

and

exp ((HOD(g), HO(=2) + p(HOD (9)) ) (B M () D(g)).

Consequently the last assertion is also valid. It follows from Lemma 3.7 that the two definitions of
E(g,®, \) agree when )\ isimaginary and then from Lemmab5.3 that £(-, ®, \) is analytic at the non-zero

points on the imaginary axis.

It remains to examine the behavior of M (\) and E(-, ®, \) at the points 0, £z, -, £z,. Since
we readily see from Lemma 5.2 that the behavior of E(-, ®, ) is at least as good as that of M (\) we
shall only study the latter. We shall show that M () is analytic at zero and has at most a simple pole
at the points z1,-- -, z,. If ®(z) and ¥(z) belong to $ the formula (6.e) expresses the inner product
(é, zﬂ) as a contour integral. We shall replace the contour of (6.e) by the sum of n + 1 other contours
C,Cq,---,C,. Lete > 0 be so small that the closed discs of radius € about 0, z1, - - -, 2,, are disjoint.
Let C;, 1 < i < n, be the circle of radius € about z; traversed in the positive direction; let C' be the path
running from —zoo to ie along the imaginary axis, then in the positive direction on the circle of radius
e and centre zero to ie, and then along the imaginary axis to ico. Our estimates of || A/ ()| are good
enough that we can replace the right side of (6.e) by the sum of

1

5 | (2(2),0(=2)) + (M(2) @(2), ¥(2)) d
C

and

2 ﬁ /C (M(2) @(2), ¥(2)) dz

This sum will be labelled (6.k). Suppose that E(-) is, in the terminology of [21], the resolution of the
identity belonging to the linear transformation A. It is well knwon ([21], Theorem 5.10) that, if b is

greater than a and c is positive,

(6.0) %{(E(b)é,zzi) — (B0 -0)4,9)} - {(B(a)d.9) — (E(a - 0)6,9)}

is given by

1

. lim — A A dA
(6.m) s [ (ROA).00)
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where the contour C(a, b, ¢, d) consists of two polygonal paths whose vertices are in order b+ 9, b+ ic,
a + ic, a + 16 and a — 19, a — ic, b — ic, b — i respectively. Since the spectrum of A is contained in
(—o0, {p, p)) we know that E((p, p)) = I. Choose a and b so that b > a > 0 and so that exactly one

of the numbers 2%, - - -, 22, say 22, belongs to the interval [a, b]. If we use the formula (6.k) to calculate

) “n

(6.m) we find that (6.¢) is equal to

(6.n) 2%” . (M(2) ®(2),¥(2)) d=.

Since this is true for any such a and b we conclude that (6.n) is equal to E(b) — E(a). If we assume,
as we may, that M (z) is not analytic at any of the points z, - - -, z, we see that 27, - - - 22 are isolated

points in the spectrum of A. Consequently, for any ¢ and ¢ in L({P},{V}, W),

(R(A?, A)¢,¥)

has only a simple pole at z, - - -, z,,. Referring to the discussion following (6.f) and (6.g) we see that the
same is true of M/ ().

2

n

If we again use (6.k) to calculate (6.m) we find that (E(x)qﬁ, ¢) is continuous exceptat 27, - -+, 2

and, perhaps, zero and that, if ¢ is positive but sufficiently small,

(E(0)¢,4) — (E(=6°)9,¢)
is equal to
(6.0) ﬁ 1% (®(2),¥(—2)) dz + ﬁ (M(2) ®(2),9(z)) dz
—1e C(e)

if C(e) is the semi-circle of radius  and centre zero transversed in the positive direction from —ie to

1. Hence
1

(B(©0)6,0) = (B0 = 0)9,¥) = lim 5— ” (M(2) @(2),¥(2)) dz.
The right side must be a positive definite hermitian symmetric form on ). However it is defined if ®(z)
and ¥(z) are merely defined and analytic in some neighbourhood of zero. A simple approximation
argument shows that it remains positive definite on this large space of functions. Consequently, if w(z)

is a scalar-valued function, analytic in a neighbourhood of zero,

(6.p) lim / (@(2) w(z) M(2) ®(2), 8(2)) dz > 0.
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If § is positive we can take w(z) to be either (§ + z)z or (§ — 2)2; then &(2) w(z) is § 4 z or § — 2.
Substituting in the relation (6.p) we conclude that

1

1{% 5 /c@ (zM(2) ®(2),®(2))dz=0

Applying Schwarz’s inequality to (6.p) we can conclude more generally that

! N
lim /C(E) (2 M(2) B(2), ¥(2)) dz = 0
Consequently
(6.q) (E(0)$,9) — (E(0—0),¢) = lim 1 (M (2) ®(0), ¥(0)) de.

e\0 271 C(e)

There is a linear transformation M on € such that the right side of this equation equals
M (®(0), ¥(0)).

We shall use the equation we have just found to show that £(0) = E(0 — 0). It is enough to
show that, for all functions ®(z) in . E(0)¢ = E(0 — 0)¢. Suppose f is a continuous function on G
with compact support such that f(kgk~!) = f(g) for all g in G and all k in K. For each H in a{”
we have defined, in Section 3, a linear transformation 7(f, H®) on &(V(:*) 1), For each complex
number z the direct sum of the linear transformations 7 (f, H("(z)) is a linear transformation = (f, z)

on €. It follows from (4.r) that if ¥(z) belongs to $ and

Ui(z) = 7(f,2) ¥(2)

then A(f)y) = t;. As a consequence \(f) commutes with A and with E(z) for all 2. Choosing f so
that 7(f,0) is the identity we deduce from (6.q) that if ¢ = E(O)(ﬁ — E(0 - 0)(5 then \(f)¢' = ¢'.
Hence ¢’ is continuous. Referring to Lemma 4.6(i) we see that if P is a cuspidal subgroup the cuspidal

component of

/ ¢'(ng) dn
CNN\N

is zero unless P is conjugate to an element of { P}. However it follows from (6.q) and the remark

following the proof of Lemma 3.7 that
/  d(ng)dn =expp(H"M(9)) (EVH M®(0))(g).
TAN R\ N (k)

If P is a percuspidal subgroup to which P{*¥) belongs and & a Siegel domain associated to P then the
left, and hence the right, side must be square integrable on &. A simple calculation shows that this is

so only if E(¥) M ®(0) is zero. Since i and k are arbitrary the function ¢/ is identically zero.
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Now let C' be the semi-circle of radius 1 and centre zero traversed in the positive direction from
—ito 4. Suppose 0 < |A] < 1 and Re A > 0; since (6.q) vanishes and M (z) is unitary for imaginary z,

the residue theorem implies

M) = —— /_Z(z C N M(2)de + 2i (= N)'M(2) dz

27 T Jo

Since the right side vanishes if \ is replaced by —\ we have

(6.1) M) = g/ (02 +(y — 7)2)_1M(iy) dy + ﬁ /C{(z -+ (z+ X)_I}M(z) dz

TJ-

if \ = o + 7. We shall use this equation to show that

(6.s) a\éfri_)o (o +iT) (0)

exists. Since M (0) must equal liH?b M (it) which is unitary and, hence, invertible we shall conclude
T—

that there is an ¢ > 0 such that M ()\) and M~1()\) are uniformly bounded on
{A0<|A <&, ReA >0}

Consequently M (\) is bounded in a neighbourhood of zero and zero is a removable singularity.

Let
d

M/(Z)ZE

M(z)

It is a familiar, and easily proved, fact that (6.s) will follows from (6.r) if it is shown that ylﬂ% M(iy) =
M (0) exists and that, if N > 0, there are positive constants ¢’ and 7 such that || M’ (iy)|| < ¢|y|” ~*
for 0 < |y| < N. We know that, for every ® in &, | E”(-, ®,iy)|| is bounded on {y |0 < |y| < N}. Ifin
(6.i) we replace 7 by y and take the limit as o approaches zero we find that (E”(-, o,1y), B (-, 0, iy))
is equal to

(M~ (iy) M (iy) @, ¥) — (2iy) "' { (M (iy) @, ¥) — (M~ (iy)®, V) }
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if the number z is taken to be zero. Consequently the linear transformation*
B(y) = =M~ (iy) M'(iy) — (2iy) " (M (iy) — M~ (iy))

is positive definite for y different from zero and is bounded on {y| 0 < |y| < N}. If we show that there

isa d > 0 and positive constants ¢ and r such that
1M (iy) — M~ (iy)]| < 2¢y”
if 0 < y < ¢ it will follow that, for some ¢ and 7/,
M ()| < 'y
if 0 < |y| < N. We shall conclude that
lim M (iy) = M(0)

y\.0

and

lim M (iy) = M0
Ly (iy) (0)

exist and that
lim M (iy) = lim M~ '(i
Jimy (iy) lim, (iy)
so that M (0) = M~1(0). Since

we need only establish the above estimate on the interval (0, N]. Choose b so that | B(y)|| < b for

0 <y < N. Suppose 0 < y and suppose e* is an eigenvalue for M (iy) of multiplicity m. It is known

* (Added 1999) There appears to be a sign missing in the first term. Fortunately this does not affect
the argument in any serious way. The argument is an elaboration of one for the ordinary differential

equation
@ _ isi119
dy y
where ¢(y) is bounded. If the sign is positive and y small, then for —m < 6 < 7 either 6 hovers about 0

+ c(y),

or is driven to 7. Thus ¢? either hovers about 1 or is driven to —1. If the sign is negative, the roles
of 1 and —1 are reversed. The sign can be changed simply by replacing 6 by 6 + 7. In the text the
argument is made quantitative and extended to the vector-valued function M (iy), which is analogous

to ', Multiplying M by —1 changes the sign. It also replaces B by — B, but that is of no consequence.
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that if ¢/ is sufficiently close to y then M (iy’) has exactly m eigenvalues, counted with multiplicities,
which are close to . If

8yb < |sin |

it is possible to obtain more precise information about the position of these m eigenvalues. Choose an
orthonormal basis @, - - -, ®,, for & consisting of eigenvectors of M (iy) and let €1, - .. ¢ be the

corresponding eigenvalues. If
o = Z Oéj (Dj
j=1
with

n
> o =1
j=1

is a unit vector then

n
(M(iy)®,®) =) "%|ay|?
j=1

and

(M'(iy)®, ®) = "y~ " sinb;e’% oy |* + (M(iy) B(y)®, D)

J=1

which is equal to

> (y'sin;e’ + B)|ay|?
j=1

B = (M(iy) B(y)®, ®)

Certainly 8] < b. It follows from the first formula that (M (iy)®, ®) lies in the convex hull of the
eigenvalues of M (iy); a similar assertion is of course valid for any unitary transformation. For any

positive 7/

n ' y'
(M(iy)®, ®) = €™ oy |? —H’/ (M'(is)®, @) ds
j=1 v
Lett =3y’ — y and suppose |¢| is so small that || M'(is) — M’ (iy)|| < bif|s — y| < |¢]; then
(M(iy")®,®) = e (1 — ity " sin6; — B(t)) |a;|?

j=1

with |5(t)] < 2bt. Set
v;(t) = Fty 'sinf; £iB(t)
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and set
uj(t) = i (1 T v (t))
The upper or lower sign is taken according as sin 6; > 0 or sin¢; < 0. The number v;(t) equals
(Fty~'sin6; + 8bt) + (— 8bt £iB(t))
If t < 0and 8yb < |sin6;| the second term lies in the sector {z | |argz| < Z} and the first term is

positive.

Suppose €¥ is an eigenvalue of M (iy) of multiplicity m and 8yb < |sin 8|; we shall show that if

y' is less than but sufficiently close to y the m eigenvalues of M (i) which are close to €' then lie in
X(t) = {e” (1 Fi(Fty 'sinf + 8tb+ z)) | |arg 2| < %}

Again the upper or the lower sign is taken according as sin# > 0 or sin# < 0. This will follow if it is

shown that for some e with 0 < ¢ < % these eigenvalues lie in

s

4

s

1 Fer

Y(t) = {eie(lq:i(q:ty_lsinc9+8tb—|—z)) | - g + - Fe<argz < g +

The set =% X () is the shaded sector of the diagram below, and e~*Y (¢) is the shaded half-plane

sin 62 0

Choose ¢ so that the boundary of Y (0) contains no eigenvalues of M (iy) except ¢/?. We establish
the assertion by showing that if Y'(0) contains ¢ eigenvalues of M (iy) then Y (¢) contains ¢ eigenvalues
of M (iy + it) when ¢ is negative but sufficiently close to 0. Let ¢/, ... e be the £ eigenvalues of

M (iy) which lie in Y'(0). If
¢
b = ZO(JCI)J
j=1

is a unit vector then

4
(M (iy +it)®, ®) = > " u;(t) |
j=1
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If 1 < j < ¢and e # e then, for |¢| sufficiently small, u;(t) lies in Y (¢) simply because it is
close to %%, If e!% = ¢ the calculations above show that u;(¢) lies in Y (¢). Since the set is convex
(M(z'y +it)®, <I>) does also. If the assertion were false we could choose ® to be a linear combination
of eigenvectors of M (iY + it) belonging to eigenvalues lying in the complement of Y (¢), and thereby

force (M(iy +it) P, <I>) to lie in the complement. This is a contradiction.

A glance at the diagram allows us to infer that if ¢? is an eigenvalue of M (iy') lying close to e*
then
(6.t) £ (0 —0") > £sin(0 —0") > (y — ') (y~*|sin 0] — 8b)

provided of course that ¢ is chosen near 6. We readily deduce that if —1 < a < 1 thereisane > 0
such that the number of eigenvalues which lie on the arc

V(y) = {e* ||sin 6| < 8yb, cosf < 0}

and the number of eigenvalues which lie on the arc {e? \ cosf < a} are non-decreasing functions
on (0,¢). Indeed we can find € and a such that these functions are equal and constant on (0,¢). For

example at a point y at which one of the eigenvalues 6 = 6(y) enters or leaves V (y) we have
|sin @] = 8yb

Hence (6.t) holds. Moreover if 3/ is close to y but less than it then

!/

—8y'b+ |sind'| = (8yb — |sind]) — (8y'b— |sinf’|) = (y — y'){Sb:F cos 9”}

/

y—vy
with 6" close to 6. Since cos§” < 0 the right hand side is greater than or equal to 8b(y — /). It follows

that
8y'b — |sinf’| <0

so that V' (y) has more elements than V' (v/).

We next observe that the eigenvalues of M (iy) which do not lie on V(y) must all approach 1.
Suppose they did not. From all the eigenvalues ¢ of M (iy) which lie outside of V (y) choose one
W) with 0 < | — 6(y)| < =, for which cos 6 is a minimum and set a(y) = cosf(y); then a(y) > a.
If Iiyrnlgfa(y) # 1 then there is an o’ < 1 such that a(y) < &’ for all sufficiently small y. Consequently
there is a constant ¢’ such that

ly~ " sinf(y)| —8b> 'y~
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for all sufficiently small 4. It then follows from (6.t) that, for 3/ less than but sufficiently close to v,

0(y)| — 10| =y (y— ).

Hence, for all 3/ < v,
1
0(y)| = 10(y")] > 56’ logy/y'

which is a patent impossibility. Choose § > 0 so that |sin6(6)| < 1, cos#(§) > 1, and 3266 < 1.
Let » = 1/5 and choose ¢ so that ¢d” = 1. We shall show that if 0 < y < § then |sinf(y)| < cy".
If§ < e <1, c> 8, as we may suppose, we can combine this with our earlier assertion to see that
| M (iy) — M~ (iy)|| < 2cy” on the interval (0, §]. If the assertion is false for some number ¢/ let y be
the least upper bound of the numbers for which it is false. It is true for y and |sin6(y)| = cy". If ' is

less than, but sufficiently close to, y then

|sin O(y)| — [sin6(y")| > (y—y)(cy ™" —8b).

DO |

(16 = 10(")1) =

DO |

Since

1 1
r—1 —r, r—1 -1
=24 > =6 " > 16b,
cy 9 Yy =9
we see that
1
[sinf(y)| < ey” — Jey" My —y)
However, for " sufficiently close to v,

1 ._
v Yy—y) <),

so that
|sinf(y")| < c(y)".
This is a contradiction.

We turn now to the proof of Lemmas 6.1 and 6.2 for families of cuspidal subgroups of rank

greater than one. Let a®) be one of a(¥), ... a("). If ag) is a simple root of a(* let
o) = {H e o | {" (H) = 0}.

If we fix ¢ and ¢ then, as was remarked before stating Lemma 2.13, there is a unique j such that al/)

contains a'”’ and such that ©(a?, a()) contains an element s such that o'y o s~ is a positive root of
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al9) if and only if m # £. We first show that if ® belongs to ¢*) then E(g, ®, H) is meromorphic on the

convex hull of 29 and s~12() and, on this set
E(9,M(s,H)®,sH) = E(g, ®, H).

For each k there is a unique cuspidal subgroup *P(*¥) belonging to P(“-*) which has the split component
aéi). We define *P-F) in the same manner. There is no harm in supposing that the elements of { P}

have been so chosen that if *P(©-¥1) and *P(::k2) or *P(7:k2) gre conjugate they are equal. Choose *P in
(PER |1 <k <m} = {PUM |1 <k <my}
and suppose *P = *P(:F) for 1 < k < m/ and *P = *PUF) for 1 < k < m/;. Let
fe® = @™ e(Vib x w,w)

and let

fel) = @ e(VER < W, w™).
According to the remarks preceding Lemma 3.5 we can identify

or

&, (VIR W)

with the space of functions in T&® or T&() respectively which are invariant under right translations
by elements of *K. If H belongs to aﬁi) let H ="H + T/ with *H in the complexification of aéi) and
TH orthogonal to aéi). The restriction of M (s, H) to

o (VIR )

depends only on I and agrees with the restriction to this space of a linear transformation on TE

which, using a notation suggested by that of Lemma 4.5(ii), we call M(Ts, TH). If ® belongs to

then M (s, H)® belongs to
@, E(VER W),
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It is enough to show that for each *P and each ® in
e e (VR W)
the function E(g, ®, H) is meromorphic on the convex hull of 2() and s~ ') and

E(g,M(Ts, H)®, sH) = E(g,®, H).

If
D=, Py
then
m;
E(qu)vH) = ZE(qu)kaH)
k=1

and if H belongs to 2" then

(6u) B0 H)= Y > exp((HM(099), H) + p(H) (5v9)) ) i (679).
*A\D AGR)\*A

If gisin G let g = namk~! with nin *N, a in *A, m in *M, and k in K; then

> exp ((HUM(3g), H) + p(H) (39)) ) i (d9)
AGR\*A

is equal to

exp ((H (o), "H) +p(H(9)) S exp (((HO 0m), Ty + p(TH (0m) ) @1 (0m, 1)
TA(i,k)\*@

and
TAGR) — g T pk)

The sum on the right is, essentially, the Eisenstein series E((m, k), @, TH) associated to the function
d;, considered as an element of (V%) x W, W*), and the cuspidal subgroup TP(*) x K. It is not
quite this Eisenstein series because the Killing form on *m is not the restriction to *m of the Killing form

on g. We ignore this difficulty. It is a function on *© x {1}\*M x K which is invariant under right
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translations by elements of *K, and can thus be considered a function on *I"\G which we write as

E(g, Pk, TH). The right side of (6.u) equals

> exp (<*H(79)7 H) + p(*H('yg))>E(vg, o, TH).
“A\T'

Consequently

(6.0) E(g,®.H) = Y exp ((H(1g), H) + p("H(39)) ) E(vg, @, T H)
*A\T

if, for all g,

m;
E(qu)vTH) = ZE(qu)kaTH)
k=1
A similar result is valid if 7 is replaced by j. The cuspidal subgroups

TPim « K 1<k <m)

have a common split component Ta() of dimension one. Since Lemmas 6.1 and 6.2 are valid for families

of cuspidal subgroups of rank one E(-, @, TH) is meromorphic on fa® and
B, TH) = E(,M(Ts,TH)®, TH)

Let TG be a Siegel domain associated to a percuspidal subgroup TP of *M. If U is a bounded subset
of Ta® let p(T ) be a polynomial such that p(T ) M (Ts, T H) is analytic on U. It follows readily from

Lemmas 5.2 and 6.2 that there is a constant ¢ such that, for all 7 in &, all k in K, and all TH in U,
Ip(VE)E((m, k), @, TH)|
is at most
c{exp (TH(m), Re TH)) + exp (TH(m), Ts(Re TH))) Y exp p(TH® (m)).

TH(m) belongs, of course, to Tb the split component of tPandits projection on Ta(i) is T () (m). The
remarks following the proof of Lemma 4.1 imply that (6.v) converges absolutely if H is in the convex
hull of 2A® and s~1%0) and M (Ts, ) is analytic at T H, that E(-, ®, H) is meromorphic on this set,
and that every assertion of Lemma 6.2 except perhaps the last is true if H((f) belongs to this set. Since

sH =*H + Ts(TH) the relation

E(g,®,H) = E(9,M(s,H)®,H)
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is immediate. It is however the last assertion of Lemma 6.2 which is of importance to us.

Let ® belong to ¢(*) and let P(":¥) belong to { P}. Fix a split compoment, which we still call a(?,
of P("9 and let X belong to a'”), m to M (") and k to K. If H belongs to 2(*) then

/ E(nexp Xmk,®, H)dn
FmN(h,e)\N(h,e)

is equal to

> exp (X, tH) + p(X)) (E™OM(t, H)®) (mk)
teQ(a®,al@)

if £ is the projection of ¢ on &V W), If t1,--- ¢, are the elements of Q(a(”,al?)) there
are elements X, - - -, X, of a(® such that det(exp ((Xa, tyH) + p(XI))) does not vanish identically.
The inverse, (agy(H)), of the matrix (exp ((Xa, t,H) + p(Xx))> is a meromorphic function on a(¥)
and (E™9 M (t,, H)®)(m, k) is equal to

n
Zazy(H) / E(nexp X,mk,®, H)dn

y=1 NN O\ N (h.0)
which is meromorphic on the convex hull of AD and s~ 1A . Since m and k are arbitrary this is also

true of E(»9) M (t, H) and hence of M (t, H) for any . Moreover

/ E(ng,®,H)dn
FmN(h,e)\N(h,e)

is equal to

S exp ((H®O(g),tH) + p(H"0(g)) ) (B M (¢, H)D) (g)
teQ(al® alh)

at those points of the convex hull where both sides are defined. A similar result is of course valid if ¢
is replaced by j. Use this together with the functional equation we have discovered to see that the left

side of this equation also equals

S exp ((H(h’g)(g), tsH) + p(H(h’e)(g))) (E™OM (¢, sH) M(s, H)®)(g).
teQ(al alh))

This is so for every ¢ only if

M(t,sH)M(s,H) = M(ts, H).

If i and j are arbitrary and s is any element of Q(a(®), a(9)) then, according the the first corollary

to Lemma 2.13, s can be written as a product of reflections, say s = s,, - - - s1. Let us show by induction
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on n that M (s, H®) is meromorphic on a() and that its singularities lie along hyperplanes. If n = 1
then the discussion above, together with the remarks following the proof of Lemma 4.5(ii), shows that
M(s,H(i)) depends, apart from an exponential factor, on only one variable and is a meromorphic

function on a®. On the set 2A(®
M(s, HY) = M(sy, - s9,51HD) M(s1, HV)

The induction assumption implies that M (s, H(i)) is meromorphic on all of a”) and that its singularities

lie along hyperplanes. It can also be shown by induction that if ¢ belongs to Q(al9), a(¥)) then
M(ts, HD) = M(t,sH) M(s, HD).
Indeed
M(ts,H(i)) = M(ts, - Sl,H(i)) = M(tsy - 82,81H(i)) M(Sl,H(i)).

Apply the induction assumption to the first factor to see that M (ts, H*)) equals
M(t,sHDY M(sy, -+ s9,51HD) M(s1, HD) = M(t,sHD) M(s, HY).

There is one more property of the functions M (s, H*)) which will be needed to complete the proof
of Lemma 6.1. If, as above, s is in Q(a(®),al?)), choose s,,,---,s; so that s = s, ---s; and so that
ift), = sp_1---51,2 < k < n, and sy, lies in Q(a*) aUr)) and belongs to the simple root ay, then
ti((al9)*) is contained in

{H € a™) | oy (H) > 0}.

Then

(6.w) M(s, HD) = M (s, tn HD) - M(s9,t; HD) M (s1, HY).

But there are only a finite number of singular hyperplanes of M (s, H) which intersect the closure of
{H € al™ | Reay, (H) > 0}.

Consequently there are only a finite number of singular hyperplanes of M (s, H(i)) which intersect the
closure of the tube over (a())*.

For each 7, 1 < ¢ < r, there are a finite number of points Zfi),---,ZT(L? in the orthogonal

complement of aﬁi) in j. such that for any X in 3, the centre of the universal enveloping algebra of g,



Chapter 6 122

for any H® in a(¥), and for 1 < k < m;, the eigenvalues of 7(X, H*), the linear transformation on

&(V(-F) W) defined in Section 4, belong to the set
{(Px(H® + ZY))7 o, Py (HD + Zq(;;))}
There is certainly a polynomial p in 3 such that
p(HD + 290y =0, 1<k <n,,

if, for some s, H® in aﬁi) belongs to a singular hyperplane of M (s, ) which intersects the closure of
the tube over (a)*, but such that p(H® + Z") does not vanish identically on a'’’ for any choice of

i and k. Thus there is an X in 3 such that for all 4, all j, and all s in Q(a*), (/) the function
M(s, HD) n(X, HY)

is analytic on the closure of the tube over (a¥)* but not identically zero. Let f be an infinitely
differentable function G such that f(kgk~!) = f(g) for all g and all k and such that the determinant
of the linear transformation 7(f, H®) on ¢ vanishes identically for no i. Set fo = X' (X)f; then
7(fo, HD) = w(X, HO) n(f, H?) and its determinant does not vanish identically. If & is a Siegel
domain associated to a percuspidal subgroup then for each g in & define E'(h, @i,H(i)) as in the
beginning of this section. According to (4.r) and (6.b) the inner product of \(fy) E'(, @i,Hfi)) and
A fo) E’(-,\I/j,Héj)) is equal to

2
Z a / (M(s,H(i)) W(vaH(i))@,w(fo, —SH(i))\I/j) f(S,H(i)) ]dH(i)\
s€Q(ald,ald) (271-)«1 Re H() =Y (9

with

(s, HD) = exp(X(9), H\” + HY) — HD + sH<i>>{ f[ o (H — HD) oD (Y + sH@)}
k=1
If the relation (6.w) is combined with the estimates obtained for the function M (z) of Lemma 6.3 when
Rez > 0 it is seen that in this integral Y(¥) can be replaced by 0. Consequently the expression is an
analytic function of (H{“,Héj)) on the Cartesian product of the tubes over (a(V)* and (at))*. Ap-
plying an argument similar to that used in the case of a single variable we see that \(fy) E'(-, ®;, H("))
is an analytic function on the tube over (a”)* with values in L(I'\G). The estimate of (6.d) is a
manifest consequence of the above expression for the inner product. We conclude that E(-, ¢;, H(i)) is

meromorphic on the tube over (a()* and that Lemma 6.2 is true if H\" is in this set. If H( lies on the
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boundary of this set and if, for every h and all t in Q(a®, a(9)), M (t,-) is analytic at H*) then, applying
Lemma 5.2, we define E(-, &, H(*)) by continuity. Suppose W is a Weyl chamber of a(). Choose the
unique j and the unique s in Q(a®®, a0)) such that sW = (a¥))* and if H(® is in the closure of the
tube over W set

E(-®;, HV) = E(-, M(s, H")®;, sHY)

when the right side is defined. Then

NN O\ N (h.0)

is equal to

S exp ((HO(g), tsHO) 4 p(HO(9)) ) (B0 (1, sHO) M(s, HO)) ().
teQ(al@) alh))

Since the cuspidal component of

/ E(ng,®;, HY) dn
TAN\N

is zero if P is not conjugate to an element of { P} and since E(-, ®;, H?)) has the proper rate of growth
on Siegel domains it follows from Lemma 5.2 that E(-, ®;, -) can be defined at H® in the closure of W/
if, for all 2 and all t in Q(a®,a(M), M(t,-) is analytic at H(*). However a given point H(*) at which
all functions M (t, -) are analytic may lie in the closure of more than one Weyl chamber so that it is not
clear that we have defined E(-, ®, H(i)) unambiguously; but to see that we have, it is sufficient to refer
to Lemma 3.7. Lemma 5.3 implies that E(-, ®;, H®) is meromorphic on a{” and that the first assertion
of Lemma 6.2 is valid. It remains to verify the functional equations. Appealing again to Lemma 3.7 we
see that it is enough to show that for all j, all s in Q(a(?,a)),andfor1 < h <r,1 < ¢ < my,

/ E(ng, ®;, H") dn = / E(ng, M(s, H)®;,sH")) dn.
AN (O \ N (5,0 NN O\ N (0

The left side has just been calculated; the right side is

S e ((HOD () 4sHY) + o(HOD(g)) ) (ED M (1, sHO) (s, HO)0,) ().
teQ(al@ ah)

Since

M(t,sHD) M (s, HD) = M(ts, H®)

they are equal.
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7. The main theorem.

As was stressed in the introduction the central problem of this paper is to obtain a spectral
decomposition for L(T'\G) with respect to the action of G. Referring to Lemma 4.6 we see that it is
enough to obtain a spectral decomposition for each of the spaces L({ P}, {V'}, W) with respect to the
action of C(W, W). If ¢ is the rank of the elements of { P} it will be seen that L({P},{V}, W) is the

direct sum of ¢ + 1 invariant and mutually orthogonal subspaces
Ln({PHA{VEW), 0<m <q,

and that, in a sense which will become clear later, the spectrum C(W, W) in L,,,({P},{V},W) is
of dimension m. The spectral decomposition of L,({P},{V}, W) will be effected by means of the
Eisenstein series discussed in Section 6, the Eisenstein series associated to cusp forms. The spectral
decompositionof L,,,({ P}, {V}, W), m < g, is effected by means of the Eisenstein series in m-variables
which are residues of the Eisenstein series in ¢ variables associated to cusp forms. More precisely the
series in m-variables are residues of the series in m + 1 variables. In any case they are by definition
meromorphic functions and it will be proved that they must satisfy functional equations similar to
those of Lemma 6.1. It will also be shown that there are relations between the functions defined by
Eisenstein series and certain other functions that arise in the process of taking residues but cannot
be defined directly. It will be apparent, a posteriori, that the Eisenstein series described above are

precisely those of Lemma 4.1.

It will be easy to define the space L,({ P}, {V'}, W); the other spaces L,,,({P},{V}, W), m < ¢
will be defined by induction. Although the spaces L, ({P},{V}, W) can be shown, a posteriori, to
be unique it is, unfortunately, necessary to define them by means of objects which are definitely not
unique. Since the induction on m must be supplemented by an induction similar to that of the last
section this lack of uniqueness will cause us trouble if we do not take the precaution of providing at
each step the necessary material for the supplementary induction. To do this it is best to let { P} denote
a full class of associate cuspidal subgroups rather than a set of representatives for the conjugacy classes
in an equivalence class. Then L({P},{V'}, W) is just the closure of the space of functions spanned by

the functions

dg) = d(v9)

A\T
where for some P in { P}, ¢ belongs to ©(V, ). Suppose *P is a cuspidal subgroup belonging to some
element P of { P}. The space ©(V @ W, W*) of functions on 7 x {1}\*M x K has been defined; it can
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be regarded as a space of functions on *AT x {1}\*P x K. The subspace ©(V @ W, W*) consisting of
those functions ¢ such that ¢(p1, k1) = ¢(p2, k2) when p; and p, belong to *P, k; and k2 belong to K,
and p1k; ' = poks; * can be regarded as a space of functions on *AT\G. It will be called *D(V, W). Then
*L{P},{V}, W) will be the closure, in L(*© x {1}\*M x K), of the space of functions on *A*T\G

spanned by functions of the form

dg) = ¢(vg)

AVA
where, for some P in *{ P}, the set of elements in { P} to which *P belongs, ¢ belongs to *O(V, W). If
a® ... al") are as before the distinct split components of the elements of { P} we let *{ P}(*) be the
set of elements in *{ P} with the split component a(*). {P}(%) is defined in a similar fashion. Suppose
P belongs to *{ P} and Ta(® is the orthogonal complement of *a in a(®). Let *(V, W) be the set of all

functions ®(-) with values in C(V, W) which are defined and analytic on
{H e Ta ||| Re H| < R}

and are such that, if p is any polynomial, ||p(Im H) ®(H)|| is bounded on this set. R is the number
introduced at the end of Section 4 and || Re H|| is the norm of Re H in a(®). If we are to use these
new spaces effectively we have to realize that all of the facts proved earlier have analogues for these
new types of spaces. Since the proof generally consists merely of regarding functions on *N*A\G as
functions on *M x K we will use the analogues without comment. In particular the analogue of the

operator Aon L({P},{V}, W) is defined on *L({ P}, {V}, W); it will also be called A.

Since the entire discussion concerns one family { P}, one family {V'}, and one space W we fix the
three of them immediatley and start by introducing some simple notions. Let a = a(® with 1 < i < r.
If s is a complex affine subspace of a. defined by equations of the form «(H) = p where « is a positive
root of a and x is a complex number then s = X (s) + 5 where s is a complex subspace of a. defined
by real linear equations which contains zero and X (s) is orthogonal tos. Let S(s) be the symmetric
algebra over the orthogonal complement of s. Suppose *a is a distinguished subspace of a and suppose
5 contains *s. If Ta is the orthogonal complement of *a in a there is a unique isomorphism Z — D(Z)
of S(s) with a subalgebra of the algebra of holomorphic differential operators on Tac such that

df

DY) f(H) = 5

(H+tY)|,_,
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if Y belongs to the orthogonal complement of 5. If & is a finite dimensional unitary space and if ®(-) is
a function with values in & which is defined and analytic in a neighbourhood of the point H in]Lac let

d®(H) be that element of L(S(s), €), the space of linear transformations from S(s) to €, defined by

L(S(s), QE) can be identified with the space of formal power series over the orthogonal complement of

s with coefficients in € and we obtain d®(H ) by expanding the function
dy(Y)=D(H+Y)

about the origin. If f(-) is a function with values in the space of linear transformations form ¢ to &
which is defined and analytic in a neighbourhood of H we can regard df (H ) as a power series; if I’
belongs to L(S(s), €) the product df (H)F is defined and belongs to L(S(s), €¢). There is a unique
conjugate linear isomorphism Z — Z* of S(s) with itself such that Y* = —Y if Y belongs to the

orthogonal complement of s and there is a unique function (7', F') on
S(s) ® € x L(S(s), €)
which is linear in the first variable and conjugate linear in the second and such that
(Z@®,F)=(®,F(Z"))

if Zisin S(s), ®isin & and F isin L(S(s), €). It is easily seen that if A is any linear function on
S(s) @ € thereisan F in L(S(s), €) such that A(T) = (T, F) for all T in S(s) ® €. If we define the
order of F', denoted O(F'), to be the degree of the term of lowest degree which actually occurs in the
power series expansion of F' and if we say that a linear transformation N from L(S(5), @) to some
other vector space is of finite degree n if NF' = 0 when O(F) is greater than n and if NF' # 0 for
some F of order n then a linear function A on L(S(s), €) is of finite degree if and only if there isa T’
in S(s) ® € such that A(F') is the complex conjugate of (7', F') for all F'. In particular if t is a subspace
of aU) defined by linear equations of the form o(H) = i where « is a positive root of a/) and y is
a complex number, if &' is another unitary space, and if NV is a linear transformation from L(S(5), @)
to S(t) ® E’ which is of finite degree, there is a unique linear transformation N* from L(S(t), QE’) to
S(s) ® €such that (N F, F’) is the complex conjugate of (N*F’, F') for all F'and F’ and N* is of finite

degree.
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There is a unique isomorphism Z — pz of S(s) with a subalgebra of the algebra of polynomials
on Tac such that py (H) = (H,Y) if Y belongs to the orthogonal complement of 5. If P belongs to
{P}®), V is the corresponding element of {V'}, and *P is the cuspidal subgroup with split component
“a belonging to P and if *A is a split component of *P there is a unique map of S(s) ® €(V, W) into the
space of functions on *AT"\ GG such that theimage of Z@ ® is p; (T(H(g)) O(g) if TH(g) is the projection
of H(g) on Ta. We denote the image of 7" by T'(-). If ¢/(g) belongs to *®(V, W) then we can represent
1 (g) as a Fourier transform

1
(2mi)P

00 = s [ ew (0010 + (1 1)) ¥ig. 1) ar

where ¥(-) is a holomorphic function on Ta, with values in ¢(V,W)and ¢(g, H) is the value of ¥(H)

at g, and p is the dimension of Ta. We shall need the formula
(7a) (T, dU(-H)) = A exp ((TH(m), H) + p(TH(m))) T(m) $(m) dm dk
T\*M x K

for H in Ta. and T'in S(s) @ €(V,W). We need only verify itfor T'= Z ® ®. If Y belongs to Ta then
the function ¢ (exp Y'mk) on M x K belongs to &(V, W); call it ¥/(Y'). Then

W(H) = [ exp (= (V1) ~ pl¥) W(¥) |4
Consequently

D(Z") ¥ (H) =/T exp (— (Y, H) = p(Y)) pz+(=Y) ¥'(Y) |dY'|.
Since the complex conjugate of pz- (=Y ) ispz(Y),
(®,D(Z*) ¥ (-H))

is equal to

A w?(a) da/ dm/ dk{exp ((Y,H) + p(Y)) pz(Y) ®(mk) ¢(exp Ymk) }
a O\M K

or

AT\*MxK exp <<TH(m)a H) + P(TH(m))) (Z ® ®)(mk) (mk) dm dk.

Suppose that t is contained in & and is also defined by equations of the form a(H) = p where «

is a positive root and p is a complex number. There are a number of simple relations between S(s) and
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S(t) which we state now although they are not needed till later. Let Sy(t) be the symmetric algebra
over the orthogonal complement of t in s; then S(t) is isomorphic in a natural manner to S(t) ® S(s).

If F belongs to L(S(t), €) and X belongs to Sy(t) let X, V F be that element of L(S(s), €) such that
(XoV F)(X) = F(Xo® X).

It is clear that S(t) ® € is isomorphic to Sy(t) ® (S(s) ® €) and that if 7" belongs to S(s) ® € then
(T,Xo V F) = (X; ®T,F).

If F(-) is a function defined in a neighbourhood of a point H in Ta with values in L(5(s), €) such that
F(-)(X) is analytic at H for all X in S(s) we let dF'(H) be that element of L(S(t), &) such that

dF(H)(Xo ® X) = D(Xo) (F(H)(X)).

It is clear that
d(d®)(H) =d®(H).

There is one more definition to make before we can begin to prove anything. Let s be a subspace
of a() as above and suppose that if *P is any cuspidal subgroup belonging to an element of {P} whose
split component *a is contained in 5 and P is any element of *{ P} () there is given a function E(g, F, H)
on

"A'T\G x L(S(s), €(V,W)) x Ts,

Here Ts is the projection of s on the orthogonal complement of *a. The space s together with this
collection of functions will be called an Eisenstein system belonging to s if the functions E(-, -, -) do not
all vanish identically and the following conditions are satisifed.

(i) Suppose *P and a P in *{ P} are given. For each g in G and each F' in L(S(s), &(V,W))
the function E(g, F, H) on Tsis meromorphic. Moreover if Hy is any point of fsthereisa polynomial
p(H) which is a product of linear polynomials o(H) — 1, where « is a positive root of fa and 1 is
a complex number, and which does not vanish identically on fsand a neighbourhood U of H, such
that p(H) E(g, F, H) is, for all F in L(S(s), €(V,W)), a continuous function on *AT\G x U which
is analytic on U for each fixed g and such that if G is a Siegel domain associated to a percuspidal

subgroup P, of “M and F belongs to L(.S(s), €(V,w)) there are constants ¢ and b such that

|p(H) E(mk, F, H)| < ¢n®(ag(m))
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for all m in &g, k in K, and all H in U. The function E(g, F, H) is for each g and H a linear function
of F' and there is an integer n such that F(g, F, H) vanishes for all g and H if the order of F'is greater

than n.

(i) If *a is a distinguished subspace of a(® which is contained in § and if al¥) contains *a
let TQU)(ﬁ) be the set of distinct linear transformations from s into o) obtained by restricting the

elements of TQ(a(, a() to s. If s belongs to TQU) (s) let
s, ={—(sH) ‘ H € s};

s, is a complex affine subspace of al/). Suppose the cuspidal subgroup *P with split component *a,
the group P in *{P}?, and the group P’ in *{P}) are given. Then for every s in TQU)(s) there is
a function N (s, H) on Ts with values in the space of linear transformations from L(S(s), &(V,W))
to S(ss) @ E(V/,W) such that for all Fin L(S(s),&(V,W)) and all F’ in L(S(s,), &(V',W)) the
function (N(s, H)F, F’) is meromorphic on Ts If Hy is a point of Tsthereisa polynomial p(H) and a
neighbourhood U as before such that p(N)(N (s, H)F, F’) is analytic on U for all F' and F. Moreover
there is an integer n such that (N(s, H)F, F’) vanishes identically if the order of F' or of F’ is greater
than n. Finally, if
TP =*N\P'n*s

then

nm n = exp ((TH'(m), s i (m s m
(7.b) [@mTN’\TN’E( k,F,H)d %:.)() p ((VE'(m), sH)+p(TH'(m)) ) N(s, H) F(mk)

provided both sides are defined. However, if P” is a cuspidal subgroup to which *P belongs and P”
does not belong to { P} then the cuspidal component of

/ E(nmk,F,H)dn
*emTN//\TN//

is zero.

(iii) Suppose *P;, with split component *a, is a cuspidal subgroup belonging to some element of
{P} and *P, with split component *a, is a cuspidal subgroup belonging to *P; and suppose s contains
“a;. If P belongs to *{P}!” and hence to *{ P} and F belongs to L(S(s), &(V, W)) then E, (-, F, -)
and E(-, F,-) are functions on *A;*T1\G X fs; and *AT\G x fs respectively. If H belongs to Ts let
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H=H*+ T/ where “H belong to the complexification of the orthogonal complement of *a in *a; and

T belongs to ]Lﬁl; if H belongs to

U U s~H(uW)

*algu(J) SETQl(u(i) ,a<j>)

(7.0) B(g.F.H) = Y exp((Hi(19)."H) + po(‘Hi(v9)) ) Er(vg. F, 1)
*Ap\*A

if E1(-, F,-) is analytic at TH. Here po(*H(g)) is the value of p at the projection of *H;(g) on the
orthogonal complement of *a. The convergence of (7.c) is implied by the remarks following the proof

of Lemma 4.1. Moreover if P’ belongs to *{P}&j) and s belongs to Tng)(ﬁ) then

N(s,H) = Ny(s, TH).

(iv) Suppose *P; and *P, are cuspidal subgroups with the split component *a which both belong
to elements of { P} and suppose s contains *a. Suppose P; belongs to *{P}gi) and P, belongs to *{P}gi)
and suppose there is a v in I" such that v*P; = *Pyy and vP; = P»7y. If H belongs to Ts let D(H) be
the map from &(V;, W) to &(V,, W) and D be the map from functions on *4; 17\ G to the functions
on *A,*T»\G which were defined in Section 4; then if F belongs to L(S(s), &(V, W))

(7.d) DE\(g,F,H) = Ex(9,dD(H)F, H).
Moreover if P| and P, belong to *{P}gj) and *{P}éj) respectively and there isa § in T with
P = Py6

and
0P = "Pyd

so that the map D(H) from &(V/, W) to &(Vy, W) is defined for all H in Tsand if s belongs to TQ(j)(s)
then

(7.¢) (Ny(s, H) F, F') = (NQ(S, H)(dD(H) F),dD(—sH) F’)

for all Fand F’.
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(V) If kisin K then
A(k) E(g, F,H) = E(g, (k) F, H)

and if f belongs to C(W, W) then
() Elg, Fy H) = B(g,d(n(f, H))F, H).

Suppose that s = a(). Then S(s) is just the space of constants so that, for all P in {P}(*), the map
F — F(1) defines an isomorphism of L(S(s), &(V, W)) with &V, W). If *P is a cuspidal subgroup
with split component *a which belongs to some element of { P}, if *a is contained in al® | if P belongs

to { P}V, and if F belongs to L(S(s), &(V,W)) we let

E(g,F,H) = ZeXp( 9), H) + po(H(y )))‘I’(VQ)
A\FA
if H belongs to T, Here & = F(1) and p(H(g)) is the value of p at the projection of H(g) on the
orthogonal complement of *a. This collection of functions certainly defines an Eisenstein system and,
as remarked before, all the other Eisenstein systems of interest to us will be obtained from systems of

this type by taking residues. Let us see explicitly how this is done.

Suppose that s is a subspace of a = a(¥) defined by equations of the same form as before and
suppose that ¢(-) is a function meromorphic on all of s whose singularities lie along hyperplanes of
the form «(H) = p where « is a real linear function a and p is a complex number. Suppose we have a
hyperplane t, not necessarily a singular hyperplane of ¢(-), of this form and suppose we choose a real

unit normal H, to t. Then we can define a meromorphic function Res; ¢(-) on t by

Res, ¢o(H / d(H + 6e*™© Hy) d(e*™®)

if § is so small that ¢(H + zH) has no singularities for 0 < |z| < 24. It is easily verified that the
singularities of Res; ¢(-) lie on the intersections with t of the singular hyperplanes of ¢(-) different from
t. Now suppose we have an Eisenstein system { E(-, -, -) } belonging to s and suppose t is a hyperplane
of s defined by an equation of the form «(H) = p where « is a positive root of a. We now define an
Eisenstein system belonging to t. Suppose that *P is a cuspidal subgroup belonging to some element
of { P} and suppose that the split component “a of *P is contained in t. Then *a is also contained in &

so that if P belongs to *{P}() there is a function E(-, -, -) defined on

"A'T\G x L(S(s), €(V,W)) x Ts,
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If g isin G and ®(-) is a function on a. with values in &(V, W) which is defined and analytic in a

neighbourhood of H in Ta® then Res; E(g,d®(-),-) is defined in a neighbourhood of H in t. Let

(oo} Zm
d(I)(HJrzHO):Z;Jx' d(D(HE) ®(H))
and let
E(g,F,H +zHy) = »  2YE,(g,F, H)
Yy=—00

if F" belongs to L(S(g), &(V, W)). Of course only a finite number of terms with negative y actually

occur. Then

Res; E(g,d®(H),H) = > % E, (g, d(D(HY) <I>(H)),H>.
r+y=—1

If F belongs to L(S(t), E(V,W)) we set

1
Res E(g, F,H) = Y _ gEy(g,JLIgVF,H)

r+y=—1

We must verify that the collection of functions of Res; E(-, -, ) is an Eisenstein system belonging to t.

Condition (i) is easily verified. If “P and P are as above and if P’ belongs to *{ P} then

/ Res¢ E(nmk, F, H)
ont N\ T

Suppose that, for s in TQG)(s),

(nmk, HE V F,H)dn.
Z al /emTN/\TN/ 0 )

r+y=-—1

o
N(s,H +zHy) = Y 2"Ny(s,H),

vV=—00

then
/ E,(nmk,HS V F,H)dn
@mTN/\TN/

is equal to the sum over s in TQ()(s) of

exp (T (m), sH) + p(TH'(m)) > %(TH’(m), sHo)" (N, (s, H)(H§ V F))(mk).
ut+v=y
If for ¢ in TQU) (t) we take Res, N (¢, H) be that linear transformation from L(S(t), &(V,W)) to S(t,) ®
¢(V',W)), where
t={-(tH)|H e t},
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which sends Fin L(S(t), &(V,W)) to

1
> Y ——(sHo)" ® Ny(s,H)(Hg V F),
T o1 Tl

where the outer sum is over those s in TQ() (s) whose restriction to t equals ¢, then

/ Res¢ E(nmk, F, H) dn
onfn T

is equal to
S exp (<TH'(m),tH> + p(TH'(m)))(Rest N(t, H)F)(mk).
retau
It is now an easy matter to complete the verification of condition (ii). It should be remarked that if ®(-)
is a function with values in &(V, W) which is defined and analytic in a neighbourhood of H inTa(®

and if ¥(-) is a function with values in &(V’, W) which is defined and analytic in an open set of fa

containing
{—sH ‘ Y= TQ(j)(ﬁ)}
then
Resy { D0 (N(s, H)do(H), d¥(~sH)) |
seTau(s)
is equal to

> Res( (N(t, H)d®(H), d¥(—sH)).
teka)(t)

The conditions of (iii), (iv), and (v) are also verified easily.

There is a lemma which should be proved before we leave the subject of residues. It appears
rather complicated because it is stated in such a form that it is directly applicable in the proof of
Theorem 7.1, which is the only place it is used; however, it is essentially a simple consequence of the
usual residue theorem. If s is a subspace of a = a®, for some i with 1 < i < r, defined by the
equations of the usual form and if { E(-, -, )} is an Eisenstein system belonging to s then a hyperplane
t of s will be called a singular hyperplane of the Eisenstein system if there is a cuspidal subgroup *P
whose split component *a is contained in t and a cuspidal subgroup P contained in *{P}(i) such that
the projection of t on Tsiseithera singular hyperplane of E(-, F', H) for some F'in L(S(s), &(V, W)) or
a singular hyperplane of (N (s, H)F, F') for some F in L(S(s), &(V,W))), some P’ in *{P}(), some
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sin TQ(j)(s), and some F” in L(S(s;), €(V’,W)). Only a finite number of singular hyperplanes of the

Eisenstein system meet each compact subset of s. Let
s§=X(s)+(sNa)
If Z isa pointin s and a is a positive number or infinity let
U(s,Z,a) ={Z+iH|H €sNa, |H| <a}

and if *a is a distinguished subspace of a which is contained in s let U(Tg, Z,a) be the projection of
U(s, Z,a)on Ts. Letabea positive number and let Z; and Z5 be two distinct pointsins. If 0 < x <1
let

Z(x)=aZ1+ (1 —x)Zy

and suppose that there is a number xy with 0 < zy < 1 such that no singular hyperplane of the
Eisenstein system meets the closure of U(5, Z(x), a) if z # xo and such that any singular hyperplane
which meets the closure of U (s, Z(z¢),a) is defined by an equation of the form (H,Z, — Z;) = p

where p is a complex number. If *P, P, P’ and s are given we want to consider

1 / 1
S Eg,d@H,H)dH——./ E(g, d®(H), H) dH
@oi7 Syt g, o D0 42D @ Jicte g 2 )

as well as the sum over s in QU)(s) of

(7.1)

1 _ _
(7.9) W{/U(Ts,z(jiSS’H)dq)(H)’d‘Il(_SH)) dH—/U(]Ls’z(llflgs,H),dCIJ(H),d\I!(—sH))dH}.

®(H) is a function with values in &(V, W) which is defined and analytic in a neighbourhood of the
closure of Jy< <, U(Ts, Z,a) in Tal) and W (H) is a function with values in &(V’, W) which is defined

and analytic in a neighbourhood of

U U U(Tﬁs, —s7Z,a)

) 0<z<1
seTQ(J)(g) ST

in Ta(@. The dimension of Ts is m.

Choose coordinates z = (z1,- -, 2m,) ON fs such that H(z) belongs to s if and only if z is real,

such that
(H(2), Hw)) = Y zxwp,
k=1
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such that TZL the projection of Z; on T5, is equal to H(0,---,0), and such that TZQ =H(0,---,0,¢)

with some positive number ¢. Setw = (0,---,¢). Ifa’ = (a2 — || Im X (s)||2)= the above differences
are equal to
(7.h) (52) Olw+iy) dy; -+ dyn — (5= Bliy) dys -+ dyin

7r ly|<a’ 7r ly|<a’

with ¢(z) equal to E(g, dd (H(z))) orto

> (Nls H(2)) do(H(2)), d¥( - sH(2))).

seTas)
Choose b > a’ so that no singular hyperplane of ¢(-) intersects
m
{(iyl,---,:z:—i—iym) ‘ Z lyil? <0<z <ec z# xoc},
k=1
and so that any singular hyperplane which intersects
{(iyh--niym_l,xocﬂym) |l < bz}
k=1

is defined by an equation of the form z,, = . Choose, in the m — 1 dimensional coordinate space, a

finite set of half-open rectangles J*), 1 < ¢ < n, defined by
ag)<yk<ﬂg), 1<k<m-1

and for each ¢ a positive number 4 such that

n

U{(ylv"' 7ym—17ym) ‘ (ylv"' 7ym—1) € Jea ‘ym’ < 'YE}
/=1

contains the closed ball of radius a’' and is contained in the open ball of radius b. The expression (7.h)

differs from
i 1 B Br1 1 ctin® "

7. - - duys - - - Ay 1 —— _ Ut iU d
/=1 ay 1 c—1y el

by the sum of two integrals. Each of these integals is of the form

1
(7.k) T /Y S(=)dor A+ Adz
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where U is an open subset of a real oriented subspace of the coordinate space which is of dimension m

and is contained in

{2=Gmoooz) [ITmz] > o'},

If 2, = pj, 1 < j < pare the singular hyperplanes of ¢(z) which meet

{(iy17' o 7iym—17$00+iym) | Z ‘yl|2 < b}

=1
and ¢;(z1, -, 2m—1) is the residue of ¢(z1, - -, Zm—1, 2 ) at p; the sum (7.i) differs from
V4 n
Z ym— o Nm—1 / ®5(iy1, 5 WYm—1) dy1, - dYm—1
Jj=1 (:1
by an integral of the form (7.k). The latter sum differs from
p
Z / G (Y1, 1Ym—1) dy1 - - dYm—1
lyl<a}

]=1

with a; = ((a/)? — (Im ;) ) by a sum of the form

L 1

J=1

where U; is an open subset of a real oriented subspace of dimension m — 1 of the hyperplane z,, = ;
which is contained in

{z=(21,"" ", Zm—-1, 2m) | [Tmz| > a'}.

Letty,- - -, t, bethesingular hyperplanes of the Eisenstein system which meet the closure of U(5, Z(xp), a) .
If none of the t,, 1 < ¢ < n contain *a then the expression (7.f) is equal to a sum of integrals of the form

1

(7.0) T

/ E'(g,d®(H),H)dH

where U’ is an open subset of some real subspace of dimension m’ of the space Tt, the projection on
Ta(® of t, which is s itself or a singular hyperplane of the Eisenstein system such that t contains *a, and
is contained in {H | || Im H|| > a} and E'(-,-,-) is E(-,-,-) or Res¢ E(-,-,-). If "a is contained in one,

and hence all, of the t, then the expression (7.f) differs from

o Nm—1 Rest E g,d(I)(H),H dHa
Z; @2r))™ 1 Jugwi.a) < )
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where Wy is a point in X (t;) + (t, N a(?) such that Re W, is in the convex hull of Re Z; and Re Z3, by
a sum of integrals of the form (7.£). A similar assertion is valid for the expression (7.g). The last sum is

replaced by

3

1 _
§ — / (Res¢N(t,H)d®(H),d¥(—tH))dH

/=1 (27T2)m U(Tt[,We,a)

teTQ(J’) (te)

and the integrals (7.¢) are replaced by

1

(7.m) W

/ (N'(t,H) d®(H),d¥(—tH)) dh
with ¢ in TQU)({’) and N'(t,H) equal to N(t,H) if ¢ = s and to Resy N(¢, H) if ' is a singular
hyperplane. The lemma we need is a refinement of these observations. In stating it we keep to our

previous notation.

Lemma 7.1. Suppose that for every positive number a there is given a non-empty open convex
subset V(a) of
X(s) = (3na)

such that no singular hyperplane intersects the closure of U(s, W, a) if W belongs to V(a) and such
that V(a1) contains V(az) if a1 is less that ay. Let Z be a given point in X (s) + (5 N a®) and if
W belongs to X (s) + (3N al) let

W(z)=(1-2)Z+ xW.

Then there is a subset T' of the set S of singular hyperplanes, and for each t in T o distinguished
unit normal, and for each a > 0 a non-empty open convez subset W(a) of V(a), and, for each t, a
non-empty open convex subset V (t,a) of X (t) + (tNa®) such that, for any *P, P, and P’ such that
s contains *a, any W in V(a), any choice of W (%) in V(t,a), and any € > 0 such that no element

of T meets the closure of U(s, W(z), a) if 0 < x < g, the difference between

1
- E(g,d®(H), H) dH
(2mi)™ /U(Ts,w,a) (9 d(H), H)

and, if 0 <z <e¢,

1 1
(2mi)™ /U(TE,W(I),G,) Blg, d(H), H) dH + E (2mi)m-1 /U(Tt,W(t),a) Res, B(g, d®(H), H) dH
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is a sum of integrals of the form (7.£). In the above expression the second sum is over those t in

T such that t contains *a. Moreover the difference between

1 —
2 (2mi)™ /u(Ts,w,a) (N (s, H) d®(H), d¥(—sH)) dH
sel QU (s)

and the sum of

1 —
T%)( ) (2mi)™ /U(Tﬁ,W(w),a) (N(S’H) dq)(H)ad‘I/(—sH)) dH
sE i) (s

and X
Zte%%(t) BT /U(Tt,wm,a)) (Res N(t, H) d®(H),dV(~tH)) dH

is a sum of integrals of the form (7.m). The sets U' appearing in the integrals of the form (7.0)
and (7.m) can be taken to be such that {ReH|H € U'} lies in the conver hull of ReZ and
{ReH |H € V(a)}. The sets V(t,a) can be chosen so that {Re H | H € V (t,a)} lies in the interior
of the convex hull of Re Z and {Re H | H € V(a)}, and so that V(t,a1) contains V(,az2) if a1 is
less that as, and no singular hyperplane of the FEisenstein system belonging to t meets the closure
of Ut, W,a) if W lies in V(t,a). If no singular hyperplane meets the closure of U(s, Z,a) the

conclusions are valid when x = 0.

We have not troubled to be explicit about the conditions on the functions ®(-) and ¥(-). They
will become clear. Replacing V' (a) by V(N (a)) where N (a) is the integer such that

N(a) —1<a< N(a)

we can suppose that

Let P(a) be the set of hyperplanes of § which are the projections on s of those elements of .S which
meet { H | ||Im H|| < a}. If N is a positive integer the set of points W in V (V) such that the interior of
the segment joining Z and T does not contain a point belonging to two distinct hyperplanes in P(N)

is a non-empty open subset of V(N). Let W (V) be a non-empty convex open subset of this set and let

W(a) = W(N(a))
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if a > 0. If the sets are chosen inductively it can be arranged that W (V; ) contains W (Ny) if Ny is less
than N,. Let T'(a) be the set of singular hyperplanes whose projection on s separates Z and W (a) and

let

T=J7()

a>0

If t belongs to 7" and t intersects

{H || Tm H|| < a},

so that t belongs to T'(a) let V (¢, a) be the inverse image in t of the intersection of the projection of t on
5 with the convex hull of Z and W (a); let the distinguished normal to t be the one which points in the
direction of W (a). If t does not intersect {H | | Im H| < a} let b be the smallest number such that t
intersects {H | || Im H|| < b} and set

V(t,a) =V (t,D).

In proving the lemma it may be assumed that W (t) is the inverse image in t of the intersection
of the projection of t on 5 with the line joining Z and W. Choosing a polygonal path %4, Z,---,Z,
from W (x) to W which lies in the convex hull of Z and W (a), which meets no element of P(a) except
the projections of the elements of 7'(a) and these only once and in the same point as the lines joining Z
and W, and which is such that no point Z;, 1 < j < n lies on any element of P(a) and such that any
line segment of the path crosses at most one element of P(a) and crosses that in a normal direction,
and observing that the difference between the integrals over U(T5, W, a) and U(Tﬁ, W (z),a) is equal
to the sum of the differences between the integrals over U(Tﬁ, Zj,a)and U(Tg, Zi—1,a),1 <j <n,we
see that the lemma is a consequence of the discussion preceding it. To conform to the definition of an

Eisenstein system we have to remove those t for which all functions Res; E(-, -, -) vanish.

Unfortunately this lemma on residues is not sufficient for our needs; it must be supplemented
by another which we state informally but, for an obvious reason, do not prove. If s is as above and ¢

and a are positive numbers let

C(s,e,a) ={X(s)+ H|H €5, |ReH| <e¢, |

Im (X (s) + H)| <a}.
If U is an open set of the sphere of radius ¢ in 5 N a(®) then
{zX(s)+(1—-2)Z|0<z <1, ZeU}

will be called a cone of radius ¢ and centre X (s). Suppose that, just as in the lemma, we are given

an Eisenstein system belonging to s. Suppose that for every a > 0 there are two non-empty convex
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cones'V; (5, e(a), a), i = 1,2 of radius £(a) and centre X (s) such that no singular hyperplane meets the

closure of U(s, W, a) if W belongs to V; (5, e(a), a) and such that
V; (57 5(0/1), al) 2 ‘/Z (57 E(G/Q)a a/2)

if a1 < as. Suppose that, for all a, every singular hyperplane which meets the closure of 0(5, e(a), a)
meets the closure of U(s, X(s), a) . Then there is a subset T" of the set of singular hyperplanes such that
Re X (s) = X (¢t) forall tin 7', and for each t in 7" a distinguished unit normal to ¢, and, for each a > 0,

two non-empty convex cones W; (s,e(a), a) of radius e(a) and centre X (t) such that
Wi(s,e(a),a) C V;(s,e(a),a)

and, for each tin T', an open convex cone V (t,e(a), a) of radius ¢(a) and centre X (t) such that if, for
some a > 0, W; belongs to W; (s,e(a), a) and W (t), t € T', belongs to V' (t,£(a), a) then the difference
between the sum over s in TQ()(s) of

#{/ (N(s,H)d®(H),d¥(—sH)) dH—/ (N(s,H)d®(H),d¥(—sH)) dH}

2mi)™ | JuTs, w1 ,0) U(Ts.Wa.a)
and
1 _
Z@%{i(t) G /U(Tt,wm,a) (Res¢ N(t, H) d®(H),d¥(~tH)) dH

is the sum of integrals of the form (7.m). It is clear that one again has some control over the location
of the sets U’ which occur. Moreover if t is in 7" any singular hyperplane of the associated Eisenstein
system which meets the closure of C(t,£(a), a) meets the closure of U (t, X (t),a) and we can assume

that if I lies in V (t,(a), a) then no such hyperplane meets the closure of U (t, W, a).

Suppose that for each i, 1 < i < r, we are given a collection S of distinct affine subspaces of

dimension m which are defined by equations of the usual form. Let

S = U S
=1

and suppose that for each s in S we are given an Eisenstein system belonging to s. In order to appreciate
Theorem 7.7 we have to have some understanding of the relations which the functions in this collection
of Eisenstein systems may satisfy and of the conditions under which the relations must be satisfied.
The next four lemmas provide us with the necessary understanding. In other words Theorem 7.7 can

be regarded, if one is thinking only of the Eisenstein series, as asserting that all Eisenstein series satisfy
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certain conditions and we are about to show that all Eisenstein series satisfying these conditions satisfy

functional equations.

If 5 is a subspace of a() and t is a subspace of al) defined by equations on the usual form and
if *a is a distinguished subspace of both a(*) and al/) which is contained in § and t we let TQ(ﬁ, t) be
the set of distinct linear transformations in TQ(j)(ﬁ) such that s, = t. Two linear transformations of
Q(a®,al@)) which have the same effect on every element of s have the same effect on every element of

the space s’ spanned by s and zero and on
§ ={H|Hes'}

Thus TQ(5, t) can also be regarded as a set of linear transformations from ¢’ to t' or from s’ to t'. Such
a convention is necessary in order to make some of the expressions belong meaningful. Suppose that
for every element s of the collection S there is an element s° of €2(s, 5) which fixes each element of s.

Certainly s is unique. If *a is a distinguished subspace of  let
S0 = {s€ S |%a C 35}

and let .
S =W,
=1

Two elements s and t of *S are said to be equivalent if TQ(s, t) is not empty:.

Lemma 7.2 Suppose that for each i, 1 < i < r, SO is a collection of distinct affine subspaces
of dimension m, of a¥), defined by equations of the form a(H) = p where « is a positive root of
aD and p is a complex number, such that only a finite number of the elements of S®) meet each
compact subset of a'¥). Suppose that if s belongs to S@ and a is the orthogonal complement of
the distinguished subspace of largest dimension which is contained in § then Re X (s) belongs to *a
and lies in a fived compact subset of a®¥) and suppose that for each s in S the set Q(s,s) contains
an element which leaves each point of § fized. Finally suppose that if s is in S there is given an
Eisenstein system belonging to s and that if *P is a cuspidal subgroup, with split component *a, if P
belongs to *{ P}, P’ belongs to *{P}9), s belongs to *S@), and s belongs to JrQ(j)(s) then N(s, H)
vanishes identically unless s belongs to JrQ(s, t) for some t in *SU). Then S is finite and for each s
in S the point X (s) is real. Moreover, for any choice of *a, every equivalence class in *S contains

an element s such that s is the complezification of a distinguished subspace of b.

There is another lemma which must be proved first.
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Lemma 7.3. Suppose that ¢ is a function in L({P},{V}, W) and suppose that there is an integer
N such that if P belongs to {P} and {p, |1 <y <z} is a basis for the polynomials on a, the split
component of P, of degree at most N then there are distinct points Hy,---, H, in a. and functions

Q1 <2<u, 1<y<wvin&V,W) such that

) [ etngyan= Yo () + p(a0)) {3 R (H(0) )}

If

> py(H(g)) s

does not vanish identically then H, is real.

If we agree that an empty sum is zero then we can suppose that

> oy (H(g)) Pay(9)

is never identically zero. The lemma will be proved by induction on the rank of the elements in { P}.
If that rank is zero there is nothing to prove; so suppose it is a positive number ¢ and the lemma is true

for families of cuspidal subgroups of rank ¢ — 1. If P belongs to { P} and P’ = vP~y~1,vinT, then

/ $(n'vg) dn’ = / $(ng) dn,
FﬂN/\N’ FON\N

so that the right side of (7.n) is equal to

Z@qo( (v9), Hy) + p(H'(79) )Zpy vy (9)-

Since H'(vg) = H(g) + H'(y), the sets {Hy,---,H,} and {H{,---,H} are the same. Thus for

1 <4 < rtheset

U {H,--- H}=F

Pe{P}(®
is finite.

If P belongs to {P}(®) let X,, be that element of S({0}) such that px, = p, and let

Tp =) X, @y
y=1
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If ¢ belongs to ©(V, W) it follows from the relation (7.a) that

u

(6.0) = 3 (T, d¥(~H,)).

r=1

f() = (fl()vvfr())

is such that \(f) can be defined as in Section 6 then

(A, ) = (6, M) )

is equal to

u

S (Tor d(f;0) (—Hy)).

r=1
In particular, if for each i, f; vanishes to a sufficiently high order at each point of F; then A(f)¢ = 0. If
H belongs to F; and H' belongs to F; and there is no s in Q(a(?, a(9)) such that sHH = H' then we can
choose an f(-) so that f;(H) # f;(H'). Consequently we can find f(), ... f(*) such that

6= AP
r=1

and )\(f(l’))¢ satisfies the same conditions as ¢ except that if H belongs to ﬂ(w), the analogue of F;,
and H' belongs to Fj(z) then H' = sH for some s in Q(a?, a#)). Since it is enough to prove the lemma
for each \(f(*))¢, we assume that ¢ already satisifes this extra condition. Let ¢(f) be the value of f; at
one and hence every point in F;. Since A(f) is normal A(f)¢ = c(f)pand A(f*)p = e(f)od = c(f*)o.
Thus, if H belongs to F;, f;(H) = f;(—H) and there is an s in Q(a®),a(®) such that sH = H and
(H,H) isreal.

To prove the lemma we need only show that for some P in {P} one of Hy,---, H, is real. It
is not difficult to see that for each P in { P} the points — Re H,, 1 < z < u, belong to *a. We forego
describing the proof in detail because in all applications we shall make of the lemma it will be apparent
that this is so. Let

_1
po= max {{o g, ar) > ar(ReHy)}

and if {Hy,---, H,} is not empty let
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If ¢ does not vanish identically choose F, so that
pio = p(Po) > pu(P)
for all P in { P}; the number i is negative. Let
e eol| 1(Fo) = e (Re Hy, )
and let *P be the cuspidal subgroup belonging to F with split component
‘a={H €ag|ay(H)=0, {#{}.

It follows without difficulty from Lemma 4.2 that if {g, | 1 <y < v'}is a basis for the polynomials
on *a of degree at most N then there are distinct points *H,, 1 < x < «/, in *a, and functions ¢, in

*A*T'\ G such that
/ ¢(ng) dn
TA*N\*N

is equal to
i_jexp(wf(g), ")+ p("H(g ){qu (*H(9)) 62(9) }

It follows from formula (3.d) that if P is an element of *{ P} and g = amk with a in *4, m in *M, and k

in K then

ij exp ((H(g), Hy) + p(H(9)) ) { 2_: P, (H(g)) . (9) }

is equal to

iexp ((*H(g), "*H.) + p("H(g ){qu (*H(yg [@rﬂLN\TN Gzy(nmk) dn}.

Applying this relation to F, we see that if the indices are chosen appropriately we can suppose that the

projection of H,, on *a. is *H;. Let

k)d
[G)OTN\TN Py (nmk) dn

equal

iexp (Fr ), TH) + p(TH (m ){Zrz (TH(m)) ©..2(9)}

z=1
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where {r, | 1 < z < "} is a basis for the polynomials of degree at most N on fa, the orthogonal

complement of *ain a, and ¢, ,, . belongs to &(V, W'). We suppose that for each x there is a y such that

14
v

> (T(Hm) sy

z=1
does not vanish identically. If we show that — Re(THm) belongs to +(]La) for 1 < x < u” it will follow
from the corollary to Lemma 5.1 that ¢, , is square integrable. It is then obvious that it belongs to
*L({P},{V},W). The induction assumption implies that TH, isreal for 1 < z < «”. In particular we
can choose x; so that

H,, ="H, + TH,,.

Since

(Hay, Huy) = (*Hy,"Hy) + (1 H,,, TH,,)

is real the number (*Hy, *H; ) is real and *H; is either real or purely imaginary. Itis not purely imaginary
since o g, (Re Hy,) = ag,(Re*H;). Consequently H,, is real. To show that — Re(]LHx) belongs to
+(]La) we have to show that o ¢(Re THI) < 0if £ # 4. Certainly

N

avg(Re(*Hl + TH;E)) < Ao, )

140
and
o (Re(*Hy + TH,)) = —a g, (Re*Hy) = (g, 000)? po.
Thus
o o(VHL) < (0000 {0 — (0000 g e) o,y o) <0
if £ £ (.

Suppose that, for each P in {P}(i) and 1 < z < u, T, has the same meaning as above. It has

been observed that

S (Te, dfi 0 Zfz o) (Le, d¥(—H,))

=1
if f(-) = (f1(-),---, fr(+)), if, for each i, f;(-) is a bounded analytic function on D;, and if f;(sH) =
f:(H) if s belongs to Q(a?,al?)). Itis clear that the equality must also be valid for any function f(-)

such that f;(-) is analytic in a neighbourhood of

U U {-sH|HcF;}.

J=15€Q(al@) a®)
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Indeed for any such function
(T, dfi¥(—Hy)) = fi(—Hy)(Ty, dY(—H,)).

We turn to the proof of Lemma 7.2. Let C be an equivalence class in *S and choose s in C' so that
5 contains a distinguished subspace of the largest possible dimension. Replace, if necessary, *a by this
larger space and suppose that this distinguished subspace is *a itself. Of course the equivalence class
to which s belongs may become smaller but this is irrelevant. Suppose s lies in *S(*) and let Ts be the
projection of s on the orthogonal complement of *a. A point H in Ts which does not lie on a singular
hyperplane of any of the functions E(-, -, -) which are defined on Ts and which is such that if s1 and so
are in TQ(J')(5) for some j then sy H = soH only if s; = s, will be called a general point of Ts. There
is at least one cuspidal subgroup *P with *a as split component and one element of *{P}(i) such that
for some Fin L(S(s), &(V,W)) the function E(g, F, H) on *A*T\G x *s does not vanish identically.
Suppose that the general point H lies in U(Tﬁ, X (s),00). If P’ belongs to P} then

/ E(nmk,F, H)
onT NI

is equal to
> exp ((H'(9),5H) + p(H'(9)) ) N(s, H) F(g).
sefau(s)
N(s, H) is zero unless s belongs to TQ(s, t) for some t in *S(). Moreover t belongs to C' and *S@) the

largest distinguished subspace which t contains is *a. Thus if N (s, H)F'is not zero then
—Re(sH) = Re(Xs,)

belongs to +(Tal) if Tal¥) is the orthogonal complement of *a in (). Lemma 7.3 implies that sH is
real for all such s. If s were not the complexification of *a we could choose an H which was not real
so that E(g, F, H) did not vanish identically and obtain a contradiction. Consequently fs = {X(s)}
and X (s) is real. If s and t are equivalent then X (t) is real if and only if X (s) is; so it has only to be
shown that S is finite. This of course follows immediately from the assumptions of the lemma and the
fact that

X(s) =ReX(s)

forall sin S.
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Suppose *P with the split component *a is a cuspidal subgroup belonging to one of the elements

of {P}. Let P(»F) 1 < k < my, be a complete set of representatives for the elements of *{ P} (%) and let
¢ =g (ViR W),

If S is as above and s belongs to *S(*), t belongs to *S), and s belongs to Q(s,t) let M (s, H) be
that linear transformation from L(S(s),€¢®) to S(t) ® €U such that if F belongs to
L(S(s), E(B%H W)) then the component of M (s, H)F in S(t) ® (VWY W) is N(s, H)F. Of
course N (s, H) depends on P("*) and PU-), If C is an equivalence class in *S choose s in C so that

§ = a. where, if s belongs to *S(¥), a is a distinguished subspace of a(*). Let

2(s,0) = | T(s,1)
teC
and let Q (s, C') be the set of elements in (s, C') which leave each point of s fixed. Let s° be the linear
transformation in (s, s) which induces the identity ons. If t; and t; belong to C' then every element
of Q(t1, t2) can be written as a product ts°s~1 with sin Q(s, t;) and ¢ in Q(s, t3). If H isin Ts we form

the two matrices
M(H) = (M(tsos_lassoﬂ)); s, t € Q(s,0)

M = (M(ts°s™",s5°H)); s,t € Qo(s,0)
The first matrix is a meromorphic function of H; the second is a constnat. If s belongs to (s, C') there is

a unique j, such that s, belongs to *SUs). The matrix M (H) can be regarded as a linear transformation

from

Z L(S(ss), @(js))

s€N(s,C)
to

Z S(s,) @ €Us),

s€N(s,C)
It has a finite dimensional range and the dimension of its range is its rank. A similar remark applies
to M. We shall see that the functional equations for all the Eisenstein series are a consequence of the

following lemma.
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Lemma 7.4. Suppose that, for 1 <i <r, S is the collection of Lemma 7.2 and suppose that for
any *P, any s in *SP, any t in *SY) any P in {P}®, any P’ in {P}Y), and any s in JrQ(ﬁ,’c)
the functions N(s, H) and N*(s=%, —sH) are equal. If *P with the split component *a is given, if
C is an equivalence class in *S, if s belongs to C' and § is the complezification of a distinguished

subspace of b, then, if M(-) is defined at H, the rank of M(H) is the same as the rank of M.

If M (-) is defined at H and if sH = tH for some s and t in (s, C') implies sH' = tH' for all H’
in Ts then H is said to be a general point of Ts. Since the rank of M (H) is never less than the rank of
M it is enough to show that at a general point the rank of M (H) is no greater than the rank of M. If t
belongs to *S() and

F =] F,

belongs to
L(S(t), D) = @ L(S(t), ¢(VUH W),

let
E(g, F, H) ZE (9. Fe, H

If FF = @F; belongs to
@569(570)11(5(55)7 e(jS))
and H belongs to T5, let

E(g, F, H) ZE g, F,s5°H).

Suppose that H is a general point and for some such F' the function E(-, F, H), which is defined, is
zero. If m belongs to *M and k belongs to K then

/ E(nmk,F,H) dn

ontNGoT NG

is equal to

(7.0) Z exp ((H(j,ﬁ) m),tH) + p(H(J,Z) ){ Z (I)(J,é) }
t s€Q(s,C)

0

where the outer sum is over those ¢ in (s, C) such that j, = j and <I>(]’ is the function on *AT U9\ G

associated to the projection of M (ts°s~*, ss° H)F, on

S(sy) @ (VO W),
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Since H is a general point it follows that

(3,6)
> o
s€Q(s,C)
is zero; consequently

Z M(ts®s™ ', ss°H)F, = 0
s€Q(s,0)

forall tin Q(s, C).

If the dimension of *a is m, the dimension of the elements of S, there is nothing to prove. We
treat the case that the dimension of *a is m — 1 first. Let H be a general point of Ts and suppose that
Im H # 0and

ReH = X(s) + H’

with «(H") small and positive if « is the unique simple root of fa. As usual 5 = a. and Ta is the

orthogonal complement of *a in a. Let us show that if
F = ®secqs,0)Fs

is such that

Z M (ts°s™1,5s°H) F,
s€N(s,C)

is zero for ¢ in Qy(s, C) then it is zero for all ¢. Lemma 7.3 implies that E(-, F, H) can not belong to
*L{P},{V}, W) and be different from zero; so we show that E(-, F, H) belongs to *C({P},{V}, W).
In the expression (7.0) the sum can be replaced by a sum over the elements ¢ of the complement of
Qo(s,C) in Q(s,C) such that j; = j. The corollary to Lemma 5.1 can be applied if it is shown that,
for all such ¢, — Re(tH) belongs to +(Ta(j)) provided «(H’) is sufficiently small. Since —Re(tH) is
close to X (s;) this is perfectly obvious if *a is the largest distinguished subspace contained in s;. If it
is not then s, is the complexification of a distinguished subspace o’ of al?). If o is the unique simple
root of the orthogonal complement of *a in a’ then it follows from Lemma 2.13 that o/ (tH') is negative.

Lemma 2.5 implies that —tH belongs to *(Ta(®).

Since the set of points satisfying the condition of the previous paragraph is open it is enough to

prove that the rank of M (H) is not greater than the rank of M when H is in this set. Every element

G = ®ieqs,0) Gt
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in the range of M (H) is of the form

Gy = Z M(ts°s™!, ss°H) F,
s€Q(s,C)

with Fy in L(S(s,), €U+)). The map
G — Dteqy(s,0) D Gy
is an injection of the range of M (H) into
Dreap(s,0) ® S(s:) ® €U,
It is sufficient to show that the image is contained in the range of M. If not there would be a set
{F/ |t €Q(s,C)}

such that

> > (M(ts°s™!,ss°H) F,, F{) = 0

tEQQ(S,C) SEQQ(E,C)
for all sets {F, | s € Q(s,C)} and

Yo D (M(ts°sTss"H) Fy, F)) #0

teQ(s,C) s€Q(s,C)

for some set {F | s € (s, C)}. However, the first relation is independent of H so that, replacing H

by —s°H and using the relation
M (ts°s™ !, —sH) = M*(ssot ', tsoH),

we deduce that

> M(sstT'ts°H)F/ =0
teQo (S,C)

for all sin Qy(s,C) and hence for all s and all H. But the complex conjugate of the expression on the

left of the second relation is

Z { Z (M(ssot_l,tso(—sof_]))Ft’7FS)}

s€Q(s,C)  teQ(s,C)

and must be zero.
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The general case will be treated by induction. Suppose that the dimension of *a is n with n less
than m — 1 and that the assertion of the lemma is valid if the dimension of *a is greater than n. Let
Y (s,C) be the set of all s in ©(s, C) such that s contains a distinguished subspace which is larger than
*a and let

M'(H) = (M(ts°s™!,ss°H)); s,t € ' (s,C)

We first show that the rank of M (H) is no larger than the rank of M'(H). It is enough to show this
when H is a general point in U(Ts, X(s), oo) which is not real. The argument is then very much like
the one just presented. Indeed if

F= 69sEQ(s,C‘)Fs

and
Z M(ts®s™ ', ss°H) Fy =0
s€Q(s,0)
for all ¢ in (s, C) then E(-, F, H) is zero because — Re(sH) = Re X (s,) lies in +(Ta()) if a, belongs
to *SU) and s does not belong to (s, C'). Consequently this equality is valid for all t. As before the
restriction of the map

Bse(s,0)Gs = Bseqr(s,0)Gs

to the range of M (H) can be shown to be an injection into the range of M’(H). It remains to show that

the rank of M'(H) is no larger than the rank of M.

Suppose *P; is a cuspidal subgroup with split component *a; belonging to an element of { P}.
Suppose also that *P belongs to *P; and that *a is properly contained in *a;. Foreachi, 1 <1¢ < r,
*{P}gi) is a subset of *{P}(), Let Pl(i’k), 1 < k < m,, be a complete set of representatives for the
conjugacy classes in *{P}gi). It may as well be supposed that Pl(i’k) is conjugate to PU-F) 1 < k < m/.
The elements of C' which belong to *S; break up into a number of equivalence classes C1,---,C,. In
each C,, 1 < z < u, choose an s, such that s, is a distinguished subspace of h. For each x fix s, in
Q(s,s,) and let Q(s, C,) be the set of all s in (s, C) such that ss°s; ! belongs to Q(s,, C,.) and let
Qo(s, C,.) be the set of all s such that ss°s_ ! belongs to Q(s,, C..). The induction assumption will be

used to show that if Fy, s € Q(s, C,), belongs to
B2 L(S(s,), €U0, W)
if H is a general point of Tﬁ, and if

Z M(ts°s™,ss°H) Fy, = 0
s€N(s,Cy)
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for all ¢ in Qy(s, C,,) then this relation is valid for all ¢ in (s, C'). It is sufficient to establish this when

s»s°H belongs to the intersection of Ts and

U U s~ (a1

*111 Qa(j) SGTQl(u(i),u(j))

where 7 is such that s, € *SY). If

’
Mo b ~1
Fo=@, 5 F;, t =s5%,",

and D(H) is the linear transformation from &(VUs9 W) to @(Vl(js’z),W) defined in Section 4, let
G{ = dD(H) Ffand let
G =@ i Gy,

The relation (7.e) and the last part of condition (iii) for an Eisenstein system imply that

Z My (ts2s™t, 859 H,) Gy =0
s€Q(845,C5)

for all t in Qq(s,, C,) if H, is the projection of
sosyH = s,5°H

on the orthogonal complement of *a;. According to the induction assumption the relation must then

be valid for all ¢ in (s,, C;). Consequently

Z Eq(9,Gs,ss2H,) = 0.
SEN(s54,Cx)
The relations (7.c) and (7.d) imply that
Z E(g,F,,ss°H) = Z E(9,Gs,s5.,H)=0.
s€Q(s,Cy) s€Q(5,,Cy)

We obtain the assertion by appealing to the remarks made when we started the proof.

Suppose that for each s in (s, C,.) we are given Fy in
L L(S(s.), €V 0, W)).

It will also be necessary to know that we can find for each s in (s, C,,) an element F, of

m’.

<

N L(S(s,), €(VUD W)
k=1
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such that

Z M(ts°s™*, ss°H) Fy = Z M(ts°s™ "', ss°H) F!
s€Q(s,Cy) 5€Q0(5,Cx)

for all t in Q(s, C). If G, is defined for s in Q(s,, C,) as before the induction assumption guarantees

the existence of a set
{G/s ‘ s € QO(5$7CLE)}

such that

Z My (tss™ 1,859 H,) Gy = Z M,y (ts2s™t, 552 H,) G,
$€Q(52,Cy) s€Q(54,Cx)

forall ¢ in Q(s,, C,). We need only choose a set
{Fs/ ‘ S 90(570:10)}

which is related to {G } the way { F} is related to {G}.

Let
M{(H) = (M(ts°s ', ss°H)), s € Q(s,0), t € Q' (s,0).

Choosing *a; so that its complexification is s we see that the ranks of M/ (H) and M are the same. It
will now be shown that the range of M’(H) is contained in the range of M{(H) and this will complete
the proof of the lemma. Suppose that t in *S) belongs to C, that F' belongs to L(S(t), €(V3:9, W)

for some ¢, 1 < ¢ < m;, and that there isan r in (s, C') with s, = t. Let us show that

Z M (ts°r~,rs°H) F
e (s,C)

belongs to the range of M/ (H). Choose *a; so that t contains *a; and choose *P; so that *P; belongs to

PG ft belongs to C,, then we can choose for each s in Qy(s, C,) an element F,, of
D L(S(s0), €(VUI-H W)

so that

Z M(ts°s™',ss°H) Fy = M(ts°r ', rs°H) F
SGQo(ﬁ,CI)

for all . We may as well assume then that t is the complexification of a distinguished subspace of b.

Since the lemma is true for n = m — 1 the set of t in C such that t is the complexification of a

distinguished subspace satisfies the hypothesis of the second corollary to Lemma 2.13. The assertion
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will be proved by induction on the length of . Suppose that ¢ is another element of C such that t’ is the
complexification of a distinguished subspace and suppose that » = pt°r’ where r’ belongs to (s, t')
and has length one less than that of r, t° belongs to Q(t', t') and leaves every element of ' fixed, and p
is a reflection in Q(t', t). Choose *a; so that *a; is of dimension m — 1, is contained in t and ¥, and is
such that p leaves each element of *a; fixed and let *P; belong to PU-¥), There is an x such that t and
t' both belong to C,.. Lets, = t' and s, = r’. It has been shown that for each s in (s, C,) we can
choose Fj in
B3 L(S(s,), €(VE=P) 1))

such that

Z M(ts®s™ ', ss°H) Fy = M(tsor'_l,r'soH)F
SGQQ(B,CI)

for all t. Since the length of each s in Qy(s, C,.) is the same as that of r/, the proof may be completed by

applying the induction assumption.

Corollary 1. Suppose the collections S, 1 < i < r, and the associated Eisenstein systems satisfy
the conditions of Lemmas 7.2 and 7.53. Suppose moreover that if *P is a cuspidal subgroup belonging
to an element of {P}, if a®, 1 <i < ¢/, are the elements of {a¥) | 1 < i < r} which contain *a, the
split component of *P, and if, for 1 < i <1r', p; is a polynomial on Ta(i), the orthogonal complement
of *a in a9, and p;(sH) = p;(H) for all H in Ta® and all s in TQ(a(i), al9)) then for any s in
SO any P in *{P}, any F in L(S(s), €(V,W)), any t in *SY, any P' in *{P}V), any F' in
L(S(t), &(V, W),), and any s in Q(s, t)

(N(s,H)dp;(H) F,F') = (N(s,H) F,dp}(—sH) F")
Then for any *P, p1(-),---,pw(-), 5, P, F, t, P, and s as above
E(g,de(H)F,H) Epz(H) E(Q,F,H)

and

N(s,H)(dp;(H)F) = p;(H) N(s,H) F.

Of course the equalities above are not valid for literally all H in Tg; rather the two sides are equal
as meromorphic functions. It is enough to prove the equalities when H is a general point of Ts. Since

the two equalities are then equivalent, it is only necessary to prove one of them. Suppose first of all that
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§ is the complexification of “a. It was seen in the proof of Lemma 7.2 that if H = X (s) then E(-, F, H)
belongs to *L({P},{V'}, W). If ¢ belongs to *O(V’, W) then
/ E(mk, F, H) $(mk) dm dk
*O\*M x K

is equal to

S S (N(s,H)F,d¥(—sH))
59D T o,

According to the remarks following the proof of Lemma 7.3,
(N(S,H) F,d(p;qz(—sH))) = pi(H) (N(s, H) F,d%(—sH))
for all s. Thus for all F"in L(S(t), E(D,W))
(N(s,H)dp;(H) F,F') = (N(s,H) F,dp;(—sH) F") = p;(H)(N (s, H) F, F")
This proves the second equality in this case. Next suppose that s is the complexification of a distin-

guished subspace of a(®). It follows from the relation (7.e) that the first equality is valid on an open set

and hence on all of T5.

In the general case we prove the second equality. Because of the relation (7.e) it is enough to
show that if C' is an equivalence class in *S and if an s in C' such that s is the complexification of a

distinguished subspace of ) is chosen, then for all s and ¢ in (s, C') and all F'in @(7s)
M(ts®s™ ", ss°H)(dpj, (ssoH) F) = pj,(ssoH) M (ts’s™", ss°H) F.

It follows from Lemma 7.4 that if for a given s and F this relation is valid for all ¢ in (s, C) then it
is true for all ¢ in Q(s, C). It has just been proved that it is valid for s in (s, C') and t in (s, C') and
it remains to prove that it is valid for s in Q(s,C) and t in {)(s,C). Take such an s and ¢t and let I’

belong to &) and F’ to &¢U+); then
(M(tos_l, ss’H)(dp;,(ss°H) F), F') = (M(ts°s™",ss°H) F, dpy, (—tH) F')
which is the complex conjugate of
(M(ssorl, —tH) (dp’, (—tH) F"), F) — p?, (—tH) (M (ss°t ™, —tH) F', F).
Since the complex conjugate of the right hand side is
pj, (ss’H)(M(ts°s™",ss°H) F, F'),
we are done.

The next corollary can be obtained by an argument essentially the same as the one just given.

Since it is of no great importance the proof will be omitted.
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Corollary 2. If the collections SV, 1 < i < r, and the associated Fisenstein systems satisfy the
hypotheses of Lemmas 7.2 and 7.4, they are uniquely determined if for every cuspidal subgroup *P
of rank m belonging to some element of {P} the sets *S®), 1 < i < r are given and if for every s

in *S@ | every P in *{PY9) and every F in L(S(s), €(V,W)) the function E(-, X (s), F) is given.

It is now necessary to find some conditions on the collections S() 1 < i < r, and the associated
Eisenstein systems which imply the hypotheses of Lemmas 7.2 and 7.4 and the first corollary but
which are, at least in our context, easier to verify. It must be expected that they will be rather
technical. For convenience, if *P and Tg(i), 1 < ¢ < 7/, are as in the first corollary we will denote
the collection of 7/-tuples p(-) = (pi(-), -, p-(-)) satisfying the conditions of that corollary by 17,
The collection of 7’-tuples f(-) = {fi(-),---, frr(:)} where f;(-) is a bounded analytic function on
{H e Ta® | |Re H| < R} and f;(H) = f;(sH) if s belongs to TQ(a(", al?)) will be denoted by 17,.

The number R has been introduced in Section 4.

Lemma 7.5. Suppose that S, 1 < i < r, is a collection of distinct affine subspaces of a®)
which are of dimension m and which are defined by equations of the form o(H) = p where « is
a positive root of ) and p is a complex number and suppose that there is an Fisenstein system
associated to each element of S = J;_, S . Suppose that if s belongs to S and a is the orthogonal
complement in a'D of the distinguished subspace of largest dimension which is contained in & then
Re X (s) belongs to *a and X(s) lies in D;. Suppose also that only a finite number of elements
of S meet any compact subset of agi). Finally suppose that if *P is a cuspidal subgroup with
split component *a belonging to an element of {P} and if a, 1 < i < ¢, are the elements of
{a(i) ! 1 < i < r} which contain *a then there is an orthogonal projection @, which commutes with
A(f) if f() belongs to T3, of *"L({P},{V}, W) onto a subspace and for every positive number a
and each i a polynomial T; on Ta® which does not vanish identically on fs if 5 belongs to *S()

such that if P belongs to *{P}®, P’ belongs to *{P}Y), &'(-) belongs to *H(V, W),

and V(-) belongs to *H(V', W) then the difference (7.p) between

(RN A)Q ¢,7)

and

1 » o
Z Z (2ma)™ /U(Ts,X(s),a) (N(S7H) d(()‘ - (H,H)) (I)(H)),d‘l’( H)) dH
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and the difference (7.q) between
(Qé, R(\, A))

and

Z Z ﬁ/{](h,x(s)ﬂ)) (N(S’H) d(I)(H)’d(()\— <_SH7 _SH>)_1 \I/(_SH))> dH

5 (i) .
s€5 T a0 (s)

2

are analytic for ReA < R? —a?. Then for every s in S the set §)(s,s) contains an element which

leaves each point of 5 fixed. Moreover if *P is a cuspidal subgroup with split component *a, P
belongs to *{ P}, P’ belongs to *{P}), s belongs to *S, and s belongs to TQ(j)(5) then N(s, H)

vanishes identically unless sy = t for some t in *SU) and then
N(s,H) = N*(s"',—sH)

Finally, if F belongs to L(S(ﬁ), &(V, W)), F’ belongs to L(S(t), (’E(V’,W)), and p(-) belong to (s}
then
(N(s,H)dp;(H)F,F") = (N(s,H) F,dp;(—sH) F').

There is one simple assertion which is central to the proof of this lemma. We first establish it. Let
a be a positive number, let *P be a cuspidal subgroup belonging to some element of { P}, let s belong to
*5()  let P belong to *{ P}, let P’ belong to *{P}¥) and suppose that for each s in TQU) (s) there is a
given function M (s, H) on Ts with values in the space of linear transformations from L(S(s), €(V, W))
to S(s,) @ E(V’, W) such that (M (s, H) F, F') is meromorphic on Ts for all F and F’ and vanishes
identically if the order of F' or of F” is sufficiently large. Suppose that if

with @'(-) in *3(V, W) and ¥ (-) belongs to *H(V’, W) then
(M(s,H)d®(H),d¥(—sH))
is analytic on the closure of U(Tg, X (s),a) forall sand

> (27rlz')m /U(Tg X(s),a) (M(S,H) d((A— (H,H))™" @(H)),d\l/(—sﬁ)) dH

se 1 Q) (s)

is analytic for Re A < R? — a?; then if

Re(X (s), X(s)) > R% — a?,
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each of the functions M (s, -) is identically zero. Suppose not and suppose that M (s, H) F' vanishes
identically for all s if the order of F'is greater than n but that for some s and some F' = F; of order n
the function M (s, H) F; does not vanish identically. There are polynomials i, 1 < k < £on Ta® and

functions ®;, 1 < k < ¢, in &(V, W) such that the order of

Fy — d( > hi(H) <I>k>
k
is greater than n. Let
¢
() = FO{ D ) 01}
k=1
with some scalar valued function f(-); then

<M(s,H) d((A\—(H, H)) "' ®(H), d\I!(—sH)) =(A—(H, H))™* f(H) r:(H) (M (s, H) Fy,d%(—sH)).

Let
g(H)= Y ri(H)(M(s,H) Fy,d¥(—sH)).
seTQ(j)(s)
Then
/ (\— (H, H)~ f(H) g(H) dH
U(Tﬁ,X(s),a)

is analytic for Re A\ > R? — a?. Let B be the unit sphere in 5 N Ta(® and let dB be the volume element
on B. Set
f(?‘)z/ F(X(s)+iriH) g(HX(s) +irs H) dB.
B

If (Re X (s), Re X (s)) = pand (Im X (s), Im X (s)) = v then

=[O e ar
0
is analytic for
RelA>R?> —d®> —p+v

and the right side is negative. On the other hand if 0 < ¢ < a? — v,

}1{% %{C(—E +1i0) — C(—e —i6)} = £(e) />,

so that
{(r)=0



Chapter 7 159

for0 < r < p+a?— R?—vand hence for all r. Since f(H) can be taken to be the product of exp(H, H)
and any polynomial we conclude that g(H) vanishes identically. A simple approximation argument

which has been used implicitly before allows us to conclude that
M(S, H) FO =0

for all s and this is a contradiction.

Let *P be a cuspidal subgroup belonging to some element of { P}, let P belong to *{ P}(®, let
P’ belong to *{ P}, and let s belong to *S(). Let ¢(-) be a polynomial on a() which vanishes to
such a high order on every element t of *SU) different from s itself that if t belongs to TQ()(t) then
N(t,H) o dq(H) vanishes identically on Tt and to such a high order on every space t;, with ¢ in *S()
and t in TQ(j)(t), different from s itself that d*q(—tH) N (¢, H) vanishes identically on Tt but which

does not vanish identically on s itself. Of course d*q(H ) is defined by the condition that
(d*q(H)T,F) = (T,dq(H) F)

forall Tin S(t;) ® €(V, W) and all Fin L(S(t,), €(V,W)). In (7.p) replace ®(-) by ¢(-) ®(-) and let
and in (7.q) replace j by i, A by A, ®(-) by

and U(-) by ¢(-) ®(-); then subtract the complex conjugate of (7.q) from (7.p). Since the complex
conjugate of (Qy, R(\, A) ¢) is
(RO A) Qo ),

the result is

1 B B
Z . /(;(T57X(5)7a) (M(S’H)d(()\_ (H,H)) (I)(H))y\l/( H)) dH

sE]LQ(j)(s)

where M (s, H) equals
d*rj(—sH) N (s, H)dq(H)

if 5, does not belong to *S%) and equals

d*rj(—sH){N(s,H) — N*(s~',—sH)} dg(H)
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if s, does belong to *S). Since a can be taken as large as necessary we conclude that
N(s,H)=0
if s, does not belong to *S() and that
N(s,H)= N*(s"', —sH)
if 5, does belong to *SU). If £(-) belong to T3, then
(RO A) QA(S) 6,9) = (R(A, A) Q4 A(f*) ).
Thus we can also conclude that if
M(s,H) ={N(s,H)df(H) —d*(f*(—sH)) N(s,H)} dq(H)

then

1 » 3
> (2mi)™ /U(TE,XQT)@) (M(S,H)d(()\— (H,H))"" ®(H)),¥( H)) dH

sETQ(j)(g)

is analytic for Re A > R? — a2. Consequently

N(s, H)df (H) = d*(f*(~sH)) N(s, H)

for f(-)in TJO and hence, by a simple approximation argument, for f(-) in 173, The first assertion of the

lemma has still to be proved.

Suppose s belongs to *S(*). Let *P be a cuspidal subgroup belonging to some element of {P}
such that E(-, -, -) is not identically zero for some P in *{ P}(¥). Suppose that E(-, F,-) = 0if O(F) > n
but E(-, F,-) # 0 for some F'in O(F') = n. Let h(-) be a polynomial on ot such that

h(H — X(s)) = px (H)
where X lies in S(s) and is homogeneous of degree n, and such that
E(-,dh(H)F,-) #0

for some F in L(S(s), €(V, W)). We first show that if we take P’ = P then for some s in TQ(g, s) the
function
d*(h*(—sH)) N(s, H) dh(H) # 0
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Suppose the contrary. Fix some positive number a with
(Re X (s),Re X (s)) > R* — a®.
Choose ¢(+) as above; let @' (-) belong to *9(V, W); and set
O(-) =ri(-) () h(-) @'(")

Replacing ¥(-) by ®(-) in (7.q) we obtain (R()\, A) Qp, Q$), which must be analytic for Re A > R? —a?.
It follows from Theorem 5.10 of [21] that Q(ﬁ belongs to the range of E(R? — a?). However, if this is
so then for any P’ in *{P}¥) and any ¥(-) in *9(V’, W) the function (R(X, A) Q¢,) is analytic for

Re A > R? — a?; consequently

1 » o
Z (2ma)™ /U(Ts,X(s),a) (N(S7H) d(()‘ - (H,H)) (P(H))7d\:[j( H)) dH

seTa(s)

is analytic for Re A > R? — a?. Thus
N(s,H)dh(H) =0

for all s which is impossible. In particular there is some s in €)(s,s). For such an s,

consequently (X (s), X (s)) is real. Choose ® in &(V, W) so that
d*(h*(—sH)) N(s,H) d(h(H)®) # 0

for some s in TQ() (s, 5). If
and

and if b < a, and p = (X (s), X (s)) — b? then

((I—E(u)) Qcﬁ,z@) = (2W1,L.)m 3 /U(T&X(SM) F(H) g(—sH) (s, H) dH

sETQ(i)(s,s)

with
&(s,H) = (N(s,H)d(r,-(H) q(H)h(H) @),d(ri(H)q(H) h(H) \If))
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For some s the function (s, H) does not vanish identically. Consequently the expression on the right
is a positive semi-definite Hermitian symmetric formin f(-) and ¢(-) which does not vanish identically.
A simple approximation argument shows that there must be an s° in TQ0) (s,s)suchthat H = —s°H
forall H in U(Tﬁ, X (s),b). Choosing b sufficiently close to a we conclude that H = —s° H for all H in

U(Tg, X (s),00) and that s° leaves every element of 5 fixed.

Collections of subspaces and Eisenstein systems satisfying the conditions of Lemma 7.5 are just
what we need to describe the spectral decomposition of the spaces *L({ P}, {V},W). Let us see how

to associate to each such collection a closed subspace of each of the spaces *C({P}, {V}, W).

Lemma 7.6. Suppose that S®, 1 < i < r, is a collection of distinct affine subspaces of a¥) and
that if s belongs to S = J;_, SO there is given an Eisenstein system belonging to s. Suppose that
S and the associated Eisenstein systems satisfy the hypotheses of Lemma 7.5. Let *P be a cuspidal
subgroup belonging to some element of {P} and let *L'({P},{V},W) be the closed subspace of
*L{ P}, {V}, W) generated by functions of the form (I — E(X)) Q¢ where X and ®(-) are such that
for some positive number a, some i, and some P in *{P}(i) the inequality R?> — X\ < a? is satisfied
and
() =1i(-) ¥'()

with ®'(+) in *H(V,W). Let Cy,---,C, be the equivalence classes in *S and for each z, 1 < z < u,
choose s, in C, such that 5, is the complezification of a distinguished subspace of . If P belongs
to {PY%) and ®(-) belongs to *H(V, W) then

Z E(g,d®(ssoH),ssoH)
$€Q) (5,,C)

is analytic on U(Tsm,X(sm),oo), where
Q0 (s, Cy) = {5 € s, C) | s = i}

and if w, is the number of elements in TQ(5I,5I) then

u

1 o o
9(g,a) = Z wn (270)™ /U(]st’x(sm)ﬂ) Z E(g,d®(ssoH),ssoH) dH

x=1 s€Q() (5,,Cy)
belongs to *L'({PY,{V}, W) and the projection of ¢ on *L'({P},{V}, W) is equal to lim ¢(-,a).

Moreover if P’ belongs to *{P}U) and U(-) belongs to *H(V', W) then

> > (N(tsys', ssoH) d®(ssoH), dU(—tH))
teQ) (5,,Cy) s€Q) (5,,Cy)
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is analytic on U(T5z,X(5z),oo) and the inner product of the projection s ofqg and 1[1 on
L' P} AV}, W) is equal to

x m /Z > (N(tsgs™" 52 H) d®(ssyH), dU(—tH)) dH.

The inner sums are over t € QU (s,,C,) and s € Q¥(s,,C,). The integral is over

U(s,, X(s,),00). Suppose a is a positive number, P belongs to *{ P},

O() =ri() @'()
with &' (-) in *6(V, W), P’ belongs to *{ P}, and ¥(-) belongs to *3(V’, W). To begin the proof of
the lemma we calculate the inner product <(I — E(\)) Qq%,qﬁ) when A\ > R? — %, Choose 3 > R?,
a = A, and v > 0; according to Theorem 5.10 of [21]

(=B @dd) =m s [ (R A)Q9)d
0,7,

6—0 271

Since (7.p) is analytic for Re A > R? — a? it follows from the first corollary to Lemma 7.4 that the right

side equals

m o { > (27;)771 /<z — (H,H))"'(N(s, H)d®(H),d¥(~sH)) dH} dz.

1 -
§=0 271 J(a,8,7,8)

The sums are over s € *S® and s € TQU)(s). The inner integral is over U(Tg,X(s),a). Let

1
Thena > (u(s) — A) ?; so this limit equals

1 —
Z Z sz(h’x(g)’(u(s)_k)%) (N(s,H)d®(H),d¥(—sH)) dH

s€5() sETQ(j)(s)

which we prefer to write as

W (2ms)™

(7.7) Z_;ZZ %) / (N(tsos™, ss0.H) d(ssOH), dY(—tH)) dH

Theinnersumsareovert € QU)(s,, C,)ands € Q¥ (s,, C,). Theinnerintegral is overU<T5I,X(5z), ((s2)—

A)*). It should perhaps be observed that if H belongs to U(Ts,, X (s,), oc) then

—tH = ts2H.
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Let

xvwy = Y L<S((5x)s), (v, W)), 1<z <u,
S€Q0) (5,C)

and define X, (V’, W) is a similar fashion. If F' = @& F} belongs to X,,(V, W) and I’ = @ F belongs to
X (VW) let
FF = Y > (N(tsis™' ssoH) Fy, F).

t€QW) (55,C2) s€QW (52,C5)
Of course [F, F’] depends on H. A simple approximation argument shows that, when H belongs to

U(sz, X (s2),00),
(7.5) [F,F] > 0; |[F,F)|* < [F,F|[F', F).

At this point we need to remind ourselves of a number of simple facts from the theory of

integration (cf. [5], Ch. Il). Let £, (V, W; \) be the space of all functions
F(H) = ®F;(H)

on U(ng, X(s0), (u(ss) — )\)%> with values in X, (V, W) such that [F/(H), F| is measurable for every
FinX,(V,W),

Frop(H) = Fy(s2rH)
forall rin TQ(%,%), and

1

- _ 2
wm(27r)m /(](TSI,X(EI)v(M(SI)—)\) [F(H)’F(H)] |dH| HF( )H

[V

)

is finite. If two functions whose difference has norm zero are identified, £, (V, W; \) becomes a Hilbert
space.
Dam1 La(V. W3 A) = L(V, W A)

is also a Hilbert space with the dense subset
RV, W32) = { @4y Bucao s, 0, d@(ss2H) | () = 1i(-) (), @/() € H(V, W) .

The map
o() — (I - E(N) Qo

can be extended to an isometric map of L(V, W; \) into *L'({ P}, {V}, W)

FQ)— f



Chapter 7 165

where

F() = @i Fa ().

Let L, (V, W) be the set of all functions
F() = &F()

on U(Tsm,X(ﬁx),oo) with values in X, (V, W) such that [F'(H), F| is measurable for every F in
Fogor(H) = Fy(rsoH)

for all r in TQ(ﬁw,ﬁw), and

1

we(2mm /U(]Lsm,x(sx)@O) F(H), FUD dH] = [FOI

is finite. L, (V, W) is also a Hilbert space; let
Sy Lo (V, W) = L(V, W).

Thespaces L(V, W; \) can be regarded as subspaces of L(V, W) and |, L(V,W; \)isdensein L(V, W).
The map F(-) — f can be extended to an isometric mapping of L(V, W) into *C/({P},{V},W). It
follows readily from (7.r) that if F'(-) belongs to L(V, W) and G(-) belong to L(V’, W) then
. - 1
(F.9) =Y 5 [ 4 X(60).00) [F(H), G(H)) dH].
2 5@ ot )

=1

Let F2(-) = ®F%(-), 1 < x < u, be a function in U(Tﬁw,X(ﬁw), oo) with values in X, (V, W) such that

FI

o
S8, T

(H) = Fs(rs2H)

for all r in TQ(%,%) and suppose that if G(-) = &¥_, G, (-) belongs to &(V, W; \) for some A then
[F.(H),G(H)]is measurable for 1 < z < w and

2 1

; W (2m)™ /U(]Lsz,X(sI),(u(sz)—/\) (), G (H) dH

[N

)

is defined and is at most c||G(-)|| where c is some constant. Then F'(-) belongs to £(V, W) and its norm

is at most c.
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If (-) belongs to *H(V, W) and
Fw(H) = @869(7‘,) (5I7Cz)d@(SS;H),

this condition is satisfied with ¢ = ||®|. If P’ belongs to *{ P}()) and ¥(-) belongs to *»(V"’, W) it then
follows from (7.s) that

Z Z (N(tsos™', ssoH) d®(ssoH),dV(—tH))
teQU) (5,,C) s€QD (5,,C)

is integrable on U(Tsm, X(sz), oo). However, it is a meromorphic function with singularities which lie
along hyperplanes of the form a(H) = p; so itis integrable over U(Tsx, X(sz), oo) only if it is analytic
on this set. Applying the map F(-) — f to the above element of L(V, W) we obtain a function ¢/
in *L'({P},{V},W). To prove the final assertion of the lemma it is sufficient to show that ¢/ is the
projection of ¢ on *C/({ P}, {V}, W) or that

(1= EMW)@b.8) = (1 - BX) Qi)

whenever there is a positive number a and a P’ in *{P}\) for some j such that R*> — A < a? and
V() = rj(-) ¥'(-) with ¥'(-) in *(V’',W). This follows from the formula (7.r) with ®(-) and ¥(-)

interchanged.

Take ®(-) as in the last paragraph and suppose that for some x

> E(.d®(ssyH),ssoH) = E(- H)
Ss€Q) (5,,C4)

is not analytic on U(Tgx, X(s;),00). Let t be a singulary hyperplane which intersects U(Tsm, X (s2),
oo) . Selectaunitnormal to t, take an arbitrary analytic function g(-) on's, and consider Res{g(H) E(-,H)}.
If P’ belongs to *{ P}\) for some j and v belongs to *®(V, W) then

/ Resc{g(H) E(mk, H)} y(mk) dm dk
*O\*M x K

is equal to

Res, { [@\*MXK g(H) E(mbk, H) 9 (mk) dm dk:}.

If ¢ is the Fourier transform of W¥(-) the expression in brackets is equal to

g(H) Z E (N(ts2s™ ', ssoH) d®(ssoH), dV(—tH)).
teQ) (5,,Cy) s€Q (5,,Cy)
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Since no singular hyperplanes of this function intersect U(Tﬁw,X(Ez), oo) the residue is zero. Com-
paring this conclusion with Lemma 3.7 we obtain a contradiction. Suppose that ¢/ (-, a) is the image in
L' ({P},{V}, W) of the element
D1 Fo(H)
of L(V, W) where
Fy(H) = ®4c00)(s,,0)dP (553 H)

if |ImH|| < aand F,(H) = 0if || Im H|| > a. Certainly the limit of ¢/(-, a) as a approaches infinity
is equal to the function ¢’ of the previous paragraph. To complete the proof of the lemma it has to be
shown that ¢/ (-, a) = ¢(-,a). To do this we show that if P’ belongs to *{ P}%) for some j and 1 belongs
to "D (V, W) then

(¢/ () ) = (o), ).
Now (¢(-,a), %) is equal to

u

1 i . .
w, (2™ / 2 {[@\*MM E(mk, d®(ss3 H), ssg H) (mbk) dm dk} dH.

=1

The outer integral is over U(Tg, X (s),a) and the inner sum is over s € Q9 (s,, C,). Referring to (7.a)

we see that if ¢ is the Fourier transform of W (-) this equals

2 W /Z > (N(tsgs™", ssoH) d®(ssoH), dW(—tH)) dH

which is, of course, equal to (qﬁ’(-,a),lﬁ).

There is a corollary to this lemma which is of great importance to us.

Corollary. Let *P be a cuspidal subgroup belonging to some element of { P} let P belong to *{ P},
let s belong to *S and let F belong to L(S(5), &(V, W)) If a is the largest distinguished subspace
which s contains and if r is the inverse image in s of a singular hyperplane of the function E(-, F, H)

on Ts which meets U(Ts,X(s), oo) then 7 contains a.

Suppose that s is the complexification of a distinguished subspace a of ). The assertion in this
case is that F(-, F, H) has no singular hyperplanes which meet U(Tﬁ, X(s), oo) and it will be proved
by induction on dima — dim *a. We first take this difference to be one. Let Hj be a unit vector in

s a®. If X is asingular point of E(-, F, H) lying in U(Ts, X (s),00) let

o
E(g,F,X +izHo) = »_ 2 Ex(g)

k=—m
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withm > 0and E_,,(g) # 0. If s belongs to C,, choose s,, = s and let F""'(-), for sufficiently large n,
be that element of L, (V, W) such that F*( H) vanishes identically if s isnot in TQ(s, s), Fso(H) equals
nz™F if H =X + izH, with 1/2n < z < 1/n and equals zero otherwise, and F}.(H) = Fso(rs°H) if

r belongs to TQ(5,5). Since, for large n,

1/n
[F O =nj2n [ (NG, X) FoF) ds
1/2n
lim [[F"(-)||* = 0. Let f™ be the image of F(-) in *L'({P},{V'}, W). An argument like that used in

the proof of the lemma shows that

1/n

[g) = n/27r/ 2™ E(g, F, X +izHy) dz
1/2n

=n/2r Z/ 2" By(g) dz,

k=—m " 1/2n

so that

lim f(g) = ——F_(g)

n—00 47
uniformly on compact sets. Comparing the two results we conclude that £_,,(g) = 0, and this is
impossible.
Suppose that dim a — dim *a = n is greater than one and that the assertion is true when dim a —
dim *a is less than n. If tin *SU) belongs to the same equivalence class as s, if P belongs to *{ P}, if F
belongs to L(S(s), &(V,W)), if P’ belongs to *{P}7), if I’ belongs to L(S(t), €(V, W)), if s belongs
to TQ(E,E), and if ¢ belongs to TQ(g, t) then

‘(N(tsos_l, ss°H) F,F') ‘2

is at most
(N(ss°s™",ss°H) F,F)(N(ts°t" ', ts°H) F' | F")

which in turn equals
(N(s°,ss°H) F,F)(N(t°,ts’H) F', F")

if H belongs to U(T5,X(5), 00). Consequently if a singular hyperplane of the function (N (¢s°s™,

ss°H) F, F') meets U(Tg, X (s), 00) it must be asingular hyperplane of (N (t°,ts°H) F’, F”). This fact
will be used to show that, if for some F in L(S(s), &(V, W)) the hyperplane Tr meets U(Ts, X(s),00)
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and is a singular hyperplane of E(-, F, H), then for some j, some t in *S(7) such that the largest distin-
guished subspace contained in  is larger than *a, some P’ in *{P}\%), some F” in L(S(t), &(V',W)),
and some ¢ in (s, t) the function (N (t°,ts°H) F’, F’) has frasa singular hyperplane. Suppose not,
and let v be the inverse image of frin s. Selecta unit normal to t and consider the function Res. E(-,-, ")
defined on

"AT\G x L(S(v), E(V,W)) x {Tt}.

If r belongs to TQU)(x) for some j, then Res, N(r,-) is zero unless there is a t in *S() such that the
largest distinguished subspace contained in t is *a, and a t in TQ(s, t) such that r is the restriction to t
of ¢t. Then

Re{—r(X(v))} = —r(X(s)) = X(t)

belongs to +(Ta(j)). It follows from the corollary to Lemma 5.1 that if F is in L(S(x), €(V,W)) and
Res, E(-, F, H) is defined at H in U(Tt, X(r),00), then it belongs to *C({ P}, {V'}, W). Choosing such

an H which is not real we contradict Lemmma 7.3.

Let us, for brevity, call those s in S such that s is the complexification of a distinguished subspace
principal. To complete the induction and to prove the lemma for those elements of .S which are not
principal we will use the functional equations proved in Lemma 7.4. Let C' be an equivalence class in
*S and choose a principal element s in C. If s, is in *S(*) and belongs to C and if P in *{ P}(* is given

we can choose the set of representatives Plk) 1 <k < m, so that it contains P. Choose
FY = ®cqqs,0) FY
with F¥ in L(S(ss), €U+)) so that the set of vectors ®;cq(s,c) Ff (H) with

FY(H)= ) M(ts°s ", ss°H) F¥
SEQO (S,C)

is a basis for the range of M (H) when M (H) is defined. There are elements
GY = Bseq,(s,0)GY

such that if {G, |t € Q(s, C)} belongs to the range of M (H) and

v

Gt == ch Fty

y=1
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for all ¢ then

ey = Y, (G.,GY).

$€Q (5,0)

If F belongs to L(S(s1), €(V ), 1)) for some k, s; belongs to 10(s, s,), and
Z cy(H) F{(H) = M(ts’sy",s1s°H) F
y=1

for all ¢ then

(7.1) E(g, F,s,s°H) = Xv: cy(H){ Y e, FY, SSOH)}.
y=1 s€Q0(5,C)

Suppose that s; is principal and that t; is the inverse image in s, of a singular hyperplane of E (-, F, ).
Let t in *SU) be an element of C' which contains a distinguished subspace *a; larger than *a such
that for some P’ in *{P}), some F’ in L(S(t), €(V',W)), and some ¢; in TQ(sl,t) the function
(N(t°,t1s9H) F',F') has v, as a singular hyperplane. Since N(t°,t1s{H) depends only on the
projection of t;s{ H on the orthogonal complement of *a; the hyperplane t;s¢(t;) contains *a;. There
is a principal element in *S; which is equivalent to t; it may be supposed that we have chosen s to be
this element. Choose a t in (s, t) which leaves every element of *a, fixed. Let us take s; to be ¢; 't°t.
Then E(g, F,s15°H) has a singular hyperplane Te which meets U(Ts, X (s),00) such that t contains

*a;. As usual the inverse image ¢ of Trin s is written as X(t) +t. Now

cy(H) = Z (M(tssy ", s1s°H) F,GY)
teQo(s,C)
and is thus analytic on U(Tﬁ,X(s),oo). Consequently for some s in Qq(s,C) the function
E(-,FY,ss°H) has v for a singular hyperplane. In other words we can suppose that if s belongs
to *S(¥), there is a P in *{P}*), and an F in L(S(s), €(V,W)) such that E(-, F,-) has a singular
hyperplane Tr which meets U(T5,X(5), oo) and is such that t contains *a;. Let *P; be the cuspidal

subgroup with split component *a; which belongs to P and let F (-, -, -) be the associated function on
/
AT T\G x L(S(s), &(V,W)) x Ts

if Ts' is the projection of s on the orthogonal complement of *a;. It follows from the relation (7.c) that
Ey (-, F,-) must have a singular hyperplane in Ts’ which meets U(T5’,X(5), 00) and this contradicts

the induction assumption.
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The general case now follows readily from the relation (7.t). Indeed a singular hyperplane
of the function E(-, F, H) defined on Tﬁl, the projection of s; on the orthogonal complement of *a,
can meet U(Tg,X(s),oo) only if it is a singular hyperplane of (M (ts°s; ', H) F,G,) for some s
in TQ(5,51) and some ¢ in Qq(s,C) and hence, by (7.s), a singular hyperplane of (M(s$, H) F, F).
Since M (s{, H) depends only on the projection of H on the orthogonal complement of the largest

distinguished subspace contained in s; the corollary follows.

The principal assertion of the paper can now be formulated as follows.

Theorem 7.1. There are g + 1 unique collections S,, = J;_, Sﬁ,i) of affine spaces of dimension m
and unique Fisenstein systems, one belonging to each element of S,,, 0 < m < q, which satisfy the
hypotheses of Lemma 7.5 such that if *P is a cuspidal subgroup belonging to some element of { P}
and *L,({P},{V}, W) is the closed subspace of *L({P},{V}, W) associated to S,, by Lemma 7.6
then, if *q is the dimension of *a,

q

LEPHAVEW) = Z Ln({PH{VEW)

m=*q

and *Lp,, {P},{V}, W) is orthogonal to *Lp, ({P},{V}, W) if my # ma.

We will use induction on m to establish the existence of these collections and the associated
Eisenstein system. Let us first describe the form the induction step takes, then show how to start
the induction, and then carry it out in general. Let m be an integer with 0 < m < ¢ and suppose
that we have defined the collections S,(f), 1 < ¢ < rforall n > m and that if n; # no the spaces
Ln, {P} AV}, W)and *L,,, ({P},{V}, W) are orthogonal. Suppose that for 1 < i < r we have also
defined a collection S of distinct affine subspaces of a’’ of dimension m and a collection T of
not necessarily distinct affine subspaces of agi) of dimension m — 1 and that we have associated an
Eisenstein system to each element of S(*) and 7", Suppose that every space in S or T(9) meets
D; and that only a finite number of the elements of S or 7)) meet each compact subset of a'”.
In particular then if s belongs to S or T(*) the point X (s) lies in D;; we assume also that Re X (s)
belongs to Ta if a is the orthogonal complement of the largest distinguished subspace contained in s
and to the closure of Ta(s) if a(s) is the orthogonal complement of 5 in a(*). Recall that *a(s) has been
defined in the discussion preceding Lemma 2.6. If s belongs to S() it is said to be of type A if for every
positive number a we have defined a non-empty convex cone V (s, a) with centre X (s) and radius £(a)
so that if a; is less than ay then V (s, aq) contains V (s, az), so that every singular hyperplane of the

associated Eisenstein system which meets the closure of the cylinder 0(5, e(a), a) meets the closure of
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U(ﬁ, X(s), a) but no singular hyperplane meets the closure of U (s, Z, a) if Z belongs to V (s, a), and so
that the closure of V (s, a) is contained in D;. An element t of T s said to be of type B if it satisfies,
in addition to these conditions, the condition we now describe. Let P belong to { P}¥), let *P belong
to P, and let F belong to L(S(t), &(V,W)). If a is the largest distinguished subspace which t contains
and if v is the inverse image in t of a singular hyperplane of the function E(-, F| -), which is defined on
Tt, which meets U(Tt, X(v), oo) then  contains a. If t lies in 7% it is said to be of type C' if for every
positive number a we have defined a non-empty open convex subset V' (t,a) of t so that if a; is less
than as then V' (t, aq) contains V (¢, az) so that no singular hyperplane meets the closure of U (t, Z, a) if
Z belongs to V' (t,a), and so that {Re Z| Z € V(t,a)} is contained in the interior of the convex hull of
(a)* and the closure of *a(t). We assume that every element of S() is of type A and every element

of T() is of type B or C.

Suppose that *P is the cuspidal subgroup belonging to some element of { P} and let ) be the
projection of *L({ P}, {V'}, W) onto the orthogonal complement of

q

Y TPy VW)

n=m-+1

We suppose that Q is zero if m is less than *q but that if m > *g then for any P in *{ P}, any ®(-) in
*$(V, W), any P’ in *{P}U), and ¥(-) in *3(V’, W) and any positive number a the difference between
(R(\, A) Q¢, 1) and the sum of

1 . )
2. 2 W/(N(Svﬂ)d(@%ffﬂ» ‘I’(H)),d‘ll(—sH))dH

s€50 eTau(s)

and

> 2 W/(N(t7H)d((/\—(H,H})_IQJ(H))@\IJ(_SFI))dH

(1) .
tert tGTQU)(t)

is analytic for Re A > R? — a2 if Z(s) belongs to V (&, a) and Z(t) belongs to V (t,a). The integrals
are over U(Tg, Z(s), a) and U(Tt, Z(b), a) respectively. The integer m’ equals m — *q. We also suppose
that the difference between (Q¢, R(), A) 1)) and the sum of

> > L [ (N(s, Hydo(H), d((A — (~sH, s )" W(—sH))) dH
(271)

s€50 eTau(s)
and

DS W%/(N(t,H) AD(H), d((A — (~sH, —sH)) " W(~sH))) dH

T oo
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is analytic for Re A\ > R? — a?. The integrals are again over U(Tﬁ, Z(s),a) and U(Tt, Z(4),a).

It is an easy matter to verify that the collections S(*) satisfy the conditions of Lemma 7.5. First
of all, Lemma 7.6, with m replaced by n > m, make it obvious that A(f) commutes with @ if f(-)
belongs to TJO, so that it is only necessary to verify that for each *P and each positive number « there
are polynomials ;(-), 1 < i < 7/, on Ta(® for which (7.p) and (7.q) have the required property. Since
there are only a finite number of t in *T"(Y) for which U(Tt, Z(t),a) is not empty, a polynomial r;(-) can
be chosen so that, for all P and P/, all such t, and all ¢ in TQ() (t), the function N (¢, H) dr;(H) vanishes
identically on Tt but so that r;(-) does not vanish identically on Tsifs belongs to *S(¥). It may also be

supposed that if s belongs to S() and s intersects
{H € D;| || Im H|| < a}

then, for all P and P’ and all s in TQU)@), the functions N(s, H)dr;(H) on Ts has no singular
hyperplanes which meet
{H € D;||ImH| < a}

The conditions of the last paragraph imply that with such polynomials the conditions of Lemma 7.5
are satisfied. To see this one has to use the argument preceding Lemma 7.1 in the way that Lemma 7.1

is used below. We will take S to be S,

We must now examine the expression

1 _
(7.u) >y G /U ez} (N(s,H)d®(H),d¥(—sH)) dH.

s€*S(9) se]LQ(j)(s)

Since the set S = (J;_, S is finite we may suppose that, for each positive a, the cones V (s, a), s € S,
all have the same radius £(a). We may also suppose that ¢(a) is such that for each a and each s there is
acone W (s, a) with centre X (s) and radius ¢(a) such that if s belongs to (s, t) for some tin S and Z
belongs to ss° (W(s, a)) there is no singular hyperplane of the Eisenstein system associated to t which

meets the closure of U(t, Z, a). It may also be supposed that if v and s belong to S the collections
{ss°(W(s,a)) |s €Q(s,t)}

and
{rr?(W(x,a)) |r € Q(x,t)}
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are the same if Q(t, s) is not empty and that if s € (s, t) and ¢ € (s, t) then
ss°(W(s,a)) Nts®(W(s,a)) # ¢

implies s = t. Choose for each s in .S and each s in (s, s) a point Z(s, s) in ss"(W(g, a)). According
to the remarks following the proof of Lemma 7.1 there is a collection Tl(i) of m — 1 dimensional affine
spaces and for each t in Tl(i) an Eisenstein system belonging to t and a cone V (t, a), with centre X ()

and some radius d(a), such that, for all *P, (7.u) is equal to the sum of

1 _
(7.0) ZZZW /U (heztorye) (N(s,H)d®(H),d¥(—sH)) dH
and
1 _
(7.w) >y W/U(Tt,z(t),a) (N(t,H)d®(H),d¥(—tH)) dH

ter 7" teTQUf)(t)

with Z(t) in V(t,a), and a sum of terms of the same type as (7.m). The sums in (7.v) are over s € *S(%),
r € §(s,s),and s € TQU)(ﬁ) and the number of elements in (s, s) is w(s). We can certainly suppose
that, with the cones V (¢, a), the elements of Tl(i) are all of type B. The supplementary condition on
elements of type B must of course be verified but that is not difficult. We can also suppose that the sets

U’ occurring in the terms of the form (7.m) all lie in
{H|IRe H|| < R, | Im H|| > a}

Thisimpliesthatif ®(H ) isreplaced by (A\—(H, H))~! ®(H)or ¥(H) isreplaced by (A\—(H, H)) ™' U(H)
the difference between (7.u) and the sum of (7.v) and (7.w) is analytic for Re A > R? — a?. If t belongs
to Tl(i) we will also have to know that if a is the orthogonal complement of the largest distinguished
subspace contained in t then Re X (t) lies in *a and that if a(t) is the orthogonal complement in a*) of
t then Re X (t) lies in the closure of Ta(t). The space t is a singular hyperplane of some s in S(*) such
that t meets U (s, X (s), 00); consequently Re X (t) = X (s). The first point follows form the corollary to
Lemma 7.6 because according to it we can assume that the largest distinguished subspaces contained

in § and t are the same. If « is a positive root of a(”) let H, be such that
<H7 Ha> = a(H)

forall H in al). The second point follows from the observation that the closures of *a(s) and Ta(t) are
the non-negative linear combinations of the elements H, where « varies over the positive roots which

vanish on 5 and t respectively.
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Let C4,- -, C, be the equivalence classes in *S and for each x choose a principal element s, in
C,. LetrY, 1 <y < v,, be asubset of Q(s,, s, ) such that every element of Q(s,, s, ) can be written in
the form ss%r¥ with a unique y and a unique s in TQ(sm,sm). Choose for each z a point Z, in W (s, a)

and if s belongs to C, and s belongs to (s, s) let
Z(s,s) =tso(Zy)
if ¢ is the unique element of {2(s,, 5) such that
55°(W(s,a)) = ts3(W(sy,a)).

The expression (7.v) is equal to

S5 i | X (Vs ssLH) A0 (ssH). ¥ (—tHT)) .

Theintegral is taken over U(ng, r¥(Z,),a) andthesumsareovert € Q) (s,,C,)and s € Q) (s,, C,).
It follows from Lemma 7.6 that each of these integrands is analytic in the closure of C(sm, e(a), a); con-

sequently the argument used in the proof of Lemma 7.1 shows that the sum is equal to
u 1 . B
(7.x) ; PN CEnIT / D (N(tsgs™, ssoH) d®(ssoH),d¥(—tH)) dH.
(the integral is here taken over U(Tﬁx, X (s;),a)) plus a sum of terms of the form
1 _ _
PNCEnTT / , DD (N(tsgs™, ssoH) d®(sso H),dV(—tH)) dH
where U’ is an open subset of an m/-dimensional oriented real subspace of Tﬁw which lies in

{H eTs,||ReH| < R, | Im H| > a}.

In any case if ®(H) is replaced by (A — (H, H))~' ®(H) or U(H) is replaced by (A — (H, H)) "' ¥(H)

2 If ¢,y is the projection of ¢

the difference between (7.x) and (7.v) is analytic for ReA > R? —a
on *L,,({P},{V}, W) it follows readily from Lemma 7.6 that the difference between (R(X, A) b Qp)
and (7.x) with ®(H) replaced by (A — (H, H))~* ®(H) is analytic for Re A > R? — a? and that the

difference between (4., R(\, A) ) and (7.x) with W (H) replaced by (A — (H, H))~" W(H) is analytic
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for ReA > R? — a2 In conclusion, if Q' is the projection of *C({P},{V},W) on the orthogonal

complement of
q

> La{Ph VW)

n=m

and R() is the union of 7" and T%) then the difference between (R(), 4) Q'$, ) and
1 B )
ZZW/<N(T,H)CZ((A—(H,H>) q)(H)),d\I/(—sH))dH

and the difference between (Q(ﬁ, R(\, A) zﬁ) and

ZZ (271'2)% / (N(TvH) dCIJ(H),d((X —(-rH, —rﬁ))_l \y(_rH)) dH

2. The sums in the two displayed expressions are over t € *R(®),

are analytic for ReA > R? — a
r € QW (x), and the integral is taken over U(]Lt, Z(x),a). In particular if m = *q these sums are empty

so that (R()\, A) Q'¢,v) is entire and, hence Q¢ = 0. Consequently
LHPHAVEW) = &5 L ({P}A{VEW).

We observed after defining an Eisenstein system that, for 1 < ¢ < r, we could define in a simple
manner an Eisenstein system belonging to a(. If R(") = {a(i)} and if for all positive numbers a we
take V(a(), a) tobe {H € A na® | |H| < R} then it follows readily from the relation (4.p) that the
difference between (R()\, A) </3, Qﬁ) and

1 » )
ZZW/(N(S,H)d(()\—U{,H)) CI)(H)),Chﬂ(—SH))dH
and the difference between (gb, R(\, A) @[,) and

ZZ (2,”12')41’ /(N(SvH) d@(H),d((;\— <—8FI,—SH>)_1 W(—SFI)) dH

are analytic for Re A > R? — a? if Z(x) belongs to V (t, a). The ranges of summation and integation are

the same as above, and the integer ¢’ equals ¢ — *q.

We now change notations so that m — 1 or ¢ is m and show that from the collections R*) we can
construct collections S(* and T(¥) which satisfy the induction assumption. Apart from the uniqueness
this will complete the proof of the lemma. The construction is such that the analytic conditions on
the associated Eisenstein systems are manifest; so only the less obvious geometrical conditions will

be verified. Suppose that t belongs to R(*) and is of type C; since {Re H \ H € V(v,a)} lies in the
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interior of the convex hull of (a(?)* and the closure of *a(t) there is an open cone with centre X (t)
whose projection on a(® lies in the interior of this convex hull. We tentatively let S¢) be the set of
distinct affine subspaces s of a() such that s = t for some tin R("). For each s in S(Y) and each positive
number a we choose a non-empty convex open cone V' (s, a) with centre X (s) and radius d(a) so that
V (s,a1) contains V (s, as) if a; is less than ay, so that if s = v and t belongs to R(*) then every singular
hyperplane of the Eisenstein system associated to t which meets the closure of the cylinder C(s, 0(a), a)
meets the closure of U(s, X(s), a) but so that no such hyperplane meets the closure of U(s, Z, a) if Z
belongs to V (s, a), and so that the closure of V (s, a) lies in D;. If s = ¢t with v in R and of type C
we further demand that {Re H | H € V(s,a)} lie in the interior of the convex hull of (s())* and the

closure of Ta(s).

Suppose that t belongs to R(*) and is of type C. Choose the unique s in S*) such that v = s.
Suppose that Y belongs to V (s, a), that Z belongs to V' (t, a), and that the segment joining Re Y and
Re Z meets the projection on a(?) of the singular hyperplane t of the Eisenstein system belonging to «.
We have oberved that the closure of Ta(t) is contained in the closure of Ta(t). Thus {Re H | H € V(r,a)}
and {Re H | H € V (s,a)} lie in the interior of the convex hull of (a(?))* and the closure of *a(t). The
intersection of the convex hull of these two sets with {Re H\ H € t} also lies in this set. Take a point
in this set, which is not empty, and project it on a(t); the result is Re X (t). Thus Re X (t) lies in the
interior of the convex hull of the closure of *a(t) and the projection of (a(¥))* on a(t). If « is a positive
root of a(t), if H lies in (a(?)T, and if H’ is the projection of H on a(t) then a(H') = a(H) which is
positive. Thus Re X (t) lies in the interior of the convex hull of a* (t) and the closure of *a(t). This is

Fa(t) itself. If 8y, -, 3, are the simple roots of a(t) then
p
ReX(t) =Y b;Hg,
j=1
with b; > 0. Letay , - -, o, be the simple roots of al®) and let

q
Bi, = bikou,
k=1
with by, > 0. If

p
D bibje=0
j=1

for some ¢ then b;, = O forall j and t contains the distinguished subspace of a(*) defined by ag, (H) =0,
k # €. It follows readly that if a is the orthogonal complement of the largest distinguished subspace

which t contains then Re X (t) lies in *a.



Chapter 7 178

The elements of 7" will arise in two ways. Suppose that t belongs to R*) and is of type C.
Choose the unique s in S() such that t = s. As a consequence of Lemma 7.1 we can choose a collection
T((:)) of affine subspaces of a(*) of dimension m — 1 and a collection of Eisenstein sytems, one belonging

to each element of T((:)) so that the difference between

1 —
2 (2mi)™ /u(Tt,z(t),a) (N(r, H) d2(H), d¥ (=5 H)) dH

te (9162 (t)

and the sum of

1 —
Z W /U(]LS,Z(S),a (Nr(57 H) d(I)(H)’ d‘ll(_SH)) dH

sETQ(.f)(g)

and ,

te*;; (®) tew%m) (@i /U (Tez(v.a) (NG, H) 4B (H), (o H) M
is a sum of integrals of the form (7.m). Of course Z(t) belongs to V'(t, a), Z(s) belongs to V (s, a), and
Z(t) belongs to a suitably chosen V' (t,a). Referring to the previous paragraph we see that t, with the
given V' (t,a), may be supposed to be of type C'. The meaning of the function N, (s, H) is clear.

Suppose that t belongs to R(*) and is of type B. Choose the unique s in S*) such that t = s.
Appealing now to the remarks following the proof of Lemma 7.1 we obtain the same conclusions as

above except that the elements of 7(*) (v) are of type B. We let

7@ — U 7() ()
teR(®
If s belongs to S(Y) we associate to s the Eisenstein system obtained by adding together the Eisenstein
systems belonging to those t in R such that t = s. If the sum is not an Eisenstein system, that is,
if it vanishes identically, we remove s from S(?). The collections S(?) and T satisfy the induction

assumptions.

The proof of the uniqueness will merely be sketched. We apply the second corollary to Lemma7.4.
Suppose that the collections S,,, 0 < m < g, of affine spaces together with an associated collection
of Eisenstein systems satisfy the conditions of the theorem. Let *P be a cuspidal subgroup of rank m

belonging to some element of { P}. If P belongs to *{ P}(*) and ®(-) belongs to *$(V, W) the projection
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of ¢ on the subspace of *L({P},{V}, W) spanned by eigenfunctions of the operator A is uniquely

determined and is equal to

3 E(-,d(I)(X(g)),X(ﬁ))

s5€x5(®)
It follows readily that the points X(s), s € *S(V, and the functions E(-, F,X(s)), F € L(S(s),
&(v, W)), are uniquely determined.
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Appendix |

Dirichlet Series Associated with Quadratic Forms

1. The object of this paper is to describe and prove the functional equations for some Dirichlet
series suggested by Selberg in [6]. In that paper he introduces invariant differential operators on the
space of positive definite m x m matrices; it is unnecessary to describe the operators explicitly now.
The series considered here arise when one attempts to construct eigenfunctions of these differential
operators which are invariant under the unimodular substitutions 7' — UTU'. U is the integral and

has determinant £1. As Selberg observes, if s = (s1,- -, $,,) is acomplex m-tuple and s,, 1 = 0 then

m
m _ _ 1
w(T,8) = |11 [ |rly =2
k=1

is an eigenfunction of the invariant differential operators. |T|; is the subdeterminant formed from
the first k£ rows of columns of T'. Since the differential operators are invariant, if A is a non-singular
m x m matrix w(A'T A, s) is also an eigenfunction with the same eigenvalues. In particular, if A
is a sub-diagonal matrix with diagonal elements +1 then w(AT A, s) = w(T,S). Consequently the

function

(1) AT, s) =Y w(UTU,s)
{U}

is, at least formally, an eigenfunction which is invariant under unimodular substitutions. The sum is
over a set of representatives of right-cosets of the group, V, of sub-diagonal matrices in the group of
unimodular matrices. The series converges when Re(sg+1 — sg) > % k=1,---,m — 1. One hopes
to obtain eigenfunctions for other values of s by continuing Q(7', .S) analytically. If this is possible it
is natural to expect that (7', s) satisfies some functional equations. The form of these equations is
suggested by the eigenvalues of the differential operators corresponding to the eigenfunction w(7’, s)

for they are symmetric functions of s. To be precise, if
a(t) =t(t — 1) 7 ' T(t) ¢(2t)
and

(2) U(T, s) :Ha<%+si—sj>Q(T,s)

1>7

then ¥(T, s) is an entire symmetric function of s.
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Similar series may be obtained from the modular group and the generalized upper half-plane.

If Z =X +:Y withY > 0, the functions

m+1 m+1
X(sz):w<Y781+T7"'78m+T>

are eigenfunctions of the invariant differential operators. Moreover x(Z,s) is invariant under the

group, N, of modular transformations of the form

A B
al
with A in V. Form the function
(3) X(Z,s) = Zx(M(z),s).
{M}

The sum is over a set of representatives of right cosets of IV in the modular group. The series converges

when Re(sp+1 — sk) > 1, k=1,---,m —1,and Re(s;) > 1. Let
B 1 1 1
(4) ®(Z,s) = ga(g +5; — sj) a(§ +5; + $j> l;[a(g + Si) X(Z,s).

®(Z, s) may be analytically continued to an entire symmetric function of s. Moreover

O(Z,£s1, -+, £8,) =P(Z,81, ,Sm)-

So @ is invariant under the Weyl group of the symplectic group just as W is invariant under the

Weyl group of the special linear group.

Professor Bochner suggested the possibility of defining analogous functions for any algebraic
number field. In order to do this | describe alternative definitions of the series (1) and (3). For this some
elementary algebraic facts are required and it is convenient to state these for an arbitrary algebraic

number field, k, of finite degree over the rationals.

Let z,, be the m-dimensional coordinate space over k. The elements of z,, are taken to be row
vectors. All modules over o, the ring of integers of k are to be finitely generated and to be contained in
Zm. Such a module, n, is said to be of rank k& if the subspace z of z,,, generated by n is of dimension k.
The rank of a module will often be indicated by a subscript. In the following m will denote some fixed
module in z,, of rank m. A submodule n of m is said to be primitive (with respectto m) if n = z Nm.

If n is a submodule of m the quotient space z,,/z may be identified with z,,  and the image of m is
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amodule m’ in z,, . If n is primitive the kernel of the mapping m — m’ is n;. It is known that there

is a submodule p of m which maps onto m’ such that m = n; & p.

Now suppose that k is the rational field and that m consists of the elements of z,, with integral

coordinates. If U = (u},---,u},) isaunimodular matrix with rows vy, - - - , u,, letn;, be the submodule
of m consisting of integral linear combinations of uy, - - -, ug. ng is clearly of rank k and it is primitive.
For, let U~! = (wy,---,w,) then if u = Zle a;u; is integral vw; = a5, 1 < j < k, is integral. So to

each unimodular U there is associated an ascending chainn; C --- C n,, of primitive submodules. If

U and V give rise to the same chain then

U1 = a11v1

U2 = A21V1 + A22V2

Um = Am1 + *** + AmmVUm
with integral a;;; or U = AV with

a1

Q21  G22
A=

Gm1 " Omm

Comparing determinants one sees that A is unimodular. Consequently U and V belong to the same
right-coset of V. Conversely let n; C ny--- C n,, be an ascending chain of primitive submodules.
There isavector u; such thatn; consists of integral multiples of u; . Letn; ®p; be the decomposition of m
described above. Then n,Nypy is of rank 1 and consists of integral multiples of a vector u,. The elements
of ny are integral linear combinations of u; and us. Continuing in this manner one obtains vectors
ui, -+, Uy SUch that ny, consists of integral linear combinations of uy, - - -, ux. Moreover the matrix
(uf,---,ul,) isunimodular since uy, - - -, u,, span n,, = m. Thus there is a one-to-one correspondence

between right-cosets of V' and ascending chains of primitive submodules.

It remains to describe w(UT'U’, s) in terms of the chain. Suppose once again that k is an arbitrary
algebraic number field. For convenience in calculating, the k*" exterior product of z,, is taken to be Z(m)
and the coordinates of the k" exterior product of the vectors a, - - - , oy, are the k x k subdeterminants
of the matrix (o4, -+, a4)’. If nis amodule in z,, then n* is the module in 2(m) generated by the k'"
exterior products of the vectors in n. If ny, is of rank & it is often convenient to write n* instead of nf; in

this case n” is of rank 1.



Appendix 1 184

Now if U = (u},---u),)" is a unimodular matrix and n; C --- C n,, the associated chain of
submodules n* consists of integral multiples of ©¥ = u; A --- A uy, the exterior product of uy, - - - , uy.
Moreover, if T is the (') x (') matrix formed from the k x k subdeterminants of 7" then, by the
general Lagrange identity,

\UTU'|;, = u*T*u*".
Since u*T*u*" depends only on 7" and ny, it may be written 7{n; }. Then

m+

W(U'TU, 5) = T{n, )5 J] T{np}sese17%
k=1

m

= T{mp ™ [ eyt

k=1

and

AT, s) = T{m} e Z H T{nk}Sk—Sk-Fl_%.
k=1

The sum is over all ascending chains of primitive submodules of the module of integral vectors.

Now let k£ be an algebraic number field of degree n over the rationals. Let kq,---, k, be the
conjugates of k; as usual k; is real if 1 < ¢ < r; and complex if r; < ¢ < n; moreover k;;,, = ki,
r1 < i < ri+ry. LetT bethen-tuple (11, --,T,). T;,1 < i < rq,isapositive definite m x m symmetric
matrix; T3, r; < ¢ < n, is a positive definite m x m Hermitian matrix, and 1;,, = Ty < <ry+rs.
If n is amodule of rank 1 in z,, let & be a nonzero vector innand leta = {a € k \ ac € n}. aisan ideal
in kand n = aa. Let

n
T{n} = N%a H apTyay,
k=1

vy, is of course the k™" conjugate of . T{n} is independent of the vector « chosen. If ny, is of rank k set

T{ng} = TF{n*}; T* = (TF,---, T*). Finally, if m is a finitely generated module in z,, of rank m set
(1/) Q(T,m,s) :T{m}mrl ZHT{nk}Sk_Sk+l_%~
k=1

This sum is over all ascending chains, n; C ny C - -+ C n,,, of primitive submodules of m. Let
a(t) = t(t — ) ™27 22 AT (¢) T(2t) "2 (2t).
A is the absolute value of the discriminant of k£ and ((+) is the zeta-function of k. Then set

(2" U(T,m,s) :Ha<%+si—sj> Q(T,m,s)

1>7
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Theorem 1. (i) The series (1') converges if Re(sgy1 — sk) > %, k=1,---,m—1.

(i) ¥(T,m,s) may be analytically continued to an entire symmetric function of s.
In order to carry out an induction on m it is necessary to add
(i) If s =0 +ir, then [U(T,m,s)| < f(o) [1,;(Isk — 85| +1).

Of course f depends on T and m but no attempt is made here to determine precise estimates for W.

Now consider the series (3). If M (Z) = X; +iY; and
A B
w=(e o)
thenY; = (CZ + D) 'Y(CZ+ D)tsoY; ! = (CZ+ D)Y~}(CZ + D)*. Moreover
W(Yla S1,° 78m) = w/(Yl_lv —Sms _81)

and if £ is the matrix (&; +1-i),
(Y, s) =w(EYE,s).

Consequently the series (3) may be written

1 1
> W ((CZ+D)Y HCZ+ D), =5 — %7...7_51 _ %)

>From an m x 2m matrix forming the lower half of a modular matrix, M, we may construct the chain
ny C --- C n,, of primitive lattices; ny is the lattice spanned by the last k£ rows of M. n,, is orthogonal

to itself with respect to the skew- symmetric form

m

_ /
g TilYm+i — YiTmy1 = TJY
i=1

Two modular matrices give rise to the same ascending chain if and only if they belong to the same right
coset of V.

Conversely, given such an ascending chain of lattices, let {u1, - - - , ux } span ny. Then itis possible
to choose vy, -+, v, SO that viJu; = 0;;. Suppose vy, ---,v, have been chosen. Select v,,;; so that
vpr1Juj = dp11,; and then subtract a suitable linear combination of uj, - - -, u,, so that v, 1 Jv; = 0,

j=1,---,p+ 1. Itisclear that the matrix with rows v,,, - - -, v1, Um, - -, u1 IS modular.

Now let W be the real part of the matrix (Z,I)'Y ~%(Z, I); then

(CZ+D)Y YCZ+ D)= (C,D)W(C,D)".
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Using the previous notation the series (3) may now be written

m
Yo IT wmgysremommrnis;
k=1

the sum is over all ascending chains, ny C --- C n,,, of primitive submodules of the module of the

integral vectors with the property that n,, is orthogonal to itself.

Now let £ be an algebraic number field as before. Let W = (W4,---,W,,) be an n-tuple of
matrices satisfying the same conditions as above; let m be a module of rank 2m in z,,; and let
J be a non-degenerate skew-symmetric form with coefficients in k. We suppose, moreover, that
J,-Wi_lji’ = W;, J; denoting the conjugates of J, and that mJ = m~!'. m~! is defined in Section 5.
Then define

(3) x(W,m, s) Z H W {n }sm—k"5m= k13

the sum is over all ascending chains, n; C --- C n,,, of primitive submodules of M such that n,, is

orthogonal to itself with respect to J. Let

(4" O(W,m, s) Ha< +5,—5 ) < +81+8J>Ha< ) (W,m,s).

1>

Theorem 2. (i) The series (3') converges if Re(spt1— si) > 3, k=1,---,m —1 and Re(s;) > 3.

(i) ®(W,m,s) may be analytically continued to an entire symmetric function of s.

(“I) (b(mm)islu"'aism) = (P(Wm,517"' 75771)'

The discussion of Section 2 and pp. 58-77 of [5] should provide the reader with the necessary
facts about Hecke’s theta-formula and its relation to Dirichlet series. It leads immediately to a proof
of Theorem 1 when m = 2. For other values of m the theorem is proved by induction in Section 4.
Section 3 contains a preliminary discussion of the series (1’). In Section 5 another functional equation
for U(T,m, s) is proved and Theorem 2 is proved in Section 6. In Section 7 the relation of ¥(7", m, s) to
some Dirichlet series investigated by Koecher is discussed and in Section 8 a result of Klingen on the

convergence of Eisenstein series is derived.
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2. LetT = (Ty,---,T,) be as above and consider the series
(5) ®(T7 al,"',am) = Ze_chzzl(aka&;).
=1
ar, -+, ap, are mideals in k; ¢ = (], Aa;)™ with Aa; = ANZa;; the sum is over all vectors
a = (a1, ,a,) with a; in a;; and oy, is the k' conjugate of a. Let {a;1,---,a:,} be a basis for a;,

then a; = Zj a;;z;; with integral z;; and

ZO&kaO_C;C = (xlla' 5 Tin,y 21,0 xmn) S(xlla e 7xmn)/
k=1

where, denoting for the moment conjugates by superscripts and setting 7, = (¢ ) S'is the matrix

ral, ... qm 9 r 41 1 4 a1 = -
ayq - aqy i Uim ayp -Gy
o qn n n e U ()
a1pn a1pn 11 1m ar A1pn
1 1 1 1 _1 1
Am1 A tml tmn A Amn
1 n n n —n _n
- amn U amn = - ml tmm - L aml . amn .

The usual considerations show that
(6) @(T7a17”'7am):H‘Tk|_% @(T_17a/17...7a;n)
k

where, if 2 is the different, a; = 2~ 1a; '. Itis not difficult to show that

(7) O(T, a1, am) — 1| < Ce~ 21T T (reg) =1 %°

Let m be a module in z,, of rank m and consider the series
o(T,m,t) Z T{n} %
{n1}
the sum is over all primitive submodules of m of rank 1. If n is any submodule of m of rank 1 let
z be the one-dimensional subspace of z,,, generated by n and set n; = z N'm. ny is primitive and if
b={ack \ any € n} then bis an integral ideal and n = bn;. This representation of n as the product

of an integral ideal and a primitive submodule is unique. Thus

C(2t) (T, m, t) ZT{n} —t
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The sum is now over all submodules of m of rank 1 and ¢(2t) is the zeta function of k. It is known
that m = Am’; A is some m x m matrix in kand m’ = {a = (al,---,am)|a1 €a,az, - ,a, € 0},
a being some ideal in k. If ATA = (A|T1A,,---,A,T,A,), A; being the conjugates of A, then
o(T,m,t) = o(A'TA,m' t). Consequently it may be assumed that m = w’. It is also convenient to

take |T;| =1,i=1,---,m; then

¢(2t) o(T,m,t) = Y (N?a;) "> [ (enTras)™

{qi} o k=1
a; runs over a set of representatives of ideal classes; « = (a1, -, a,) with a; € aai_l, a; € ai_l,
7 =2,---,m; a = 0is excluded from the sum and no two « differ by multiplication with a unit. For

if a is of this form for some i then a;« is a submodule of rank 1 in m. Conversely if n is a submodule
of rank 1 it has previously been observed that it may be written as b3 where ( is a vector in z,, and b
is an ideal in k. If b is in the class of a;, let b = a;(a) and a = af3, then n = a;« and « is of the above
form. Moreover « is uniquely determined up to multiplication by a unit.
Multiply by
(Na)mr~ ™27 22 AL (4)1T(2t)"

and apply the usual transformation to obtain

ZZ/ dzy -+ / dz,11€ ”Czk ldk(akaak)ezk tZT“ dizr
(a

{ai} @ 77

—1
r+1l=ri+ryc=(Aaa;)Afay )™ )™ andd; = 1,1 <i<r,d; =21, <i <r+1 The
familiar change of variables gives

N > t % % 2 2 1 1 1
(8) Z—/ envdv/ d771~~~/ dnT{@(evTHkg\ W,aa;,a;,m,a;)—l}.
w J_ _1 _1
{a;} o0 2 2 =1
w is the order of the group of roots of unity in k£ and {e,- - -, ¢, } is a system of fundamental units; for
the meaning of N the reader is referred to [5].

Itis easy to conclude from the estimate (7) that, ift = o +i7and o > & > %

(9) (T, m, 1) < f(0) "

*Here and in the following f(o) is used to denote a function of the real part of a complex vector

which majorizes a function of the complex vector. The function it denotes may vary from line to line.



Breaking the region of integration into two parts and changing the variable of integration, (8)

becomes

N T
/ / iy - / dn{O(e'T T e a0t a7t ) — 1}
1
-3 =1
N > —ntv E % —v - 2 -1 -1
+ZE e 1dn1--- ldnr{@<e TH\{-:A "oaa; 0 )—1}.
{ai} 0 T2 2 (=1
Apply the formula (6) to obtain
N % v . 2 -1 -1 -1
dm--- dm{@(e TH\{-:A "oaa; a0, )—1}
% - /=1
N e? 1 21y 1.—1 . -1..)_
+Z dm dm T H\sy 0 'a a0 ey, 0 ey ) — 1

Nh

B wnt B wn(g —t)

[SIE

h is the class number of the field.

It is now easy to prove Theorem 1 when m = 1 or 2. Indeed if m = 1, z; = k, m is an ideal q,

and ¥(T,m,s) = N?*a[]"_, t5. Since, when m = 2, U(T,m, s1, s2) is homogeneous of degree s; + so

inT;,i=1,---,n, it may be assumed that |T;| = 1. It may also be assumed that m has the form of the

module m’ described above. Then
S —l—l 1
Q(T,m, s1,89) =T{m}*2Tx (p(T,m, 5 + 89 — 81>

and the series (1’) converges when Re (% + s9 — s1) > 1 or Re(sy — s1) > % Moreover, since

T{m} = NZ?a, U(T,m,s1,s2) is ((s2 — s1)? — ) T{m}** 72 times the function represented by (10)

when ¢t = % + s9 — s1. Thus itis an entire function. Since |T;| =1
~ [0 1].,.[0 -1
=[5 o)n ]

T
@(e”T‘l H lee?, 0 ta ;07! ) = < ”TH lee?7, 07 ay,0 1a_1ai).
=1

However the function (10) does not depend on the representatives of the ideal classes chosen; so a;

and

could be replaced by Daa;l. The result is the same as that obtained by interchanging s; and s»; thus

(10) is a symmetric function of s; and s, and so is U(7', m, s1, S3).
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3. If n;, and my, are two primitive submodules of m of rank k& such that that n’,j = m’,j then n; and my,
lie in the same k-dimensional subspace of z,, and, thus, must be the same. Consequently the series for

Q(T,m, s) is majorized by, setting s = o + i,

m—1
m— 1
T{m}om*3 1 H @(Tkamka 5 1t Ok+1 — Uk)-
k=1

2
So, when 1 + o411 — o > ('), k =1,---,m — 1, the series converges and, using (9),
(11) (U(T,m, s)| < f(o) H(\Si—5j|+1)'
1#£]

This is not the region of convergence promised in part (i) of Theorem 1; however (i) will follow from

(ii) and Landau’s Theorem on Dirichlet series with positive coefficients.

Before proceeding with the proof of (ii) it will be convenient to describe certain useful arrange-

ments of the series (1’). That series may be written

T{m}mzl Z {ZﬁT{nJ_}Sj—SjH—%}{Z ﬁ T{nj}Sj—SjH—%}.

{n} =1 j=hk+1

The outer sum is over all primitive submodules of rank k. The first inner sum is over all chains,
ny Cng C -+ C ny, of primitive submodules ending at ny; the second is over all chains, ny C ng41 C
-+ C n,y,, beginning at n.

It was observed above that for each n; there is a submodule p such that m = n; @ p. Choose
bases {a, -+, ax} and {agy1, -, an,} for the subspace of z,, generated by n; and p respectively.

Then

n = {a: (al,---,ak)| Zaiai Enk}

and

p'={B= (k1 ,bm) | Y _bicv; € p}
are finitely generated modules in z, and z,,_k. To simplify calculations assume that
w = {(a1, - ,ax) | a; € b, as,---,a; € o}; bissome ideal in k. Let B be the matrix (o} - - - o},)" and

A the matrix (o} ---«/,); then set R = BT B’. It is convenient to omit any explicit reference to the

components in such equations.
There is a one-to-one correspondence between chains n;y C --- C ng ending at n; and chains
ny C -+ Cny inn’. Moreover T'{n;} = R{n’}. Consequently the first inner sum is

k+1 k+1
Q<Ran,731_Sk—i-l_Ta"'ask_Sk-H_T)-
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There is also a one-to-one correspondence between chains ny C ng41 C --- C n,y, chains in p,

and chains q; C g2 C -+ C q,_x in p’. Introduce the n-tuple of matrices

/ Al
ATAG ernepgry 0 ATAG 11 m)
S = : ;
Al Al
ATA(L“nk,m;1,~~~,k,k+1) ATA(lwwlcm;l,---,km)
If H = (hq;) is any matrix H, ...i,: j, ....j,) 1S the determinant of the matrix (h;,;,), u,v = 1,--- L.
Since
L(;(1‘17'“71'13;jl,"vj/z)
is equal to

(ATA(  jrop) ™ X ATAY,

Skyityeeeies 1k g1, 0e)

it is not difficult to show that

(12) T{ng4} = N?b H(ATA,(L...,k; L) TS}

The product is the product of the indicated subdeterminants of the components of AT A’. Consequently

the second inner sum with the factor T{m}m4+1 incorporated is the product of

m—k—1 m—k—1

T{m} T (N20)" 0= (AT A gy gy) o om0

and

Q(S,p, k41, Sm)-
However
(13) N2bHATA/(1,-~,k;1,~~,k) =T{n}

—k—1

and the factor T{n;} ~*++2>~"~m =" may be absorbed into the first sum. The result is

T{m}7 Z(sz)sk+1+"'+st(S,p’,skH, s ) QR W)
{nx}

with
m

jz’...’sk _'Sk+1‘_"'_‘8m,_

-z

r:(sl—é‘kﬂ—---—sm—

There is a corresponding representation of W:

(14) (T, m, s) = y(s) T{m}1 Z(sz)sk+1+”‘+smll(5, P Skat,,8m) U(R, W, T)
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with
1
'Yk(s): H a<§+si—sj>.
i>k,j<k
The series (14) converges if 0,11 — o > b (b is a suitable positive constant), k = 1,---,m — 1.

Assume that parts (ii) and (iii) of the theorem are true for k£ and m — k. Then the series is symmetric in
the first k£ and last m — k coordinates of s. Thus, if for some permuation 7 of {1,---, m} which leaves
thesets {1,---,k} and {k + 1,---,m} invariant o (,11) — 0r) > b,k = 1,---,m — 1, the series will
converge and the estimate (11) will be valid. It will now be shown that the series converges in the

region defined by
cm—k(b) and ¢ (b) are constants obtained from the following lemma.

Lemma. If v = (71, -+ ,7m) s an m-tuple of real numbers and b is a positive constant there are

m-tuples of 7', 7" such that
M) =300+,
(i) |vi =%l < em(b) and |y; = ]| < cm(D),

(iii) there are permutations 7' and ©'" such that

V(e 1) = Vi k) = 00 Varear)y = Yarey 20 k=1, ,m — 1.
¢m(b) is a constant depending only on m and b.

Suppose the lemma has been proven for 1,---,m — 1. It may be supposed that c; (b) < ¢2(b) <
oo < epor(b)and that v > v2 > o0 > e Iy — 9 > (m — 1)(2¢5,—1(b) + b) then for some
k, vk — Ye+1 = 2¢m—1(b) + b. Apply the lemma to the vectors (1, -+, 7%) and (Ye+1,--*,Ym) tO
obtain v, -/, VY, -, . These m-tuples satisfy the conditions of the lemma if ¢,,,(b) > ¢, —1(b).

If 1 — Y < (M —1)(2¢n—1(b) + b) seta = 2(m — 1)cp,—1(b) + mb and
N =+ (m=1a, v ="+ m=2)a, 7, =Ym,
Y =m—(m—=1)a, v =72 —(m—=2)a, -, 7, = Vm-

Then
T = Yk = @t = Yerr = a— (m—1)(2e-1(0) +5) =D,

Ver1 =W = @+ Y1 — Y = a— (m—1)(2¢,_1(b) +b) = b.
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This proves the lemma if ¢,,,(b) = (m — 1)a.

Ifs=(s1,-+,8m) = (01 +im, -, 0, +iTy) isin the region defined by (13) apply the lemma

to (01, -+,0k)and (0k41,- -+, 0m) toobtain o}, -+, 00, 07, 00 . Set
s'= (o) +ir,- 0l +iTm),
5" = (0/1/ +aT, - 70—7/;1 +i7—m)v

s(t)=ts' + (1 — t)s”
Then the series (14) may be written
1+ico —1%00 )
T{m} Z 2 / dt + / dt e g (s(t)) (N2p)*rrr O+ Fsm(®)
7T

(S,p 75k+1( )7"'78771( )) (R,n’,r(t)).

(16)

Because of the assumed validity of (iii) the integrals converge. Inverting the order of integration and

summation gives a series with a convergent majorant of the form

eI TT (se(t) = s8] +1) Y flng,0)

i#j {nr}

o is the real part of £. Consequently (14) converges and is equal to

_% 1400 —100 5
T{m}4 / dt + / dte” (T, m,s(t)).
211 1 i

—00 1e%e)

So U(T',m, s) is defined; moreover

(T, m, 5)| < c/OO e—tQ{H(p (it) — 5;(it)] + 1) f(o') + [T (s (1 + it) — s5(1 + )] +1)f(a”)}dt
e i#] i#]
< fo) [ J(lsi — 551+ 1).
£

o is the real part of s.
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4. The theorem will now be proved by induction. It is sufficient to show that foreach N > 0, U(T", m, s)
may be continued analytically to the region: 2;1—12 lo;| < N, oy—1 and oy, arbitrary. The diagram
represents a decomposition of this region into four overlapping parts. The region I lies in the region
defined by (15) when £ = m — 1. The region Il lies in the region defined by (15) when &k = m — 2.
Moreover when k = m — 1 or m — 2 the assumption of Section 3 is part of the induction hypothesis.
Consequently ¥(7',m, s) may be continued analytically to the regions | and Il. Moreover it will be
symmetric there in s; and ss; consequently it may be extended to Ill. The inequality (11) will be valid

in these regions.

To extend W to the region IV let
§1=5m—1+15m
§2 = Sm—-1— 5m
Then, taking c large enough, the formula

a+¢ &—=¢

6_55 c+ioco —c—i00 QCQ‘IJ <T7 m, 81,y Sm—2, 2 v 2 )
(T = d
( ' S) 2mi /c—ioo g * /—c—l—ioo C - 62

effects the desired continuation to IV. Moreover the inequality (11) is easily shown to remain valid.
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1

5. If m is a module of rank m in z,, letm=' = {3 \ af’ € oforall @ € m}. As an essentially simple

consequence of the definition

(17) U(T,m,s) =¥(T ' m?t —s)

Indeed, to establish this it is sufficient to show that

(18) Q(Tvmv S1, 7Sm) = Q(T_lvm_lv —Sm, _81)

in the common region of convergence for the two series. If n; is a submodule of rank k let q,,,_ =
{f em \ af’ = 0forall « € ng}. q,,_x is primitive and corresponding to the chainny C -+ C n,, is
the chainq; C --- C q,, = m~!. To prove (18) it is sufficient to show

m—1

HT{n preoen s = T m T T T g

(19)

Of course, sy = 0. Replacing T' by AT A’ if necessary, it may be assumed that
ng :{O[: (aly”'aalﬁ 07"'7O)|ai S ai}u k: 17"'7m;
a;,t =1,---,m, being some ideal in k. Then

qm—k:{ﬁ:(07"'07bk+17"'7bm)|bieai_l}v k:()vvm_l

Since both sides are homogeneous of degree ) °. s; in T it may be assumed that |T;| =1,/ =1,---,n.
Then

T{n;} = N( a) [ [ T,
and

—1 2 —1
{dm—r} = N*( ak+1 H (k+1, com k41,,m)
2
= N*( ak+1 HT(l
The productis over the indicated subdeterminants of the components of T’ orT—l; there is no convenient

place for the subscripts. Thus the left side of (19) is

(NZap) " H 7% (N2a0) 7 (N 2a) 50 T T (T s 1) 7007

and the right side is

(N?a,)~

m
o (Nzafl)_sﬁmTil H H(T(1,.~,k;1,...,k))sk_sk+1_%u
k=1

which establishes (19).
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6. The proof of Theorem 2 will now be given omitting, however, that part of the analysis which is

merely a repetition of the above. As in the proof of Theorem 1, the series for x (W, m, s) is majorized by

H ( —+Sm k+1 — Sm— k)

with s = 0. Consequently it converges for
(20) Re(sg41 —sk) > b, k=1,---,m—1, Re(s1) > 0.

b is some positive constant. The series for ®(1W, m, s) may be written

Ha< + 8 — 83>Ha< ) Z ZHG< —i—sz—s]) HW{nk}Sm k—Sm—kt1—%

The outer sum is over all primitive submodules which are orthogonal to themselves with respect to J;
the inner sum is over all chains n; C --- C n,, of primitive submodules which end at n,,,. For each
n,, choose a basis {a1, - - -, a,, } for the subspace of z5,,, spanned by n,,. Set A = (o} --- /)" and let

V = AW A’; then the inner sum is
ql(‘/vnv_sm_ — =8 = ————

withn = {(al,"',amﬂ Y a;a; € ny, }. Then
(21) ®(W,m,s) Ha( +81+5]>Ha( )Z\If(V,n,—Sm—mTH,“'7—51—mTH>

Using the lemma and the techniques of Section 3 it can be shown that the series (21) converges for

Re(s;) > b;,i =1,---,m, and represents a symmetric function of (s, -, sy,).

To continue the function to negative values of the arguments the arrangement

(22) Ha< —1—57,—1—5]) ( + 55— SJ)HC‘< +S)ZZ ( +51)HW{nk}5m ESmokt1T 3

is used. The outer sum is over all chainsny C --- C n,,_1 such that n,,,_; is orthogonal to itself; the

inner sum is over all primitive submodules n,,, such that n,,,_; C n,,, C nt nL is the orthogonal

m—1»

complement of n,,,_; with respectto J.

Let {f1,---,0m+1} be a basis for the subspace of 2z, generated by n,,_;. Set

= (B, Bh41) and U = BWB'. Let

p={(b1," bms1) | Zbiﬁi €y}



Appendix 1 197

and
q={(b1, ,bms1) | Ebzﬂi € N1}

Now in the argument preceding (12) replace n by q, m by p and 7' by U. We conclude that there is a
module g- of rank 2 in 25, an n-tuple S of 2 x 2 matrices, an ideal b, and a one-to-one correspondence

between the primitive submodules n,, and primitive submodules, g1, of rank 1 in g» such that
W{n,} = N?65{q:}.

Consequently the inner sum is

m—1
1 1
[T wing}emrmsmorer=z(N2p) =3 \D(S, A2, =51~ _Z>
k=1
which equals
m—1 1 1
1 1
H W{nk}Sm—k—Sm—k+1—§(N2b)—s1—5\11<57 Cl27_1, —5] — Z)
k=1
or
m—1
Sk —Sm_ktl—% 2¢\—s;—1 —s 1 1
H W {n }sm—k=sm—k+172 (N2p) 75172 §{q,} I\IJ(S’CI2781_Z’_Z)
k=1

However, by formulae (12) and (13)
S{a”} = (N20) W {n 1} W{ng—1}.
By the proof of the formula (19)

Wing 1} =W{m} W= am-1}.

qm_1 is the orthogonal complement of n. | in m~!. Since m~!

W{m} = [, [W;| N2(m?™); (m~1)2™ = | Jjm?™, so that N2(n?™) = N~1(|J|);and J; W, ' T = W,
so that N2(|.J|) = [T, [W;|?. Consequently W{m} = 1. Finally

=mJ, qm_1 = Ny,—1J. Moreover

Wint Y=w " n,_1J} = W{n,_1}.

Thus the inner sum in (22) equals

m—1

1 1 1 1 1
[T W ey oot =0 1) (V20) 30 (8, 00,50 — 3~ )-
k=1

So it is an entire function of s; which is invariant when s; changes sign. Using the previous methods
it may be concluded that ®(7",m, s) may be continued to the region: Re(s;) > b;, 7 = 2,---,m, s1
arbitrary. It may then be continued to any domain obtained from this one by permuting the variables.

The continuation to the entire m-dimensional space is then effected by Cauchy’s integral formula.
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7. Koecher [4] establishes, at least when £k is the rational field, a functional equation for the series

(23) w(T,m,t) ZT{n} —

{n}
where the sum is taken over all submodules of rank & of a given module m, of rank m, contained in z,.
It will be shown in this section that for special values of s the function ¥ (7", m, s) reduces, apart from a
factor depending only on ¢, to (. (7', m, ¢t) and that the functional equation for ¢ is a special case of the
functional equations for . The factor however has too many zeros and it is apparently not possible to
deduce Koecher’s results on the poles of (i, from the fact that W is entire. These may be established by

separate arguments similar to those above.

The series in (23) may be reduced to a sum over primitive submodules. If n is a submodule of
rank k£ then n may be uniquely represented as ang; n; is a primitive submodule and a is an integral
right ideal in the ring of endomorphisms of n,,. Using the theory of algebras, as presented in [1], it is

not difficult to show that (23) equals
(24) C2t)---¢(2t = (k—1)) > T{np} ",
{nx}

the sum now being over all primitive submodules of rank k. ((-) is the zeta-function of the given field

k.

Using formula (14) of Section 3 it may be shown by induction that

m—1 y m— 3
4 4

1
(25) \IJ(T, m,t — Lt mT> — T {m}*

(R e ) ()

=) )
b(t) = w222 AT ()T (2t) ™2 (28).

Indeed, by the induction hypothesis and formula (14) with k = 1

W(Tmsl,t—T_B, --,t—l——) Ha( +sz—51>7m 1T{m}t+2 ZT{nl}
{n1}

Setting s; — ¢t — ™t = — 2 or sy = ¢ — ™1 and applying formula (10), we obtain (25).
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As a consequence

1
q;(j”’n1’317--- y Sky — y + 57"' s T +
is equal to

k —k k
(3) kT {mpE DT (NZ0) 0§ () T (Rowd s - (m = k)G = )

{nx}
or
m—k m—k
{nx}

Now let s = —t + 21 oo sy = —t + ™= — k=1 and apply (25) again to obtain
(26) Vi Ym—ke(s) Y T{ne} "

{nr}
Let

a'(t) = n~ M2 IRAIT (1)1 T (2t)"2,
1
vty =t(t-3) d ¢,

and

U(T,m,t) = kl:[l <t - %) (t - ?) d (t - %) Co(T,m, 1),
=0

Finally, let ¥ (¢) be the function obtained by multiplying together all terms of the matrix

_¢<t—§) w(t—%) w(t_mT—Q)
o-2) -

o) ),

Then, if £ < m, (26) equals

Vi Ym—k Yk (t) Vi (T, m,t).

Since ¢(t) = 1/;(% — t), replacing ¢ by 3 — ¢ in the above matrix gives the same result as reflecting it in

its centre. Consequently

Y (t) = W(% - t)-
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Making use of the functional equations for ¥, we see that

Vi Ym—k Vr(t) Vi (T, m, 1)

is equal to
m—1 k-1 m—1 m-1 m—1 m-k-—1
\Ij(Tv y - y Ty T y s Ty T >
m =t 2 b+ 1 1T 2
or
— m—1 m—1 k—1 m—-1 m-k-1 m—1
‘II<T_17 _lat_—v"'vt_ ) - y T )
m 1 1 2 1 2 1
This is the same as
k _ m m—1 k-1 m m—1 m-—1 m—1 m—-k-—1
T{mpdw (T w2 s omot )
{mj—2 m SR 2 2t 1 1 2
which equals
m _k - _am
Vkvm_k¢k(§—t>T{m} 2‘11k<T Im 1,5—75).

So

Uy (T,m,t) = T{m} 5, (T—l,m—l, % _ t).

This is the functional equation of Koecher.
Suppose for the moment that & is the rational field. Accordingtoequation (3.17) of [4], Wy, (7', m,t)

is zero at the numbers common to {0, 4, -+, &1} and { = ... '} However if k = m, T is the

identity matrix, and m is the lattice of integral vectors, then

m—1 .
U (T,m, 1) = [] \ll(t— %)
j=0

But, as is well known, ¥ (t) does not vanish for real values of ¢.

In view of this it seems worthwhile to sketch a proof of the
Proposition. V(7T ,m,t) is an entire function.

It is only necessary to establish this for & < m since ¥,, (7, m,¢) may be expressed in terms

of the zeta-function of k and the proposition follows from the known properties of this zeta function.
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The proof is by induction. For k£ = 1 the proposition is a consequence of the discussion in Section 2.

Suppose itis true for £ — 1. Set

() = 1t~ D)a (1) ¢(20),
0= T1 (- §) (- "3 (1~ e
1) =t(t-" _Qk S P 1))

and consider the series

(27) a(s1) Blsi) 7 (1 + 51— o) ZC: T{n ) " T{ng) .

The sum is over all chains of primitive submodules of ranks 1 and k. Call the function defined by (27)
o(T,m, s1,si). To establish the proposition it will be shown that ¢ is an entire function of s; and s
and that

Nhk
T m0,t) = — Vi (T,m,t).
SO( ,m, U, ) 2Qun k( , M, )

If o1 and o, are the real parts of s; and sy, the diagram represents a decomposition of the (sq, si) space.
o(T,m, s1, sy ) is clearly analytic in the region I. As before the continuation into the regions II, 11, IV
is effected by suitable arrangements of the series (27). Moreover in the regions I, 11, 11, 1V, ¢ will have
only polynomial growth on vertical lines. The proof of this is omitted; the analysis required is the same
as above. Consequently Cauchy’s integral formula may be applied to effect the continuation to the

entire (s1, sx) space.




Appendix 1 202

Since, in the notation of Section 5,

ST o =Ty D T sl
{ax} {nm—k}

the functional equation for W (7', m, t) yields the equality of

= I (=30 25 ) e §)cor ) Sty
=0 {ni}

and

) T L (- 2) (- o) (P Ym0 Y Tmaay %,
J=0 {nm_r}

in the sense that the functions represented by these series are equal. For brevity some equalities in the

proof of the proposition have been written in this manner.

The first arrangement of the series is, in the notation of the argument preceding formula (12),

k—1
(29) B(sk) ’7(81 + s — 5 ) Z T{n,} U (R, s1)
{nx}
which, as a consequence of (28), equals
k k—1
(30) O‘<§ - 31) ﬂ(Sk)’Y(Sl + 5K — T) S T{ne b T} T
ng_1Cng

(30) converges in the part of the region Il which is sufficiently far to the left of the ;. axis. (29) converges
wherever (27) or (30) converge. Arguments similar to those of Section 3 show that it converges in all of

I and II. In particular, if in (29), s, is set equal to zero the result is Y25 W, (T, m, 5;,).

2wn

The second arrangement is, in the notation of Section 3 but with ny representing ny,
k—1 —s 2¢\—5 /
(31) a(s) 7 (s1+ 1= S5 ) D0 T{m T (V2) W (S, s):
{n1}
Using (28) and simplifying, (31) becomes the product of

o 00375 o) (o o 5 iy

k
—5

and

k—1 m—1
(320) Y T} T T T g, g}
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The sum is over all chains ny C n,,—x+1. This series converges in that part of the region Il which is

sufficiently far below the o4 -axis. Consequently (31) converges in the regions | and Ill.
Replacing ny by n,, .1 in the definition of R and r’, write (32) as

m—1

06(81) ﬂ(T — 8k> T{m}mT_k_skv

times
s v_?ﬂ_—l / k’ - 1
Z T{np g} 72 Wy (Ra“ , 81+ 8 — T>
{nmfk:+1}

This is similar to the series (29) and by the same argument may be shown to converge in V.

It should be remarked that if this sequence of rearrangements is carried one step further the

functional equation is obtained.

The proposition implies that ;. (7', m, t) is a meromorphic function with at most a simple pole at

b=, W‘T’““ Some information about the residues may be obtained from the equations

j k k
Yk Ym—k ¢k<%) Uy <T7 m, %) = Yj Ym—j V; (5) P (T7 m, 5)

ifl <j,k<mand

m m _k
Yk Ym—k W(E) Uy (Tv m, 3) = Y T{m} 2

if 1 <k < mandj =m. To prove it observe that the left side is the value of ¥ at

< j+m—1 k—1 j+m—1 m—1 m—1+m—k—1>
2 4 2 772 4 77 4 77 4 2

and the right side is the value of U at

( kom—1 j—1
2 4 2

But the second vector is obtained by permuting the coordinates of the first.
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8. Let Z; = X; +1Y},Y; > 0, be nm x m matrices in the generalized upper half-plane and let k be a
totally-real field of degree n. If n,,, isa module of rank m in 2o,,, let oy, - - -, o, be a basis for the vector
space generated by n,,, and let m,,, be the module generated over o by o, -+, ap,. Then n” = am™

where a is some ideal in & whose class depends only on n,,,. Let A = (¢} - - - },,)" and set

N2y, Ty t) = NaH |A;(Z;, 1)

A;,i=1,---,n,arethe conjugates of A. A\(Z1,-- -, Z,;n,,) does not depend on the basis chosen. Then

the Eisenstein series are defined by

(33) Spg(Zlf : na.] Z A Zla"'7Zn;nm)_g
{nm}

The sum is over those primitive submodules of rank m of the module of integral vectors in z,,, which
are orthogonal to themselves with respect to the skew-symmetric form > ;4. 4i — ¥:Zm+; and such
that the ideal a is in the class j. g is an even integer. It will now be shown that the series converges
absolutely if g > m + 1 (cf. [3]).

Let W; be the real part of the matrix (Z;, )Y, '(Z;,I) and W the n-tuple (Wy,---, W,,). It

follows from the discussion in Section 1 that

(34) INZ1s-+ s Zoso) [P = TV WA{ni ).
In the formula (21) set s,,, =t — % Sm—1=1t—1,--+, 51 =t — 7 and obtain, by formula (25),
(35) VmHa( —i—sz—i-s])Ha( +5)ZW{nm} -t

1>7

for V{n} = W{n,,}. The sum is over all primitive submodules of rank m which are orthogonal to

themselves. Since (35) is an entire function the series converges to the right of the first real zero of the

coefficient

[1o(3 o) T -)
That is, where s; > £,i=1,---,m, or t > 2L |t follows form (34) that (33) converges absolutely if
g>m+1.

References

1. Deuring, M., Algebren, Chelsea, New York (1948).



Appendix 1 205

2. Hardy, G.H. and Riesz, M., The General Theory of Dirichlet Series, Cambridge (1952).

3.  Klingen, G.H., Eisensteinreihen zur Hilbertschen Modulgruppe n-ten Grades, Nach. der Akade-
mie der Wissenschaften, Gottingen (1960).

4. Koecher, M., Uber Dirichlet Rethen mit Funktionalgleichungen, Journal fur die reine und ange-
wandte Mathematik, 192 (1953).

5. Landau, E., Einfihrung in die ... Theorie der Algebraischen Zahlen ..., Chelsea, New York
(1949).

6. Selberg, A., Harmonic Analysis and Discontinuous Groups ..., Report of International Collo-
quium on Zeta-functions, Bombay (1956).



Appendix 2 206

Appendix Il

Adele Groups

The principal theorem in the text, Theorem 7.7 is so formulated that it is impossible to understand
its statement without knowing its proof as well, and that is technically complicated. In an attempt
to remedy the situation, whose disadvantages are manifest, | shall reformulate the theorem in this

appendix.

The first, obvious point is that it should be formulated adelicly, for a reductive algebraic group
over a number field F'. A will be the adéle ring of F. The typical function space which one has to
understand in applications of the trace formula is of the following sort. Suppose Z is the centre of G
and Z; a closed subgroup of Z(A) for which Z,Z(F') is also closed and Z,Z(F')\Z(A) is compact. Let
¢ be a character of Z trivial on Zy N Z(F'), which for the moment we take to be unitary, in order to
postpone the explanation that would otherwise be necessary. Let L = £ (&) be the space of measurable

functions on p on G(F')\G(A) satisfying
(4) p(zg) = £(2) ¢(9)

|*dg < oo

(i) le(g)

/ZOG(F)\G(A)
L is clearly a Hibert space and, of course, G(A) acts by right translations. The decompositions of L

that we seek are to respect the action of G(A). An obvious decomposition is

(1) L(§) = ®cL()

where ¢ runs over all extensions of £ to Z(F)\Z(A). It seems therefore that we might as well take
Zy = Z(A).

However, this will not do for the induction which lies at the heart of the study of Eisenstein series.
Itis even necessary to drop the assumption that Z, Z(F')\ Z(A) is compact but it is still demanded that £
be unitary. In any case the set of all homomorphisms of Z,Z(F)\Z(A) into R is a finite-dimensional
vector space X (R) over R. Multiplication by the scalar r takes x to z — x(z)". The map that
associates to x ® c the character z — x(z)¢ extends to an injection of X (C) into the set of characters
of ZoZ(F)\Z(A). Thus the set D of extensions { to  to ZyZ(F)\Z(A) is a complex manifold, each

component being an affine space. The component containing ( is

{¢x|x € X(C)}.



Appendix 2 207

The set Dy of unitary characters in a component, a real subspace of the same dimension, is defined by
Re( =0, if

Re ¢ = [¢].
The character |¢| may be uniquely extended to a homomorphism v of G(A) into R™. We can define

L(¢) by substituting for the condition (ii), the following:

> dg < oo.

(i1)’ v2(g) le(g)

/Z(A) G(F)\G(A)
Since we may uniquely extend elements of X (R) to G(A), we may also regard the elements of X (C)

as characters of G(A). The map ¢ — ¢’ = x. That s,

is an isomorphism of £(¢) with £(£x). This enables us to regard the spaces £(() as an analytic bundle

over D, the holomorphic sections locally on ¢ x(C) being of the form

w(9){ iai(éx) eilg) }

with ¢; in £(¢) and a; holomorphic with values in C.

If p lies in £(&) and is smooth with support that is compact modulo Z,G(F') and ¢ lies in D set

®(g9,¢) = 0(z9) ¢ (2) dz.

/ZOZ(F)\Z(A)

Then, if we take the dual Haar measure on Dy,

) o(g) = / B(g,C) |dc].

Dy

Indeed if x € X (R) is given then
o= [ e(o.0lacl
Re{=x
There are various ways to define |[d(| on Re { = x. The simplest is by transport of structure from D, to
Dox = {¢| Re( = x}-

The most intuitive is to define |dC| in terms of affine coordinates on the components. From (2) one

easily deduces the direct integral decomposition

D
(3) £e) = / £(C) |de].

Do
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A cusp form in L is defined by the condition that whenever N is the unipotent radical of a

parabolic subgroup P over F different from ( itself then

/ p(ng) dn =0
N(F)\N(A)

for almost all g. It is sufficient to impose this condition for those P containing a given minimal Ry. We
consider henceforth only such P and these we divide into classes { P} of associate parabolic subgroups.
The class {G} consists of G alone. The space of cusp forms on L(¢) will be denoted by L({G},&). For

cusp forms the direct integral (3) becomes

D
LW%®=LLW%OML

If ZoZ(F)\Z(A) is compact then L({G},£) decomposes into a direct sum of invariant, irre-
ducible subspaces, and any irreducible representation of G(A) occurs in L({G}, §) with finite, perhaps
zero, multiplicity. This is in particular so when € is replaced by ¢ in D. Moreover the decomposition of
LH{G},¢)and L({G},(x), x € X(C), are parallel.

Suppose P is a parabolic subgroup of G with Levi factor M. It is understood that P and M are
defined over F' and that P contains Fy. Since Z is contained in the centre of M, L({M },€) is defined

as a space of functions on M (A) and M (A) acts on it. The representation
Ind (G(A), M(A),L({M},8))

is really a representation of G(A) induced from the representation of P(A) obtained from the homo-
morphism P(A) — M (A) and the action of M (A) on L({M},&). It acts on the space of functions ¢
on N(A)\G(A) satisfying
(i) forallg € G(A):
p(ng) € L{M}, E),
(ii)

lp(mg)|* dg < oo.

/ZUN<A) P(F)\G(A)
We denote this space of functions by ¢(P, ¢).

Let D(M) and Dy(M) be the analogues of D and D, when G is replaced by M. We may also
defineInd (G(A), M(A),L({M},()) for ¢ € D(M). The induced representation is unitary if Re ¢ = 9,
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where § is defined by the condition that 6% (m) is the absolute value of the determinant of the restrictions

of Adm to n, the Lie algebra of V. It is easily seen that
®

tnd (G(A). M(A).£({},9) = | oy I (GO, M), £, GO)

Thus if ¢ is a well-behaved function in &(P, £) and

®(g,¢) = p(ag) ¢~'(a) 6~ (a) da

/z0 Zu (FO\Zp (A)
then

o(g) = /DO(M) (¢, g) |d]]

We cannot easily describe what, at least for the purpose immediately at hand, a well-behaved function
in &(P,¢) is, without stepping slightly outside the categories introduced above. X),(R) is defined in
the same way as X (R) except that M replaces G. Set

M ={m € M(A)|x(m)=1foral xy € X(R)}.

M? contains M(F) and the definitions made for M (F)\M(A) could also have been made for
M(F)\M?°. Fix a maximal compact subgroup of [T, G(F,) C G(A), where the product is taken
over all infinite places. Let &y(P, ) be the space of continuous functions ¢ in (P, £) with the follow-

ing properties.
(i) ¢ is K o-finite.
(ii) ¢ isinvariant under a compact open subgroup of G(Ay).
(iii) Forall g € G(A) the support of m — ¢(mg), a function on M (A), is compact modulo M?°.

(iv) There is an invariant subspace V of the space of cusp forms on M transforming according
to £ which is the sum of finitely many irreducible subspaces, and for all ¢ € G the function

m — ¢(mg), now regarded as a function on M?, liesin V.

The functions ¢ in €y (P, £) will serve us well. In particular

p9)= > #(9)

P(F)\G(F)

is a function in £(&). If ¢y lies in &y(P1,&) and o lies in &y( Py, &) then ¢ and @9 are orthogonal if

Py and P; are not associate. If { P} is a class of associate parabolic subgroups we let L({ P}, &) be the
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closure of the linear span of the functions ¢ with ¢ € &,(P,{) and P € {P}. Itis proved quite early
in the theory (cf. Lemma 4.6) that

(4) L(&) = L P}, E).

Abstractly seen, the main problem of the theory of Eisenstein series is to analyze the space £(¢)
or the spaces L({P}, &) in terms of the cusp forms on the various M. This analysis is carried out—in
principle—in the text. However, one can be satisfied with a more perspicuous statement if one is content
to analyze £(&) in terms of the representations occurring discretely in the spaces of automorphic forms

on the groups M.

It is clear that

D
MWM#/LW%MM

0

Let L(G, {P}, () be the closure of the sum of irreducible invariant subspaces of L({ P}, () and let
®
LUGHPLEO = L(CAPLE) = [ £(GAPLOldcl

We write {P} >~ {P,} ifthereisa P € {P}and a P, € {P;} with P D P,. We shall construct a finer

decomposition

(5) L{P1},6) = Dy i LUPEH P} E).

If P € {P}letp = p({P1}) be the set of classes of associate parabolic subgroups P; (M) of M of the
form

P(M)=MnNP,

with P, € {P,} and P, C P. The space L({P},{P1}, &) will be isomorphic to a subspace of
(6) Dpe(py By Ind (G(A), M(A), L(M,{Pi(m)},€))

which may also be written as

@

(7) ©pe(ry Ep /

Ind (G(A), M(A), £(M, {P(m)},¢0) ) ldC]
Do (M)
To describe these subspaces, we need the Eisenstein series.

The induced representations occurring in (6) act on a space QE(P, {Pl(M)},f) of functions ¢

on N(A) P(F)\G(A) that satisfy the condition: for all ¢ € G(A) the function m — ¢(mg) lies in
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L(M,{P,(M)},€). We may also introduce & (P,{Pi(M)},€) in much the same manner as we
introduced &,(P,¢). The induced representations in (7) act on spaces QE(P, {Pl(M)},gé) and the
spaces €&, (P, {P1(M)}, C) , just as above, form a holomorphic vector bundle over Dy(M).

If L is the lattice of rational characters of M over F' then X (R) may be imbedded in L ® R, and
the positive Weyl chamber in X (R) with respect to P is well-defined. We write y; > x2 if X1X2—1 lies
init. If @ liesin & (P, {Py, (M)}, (d) and Re ¢ > 4 the series

E(g,®) = >  ®(yg)

P(F)\G(F)

converges. For each g it may be analytically continued to a meromorphic function on the whole
vector bundle, which will of course be linear on the fibres. It is an important part of the Corollary to
Lemma 7.6 that none of its singular hyperplanes—the singularities all lie along hyperplanes—meet the
setRe( = 0. If

= ) d
. Lmnwﬂm

with ®(¢) in &y (P, {P1(M)},¢6), liesin & (P, {P1(M)}, &) then

1ww=M/Emwmwd

exists, the limit being taken over an increasing exhaustive family of compact subsets of Dy(M ). The
linear transformation ¢ — T’y extends to a continuous linear transformation from @(P, {P1 (M)}, 5)

to L£(¢). By additivity we define it on

Dpefpy Bp E(P,{P1(M)},§).

Then T commutes with the action on G(A) and its image is, by definition, L({P},{P},&). It has still
to be explained how, apart from a constant factor, 71" is the composition of an orthogonal projection and

an isometric imbedding. The functional equations now begin to play a role.

Suppose P and P’ liein {P}. If & = ©®, liesin

Dy (P {P1(M)},€)

we set

E(g, (I)) = ZE(Q, (I)P)'

p



Appendix 2 212

If Re ¢ > 0 consider

/ E(ng, ®) dn.
N’(F)\N'(A)

O(g)=>_ Pp(g),
p

Since, as a function,

this integral is equal to

®(w™ ' ng) dn.

2

’U)EN’(F)\G(F)/P(F) /7;1_1 P(F)wﬂN’(F)\N’(A)

We are only interested in those w for which
wMw™ = M.
Then the integral equals

' (g) = / d(w™ng) dn
wN(A)yw—1NN’(A)\N'(A)

and

® — N(w)® =9
is a linear transformation

1

©pCo (P, {P1(m)},(0) — @p & (P {P{(M)}, (" &)
It is easy to turn
Hom ™ (@, €(P, {Pi(M)},¢8), &y €0 (P, {P{(M)},¢9))

into a holomorphic bundle on D(M). N(w) can be extended to a mermorphic section of it. Observe

that N(mw) = N(w) if m € M (F'). The important functional equations are the following.

i) If woMw-t = M’ and w; M'w; ! = M"” then
w 1
N(wy) N(wy) = N(wyws).

(ii) Forany w

E(g, N(w)®) = E(g, ).

They are consequences of the rather turbid Lemma 7.4, immediate once its meaning is understood.
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There is in addition a more elementary functional equation. We easily define a natural sesquilinear
pairing

{ @ (P AP(M)},0) } x { @y & (P{PI(M)},(10) } — C.
If K is a compact subgroup of G(A) and G(A) is a finite disjoint union

UN(A) M(A) g.K,

there are constants ¢; such that

/ flg)dg = Zci/ dn/ dm/ dk f(nmg;k).
G(A) P N(A) M(A) K
The pairing is

(P1,12) = ZZ:CZ/Z

According to Lemma 7.5 the adjoint N*(w) of

dm /K s (mgik) Fa(mgik).

M (A)N\M(A)

1

N(w) : &€ (P, {P1(m)},(8) — @& (P, {P{(M)},(" 6)

N(w™b) : @€ (P, {P{(M)},{" ' 6) — ®€y(P,{P1(M)},('6).
The functional equations
Nw Y)Y Nw)=Nw)Nw =1
then imply that N (w) is an isomorphism and an isometry when ¢ is unitary.

The functional equations for Eisenstein series imply that if

Y =Qpp

then T'¢(g), which is given by,

i > [ E(g.00(0) I

Pe{P}

is also equal to

i 3" [ B(0 2 3 Nw)@r() acl

Pe{P}
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Here the sum is over all w such that, for some P’ € {P}, wMw~! = M’ taken modulo M (F), and w
is the number of terms in the sum. It is implicit that we have fixed a Levi factor of each P in {P}. The

linear transformation
1
50(¢) = &{ =Y Nw) er(c")}

is the orthogonal projection U of the space (5) onto the closed, G(A)-invariant subspace defined by the
equations
Op (¢ = N(w) @p(C)

whenever wMw~! = M’. Itisclear that T' = TU. If ©®p(() lies in the range of U then (Lemma 7.6)
ITell? = wlpl®

The main results of the text summarized, | would like to draw attention to a couple of questions
that it seems worthwhile to pursue. The first, which | mention only in passing, is to extend the
decompositions (4) and (5) to other function spaces, especially those needed for the study of cohomology
groups (cf. [6]). The second involves a closer study of the operators N(w). They have already
led to many interesting, largely unsolved problems in the theory of automorphic forms and group

representations ([4], [5]).

Suppose V is an irreducible invariant subspace of
> L (M, {PL(M)},G6).
p
If { = (yx lies in the same component as (y we may define
Ve = {x(m) p(m) | ¢ € V}
as well as the spaces &(P, V) on which the induced representations
Ind (G(A), M(A), p¢)

act. Here p¢ is the representation of M (A) on V;. We may also introduce &,(P, V¢).

There are two ways of regarding the functions ® in &(P, ;). ® may be considered a function on

N(A) P(F)\G(A) for which the function

m — ®(mg)



Appendix 2 215

is for all g an element F'(g) of V. We may on the other hand emphasize F', from which & may be

recovered,; it is a function on NV (A)\G(A) with values in V; and

F(mg) = pc(m) F(g)

for all m and g.

IfwMw=! = M’'and ¢’ = ¢* ', we can introduce a space V¢, and a representation p, of M'(A)

on itin two different ways. Either V¢ is V;: and

Plolim') = S5 pelm), - m = ™

or
Vo = {¢|¢'(m') = %EZ)) p(m) |

and p,+ acts by right translations. With the second definition V7, is clearly a subspace of £({’4"). Since

N (w) is easily seen to take €y (P, V;) to & (P’, V{,) we conclude that V7, lies in
O L (M {P (M)}, (0.
In terms of £ and F’ and the first definition of V{,, we have

F'(g :/ F(w™ 'ng) dn.
wN(A)w-1NN’(A)\N’(A)

The integrals are now vector-valued. It is this definition of N (w), which now takes F' to F’, that we
prefer to work with. Of course the formula above is only valid for Re { > §. We write V' as a tensor
product over the places of F’

V =gV,

Then N (w) too becomes a product of local operators N, (w) : F,, — F! with

Fl(g) = / Fy(w 'ng)dn, g€ G(E).
wN(Fy)w—INN'(F,)\N'(Fy)

Suppose, in order to describe the second problem, that the L-functions and e-factors intimated
in [4] have been defined for all irreducible representations of M (F;,) and all relevant representations of
the associate group M of M. Using the notions of [4] we see that M actsonn” Nw ™ n"Vw\w ™ nVw.
Here nV, n’V lie in the Lie algebra of the associate group G and w is obtained from the isomorphism

of the Weyl groups of G and GV. Denote the above representation of the group M"Y by r(w) and, in
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order to make room for a subscript, denote p: by p(¢). The calculations of [2], [3], and [5] suggest the

introduction of a normalized interwining operator R, (w) by the equation

oy L(0, pu(¢), 7(w))
Nol) = 20 010, (), ) L(L po(Q), ()

R, (w).

7(w) is contragredient to r(w). Exploiting the anticipated functional equation we obtain the global

formula
L(0, p(¢), F(w))
L(0, p(¢)r(w))

If s(w) is the representation of M on w™!n'Vw then

N(w) = ®,Ny(w) =

Qo Ry (w).

and
L(0,p(Q),7(w)) _ L(0p(¢),5(1)
L(0,p(¢),r(w)) — L(0,p(C), s(w))

If woMwy' = M’ and wi M'w;' = M" then s'(1) composed with m — wymw, ' is s(ws) and

s'(w1) composed with the same homomorphism is s(w;ws). Consequently the quotient of the two

L-functions is multiplicative in w.
We are led to the following questions:

Is it possible to continue analytically the operators R,(w), which are at first defined for Re, > 0
to meromorphic functions on an entire component of the local analogue of D(m)? Is R,(w) then

unitary on Do(M)? Is the functional equation
Rv(wl) Rv(w2) - Rv(w1w2)

satisfied?

If r is archimedean, the L-functions and e-factors can be defined ([7]). It is very likely that, in
this case, answers to the above questions are contained in the work of Knapp-Stein [1]; but | have not

tried to check this.
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Appendix 11l

Examples for §7

It might be a help to the reader who resolves to force his way through the jungle of Paragraph §7
to know the sources, apart from the author’s expository inadequacy, of the complexity of the notation
and the proofs. A number of unexpected and unwanted complications must be taken into account, and
it may be asked whether they can really, under sufficiently unfavorable circumstances, arise or whether
it was simply not within the author’s power to eliminate them from consideration. Unfortunately they
do arise, and they cannot be ignored unless a procedure radically different form that of the text be

found.

I cannot comment on all the complexities, for a good deal of time has elapsed since the text
was written, and | myself now have difficulty finding my way through it. But some of them were

sufficiently vexing to imprint themselves indelibly on my memory, and these | shall try to explain.

Some of the notational elaborateness is of course purely formal, a result of the generality, and
this part it is best to remove at once by fixing our attention on some special cases, in which the essential

mathematics is nonetheless retained.

We take G to be the set of real points in a simply-connected Chevally group and I" to be the set
of integral points. Fix a percuspidal subgroup P; then all other percuspidal subgroups are conjugate
to it with respect to I'. We take VV and W to be the space of constant functions so that &(V, W) too
consists of constant functions. The corresponding Eisenstein series we parametrize by X in the dual of
the Lie algebra a, rather than by an element in a itself, as in the text. When writing it | was too strongly

influenced by the then prevalent fashion of identifying a with its dual.

We take ® to be identically 1 and write E(g, \) instead of E(g,®, H). The constant term of
E(g,\), thatis

/ E(ng,\) dn
TAN\N

Z M(s,\) 68/\(H(9))+p(H(9))

sEQ

is then

where M (s, \) is now a scalar which if G is SL(2) can be easily computed. Lemma 6.1 then shows that

itis in general equal to

1 §(MHa))

a>0 5(1 + )\(HOJ)) '

sa<0
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Here

and H,, is the coroot defined by

The space L({P},{V},W) is isomorphic to the space obtained by completing the space of
complex-valued functions of A holomorphic in the tube over a large ball and decaying sufficiently

rapidly at infinity. The inner product is

1 _
(1) /RM:AO §M(5,A)¢(A)W(—3A) ).

(2m)a
Here \g must satisfy
(Ao, @) > (p, )
for all positive roots «.. The integer ¢ is the rank of G.

On the space L of functions on the set Re A = 0 square-integrable with respect to the measure

dA
€2 -
(2m)e
we introduce the operator
1
Q: BN G > M(s™ sA)B(s))

Since

M (s, t\)M(t,\) = M(st, \)

the operator () is a projection. Its range consists of the functions satisfying
D(sA) = M(s,\)P(N)

for all sand \. Since

M(s,\) = M(s™1, —s))

we infer also that () is self-adjoint. The inner product of Q® and W is given by (1).

If Ao were 0 we would infer that L({P},{V}, W) was isomorphic to the quotient of L by the
kernel of @ or to the range of Q). This is the kind of concrete realization of the space L({P},{V}, W)
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which the theory of Eisenstein series seeks to give. If the functions M (s, A\) had no poles in the region

defined by
(2) Re(A\,a) >0

for all positive o« we could, because of the Cauchy integral theorem, replace Ay by 0. However,
they do have poles. But we can deform the contour of integration in (1) to Re A = 0 if the zeros of
®(\) compensate for the poles of the functions M (s, A). Therefore, the subspace of L({P},{V}, W)
generated by such functions is isomorphic to the quotient of £ by the kernel of () and the inner product
of the projection of the elements of L({ P}, {V}, W) represented by ®(\) and ¥(\) on this subspace is
given by (1) with A replaced by 0.

The inner product of the projections on the orthogonal complement of the subspace will be given
by the residues which enter when we deform Re A = \g to Re A = 0. This will be a sum of integrals of
roughly the same type as (1), but over hyperplanes of dimension ¢ — 1. The procedure of §7 is to treat
them in the same way, and then to proceed by induction until there is nothing left. The procedure is

carried out fully for two simple examples in [1].

A number of difficulties can enter at the later stages which do not appear at first. The functions
M (s, A) remain bounded as Im A\ — oo in the region defined by (2) so that the application of the residue
theorem is clearly justified. However, at least in the general case when the functions M (s, A) are not
explicitly known, it was necessary to deform the contour into regions in which, so far as | could see, the
behaviour of the relevant functions as Im A\ — oo was no longer easy to understand. Some substitute
for estimates was necessary. It is provided by unpleasant lemmas, such as Lemma 7.1, and the spectral
theory of the operator A introduced in §6. The idea is, if | may use a one-dimensional diagram to

illustrate it, to deform the contour as indicated and then to show

b
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that at least on the range of an idempotent in the spectral decomposition of A associated to a
finite interval only the interval [a, b] of the deformed contour matters. Of course for a given idempotent
the interval [a, b] has to be taken sufficiently large. For function fields, this sort of problem would not

arise.

At the first stage the functions M (s, \) have simple poles so that the residues which appear
do not involve the derivatives of ®(\) or ¥(\). At later stages this may not be so, and the elaborate
discussion of notation with which §7 is prefaced is not to be avoided. The first—and only—example of

such behaviour that | know is provided by the exceptional group of type Gs.

The root diagram for G is:

By B By Bs

We take as coordinates of A the numbers z; = A(Hpg, ), z2 = A(Hg,) and the measure |d)| is then
dy, dys. Since the poles of the functions M (s, A) all lie on hyperplanes defined by real equations we
can represent the process of deforming the contour and the singular hyperplanes met thereby by a

diagram in the real plane. The singularities that are met all lie on the hyperplanes s; defined by

A(Hg)=1, 1<i<6.



Appendix 3 222

As can be seen in the diagram, if we move the contour along the dotted line indicated we may pick up

residues at the points A, - - -, Ag.

In order to write out the resulting residual integrals explicitly as in §7 we have to list the elements
of Q(s;,s;), and then tabulate the residues of M (s, \) on s; for each s in Q(s;,s;). We first list the
elements of the Weyl group, together with the positive roots that they send to negative roots. Let p; be

the reflection defined by ; and o (#) the rotation through the angle 6.

{3>0[aB <0}
1
P1 B
p2 B, B2, B3
3 ﬁ17627637/84765
P4 ﬁ27637647/85766
(3) Ps /647657/66
Pe Be
o(3) B, B2
0—(2%) ﬁ17ﬁ27637/64
O—(TF) /817627/837647/857/66
0—(%) ﬁ37/847657/66
(%) Bs; Bo
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Since an element of the Weyl group takes long roots to long roots and short roots to short roots,
the set (s;, s,) is empty unless i and j are both even or both odd. This allows us to consider the two
sets {s1, 53,55} and {s, 54, 56 } separately. We tabulate below the sets §)(s;, s;), together with another

more convenient labelling of the elements in them. The second labelling refers only to their action on

$;.
(4)
Sj
AN 81 S3 S5
A
P1 = P+ P2 =04 p3 = T+
51
— 2m __ T\
o(r)=p_ o(%)=o0_ o(3)="1-
- -1 _ -1 _ -1 _ —1 _ -1 _ —1
P2 = P+pP4+04 = P-—pP+0_ P3 =04p4+0, =0_p40_ P4 =T4pP+0 =T-pP40_
53
4y _ -1 _ —1 _ -1 _ —1| 2wy _ -1 _ —1
o(F) = p-proy =pypyo_|o(m) =0_pyo =oypro_ o(F) =T_pro =Tipio_
— -1 _ -1 _ -1 _ —1 _ -1 _ -1
P3 = P+P+T4 = P-P4+T_ Pa=04p4Ty =0_pP4T_ P5 = T+pP4+T4 = T_pP4T_
55
5y _ -1 _ —1|_dmy _ -1 _ —1 _ -1 _ —1
0(5F) = pap+72 = pp70(F) = 0_piTy = 04pyT_ | 0(T) = ToppTL = TopaTo
(®)
Sj
AN S92 54 S6
2
- -1 _ -1 _ -1 _ —1 _ -1 _ —1
P2 = P4+T+Py = P-T+P_ P3 =04T4Py = 0-T4p_ Pa=T4Tpy = T-T4P_
52
_ -1 _ —1| 2wy _ -1 _ —1 _ -1 _ —1
o(m) = p—Trpl = p1Tipl o(F) =0-_Tipl =o41Tipl|0(F) = ToTHpl = TeThp
— -1 _ -1 _ -1 _ —1 _ -1 _ -1
P3 = pP+74+04 = pP-T40_ P4 =04T40, =0_T40_ P =T4T404 = T_T40_
54
U(%’T) =piry0 !t =p_rioilo(m) =0 Ti00 ! =oyTmi0l! o(3F) = rorolt =m0t
P4 = P+ P5 = 04 P6 = T+
56
5T\ __ ary —
o(F) =p- o(F)=0- o(m) =T1-
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Of course then p4, p_, etc., which appear in the two tables are distinct, but there is no point in

encumbering the notation with primes or superscripts.

We have next to choose a coordinate on each of the s; and calculate the residues of M (s, A),
s € §(s;,5;), with respect to it. The coordinate will be denoted z and will be the restriction of the

coordinate on the total A-space indicated in the table below.

51 52 53 54 55 56

Stz |-z |3 -AHg,) |2 - AHg,) |2 -2 |2+a

To calculate the residue we have to choose near s; as coordinates A\(Hg,) and £\(Hp,) where z =

a; £ M\(Hpg, ) and express the other coordinates \(Hp, ) in terms of them.

Principal coordinates Other coordinates

1) A(H&)v /\(Hﬁﬁ) Hﬁ = 3H51 + Hﬁe Hﬁs = 2H51 + Hﬁ@

H[34 = 3H51 + 2H[36 Hﬁs = Hﬁ1 + Hﬁﬁ
2)  AHpg,), —M(Hp,) Hp, =Hpg, — Hp, Hp, =2Hp, — 3Hp,
Hﬁs = Hﬁ2 - 2H51 Hﬁ6 = Hﬁ2 - 3H51
3) A(Hg,), —M(Hp,) Hp, =Hp, —Hp,  Hp, =3Hp, — Hg,
H[35 = 2H53 - Hﬁz Hﬁa = 3Hﬁs - 2Hﬁ2
4) A(H@;)v _)‘(Hﬁs) Hﬁl = Hﬁ4 - 2H55 Hﬁ2 = 2Hﬁ4 - 3H55
Hﬁs = Hﬁ4 - H[35 Hﬁa = 3H55 - Hﬁ4
5) )‘(Hﬁ5)7 _)‘(Hﬁﬁ) Hﬁl = H55 - Hﬁﬁ Hﬂz = 3Hﬁ5 - 2H56
H53:2Hg5—H56 Hg4:3Hg5—H56
6) )‘(Hﬁa)v )‘(Hﬁl) Hﬁz = 3H51 + Hﬁﬁ Hﬁs = 2H51 + Hﬁa
H[34 = 3H51 + 2H[36 Hﬁs = Hﬁ1 + Hﬁﬁ

In table (6) the residues n(o, z) or n(o, A), A = A(z), for the elements of table (4) are given and
in table (7) those for the elements of table (5). To obtain them one uses the formula for M (s, ), the
table (3), and the relations (5). To make sure that there is no ambiguity | observe that, for example, the

entry in the third row and third column of (6) is n(7+p+ajrl, z) and corresponds to the third row and
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third column of (4). The residue of 5(51(?;) atz=1is ﬁ Thus, for example, the residue of M (o(7), \)

on sy is

1 (-2 e(=-1) (=+1) €(=+2) ey 1 €(=-3)se
€2 ¢(s-1) ez +4) e(e+3) e(s+3) €0+22) €@ g(a43)e01+22)

To save space the factor

=, which should appear before all entries, is omitted and &(az + b) is written

£(2)°
as (az +b)
1 (++3) (=3) (22
(=+3) (z+3) (22+41)
(2=3) (22) (2+3) (22) (+3)
(=+3) (1+22) (z+3) (224D (=+3)
(3—2) (3-2) (¢+3) 3-2) (+3) _(22)
) t—2) G+3) 3-2) (z+3) @=+D)
(6)
(2+3)  (22) (3—2) (z+3) (22) (3—2) (2+2)
(=+3) (2z+1) 3-2) (=+3) (22+1) (5-2) (=+3)
(z=3) _(22) (+3) (5=2) _(22) (+3) (5-2)
(2+3) (2=+1) (24+3) (3—2) (2=+1) (z+3) (3-2)
(3-2) (z+3) G-2) (z=3) (3=2) (22)
G-2 5 G- G5 G—») @=+D
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(1-2) (342) (3=2) (5+2) (3+32) (22)

(3+2) (=3+32) (22)

(5-2) (5+2) (2-2) (2+2) (2+432) (32+1)

(3+2) (B+32) (2241)

(1—2) (3+2) (=3+32) (22)
(3=2) (3+2) (3487 @a4D

(3—2) (3+2) (5+32)
(3—2) (3+2) (3+32)

(2z) (32+3) (24+3) (3-2)
(22+1) (32+3) (2+3) (3-2)

(3z+3) (2+3) (3—2) (3
(32+3) (2+3) (3-2) (3-32)

(3—2) (3-32)
-2 (§-32)

}—32) (22) (3Z+%) (Z+%) (3—=

(22)  (8243) (¢+3)

1-2) (3
(2241) (32+3) (2+3) (3-2) (5-32)

(2z+1) (32+3) (2+3)

(32—%) (22) (z+%)
(8z+3) (22+1) (2+3)

(3z+%) (z+%)
(3z+3) (2+3)

(=+
(z+

o=

) (22) (32+3) (2+3)
) (2z+1) (32+2) (2+2)

N[l

(:=1) B2-3) (22)
(z12) (Bz13) 24D

The difference between (1) and the analogous integral with Ay = 0 is the sum of

3

(8) Zi > 5

271 .
=1 j=1 069(52i752j) Re A=Az

3 3

o) D) DI DR -

i=1 i=1 0€Q(s2;—1,52j—1) ReA=A2,—1

n(o, \)P(A\)W(—0o)dz

(0, )BT (—oN) dz.

Here A = A(z). If we follow the procedure of §7, we deform the contours to Re A = A\(0). The resulting

expressions give the inner product of the projections on the one-dimensional spectrum. The residues

which arise during the deformation when added together give the inner product of the projections on

the spectrum of dimension 0. We shall see that the subspace corresponding to the discrete spectrum,

that is, the spectrum of dimension 0, is of dimension two, consisting of the constant functions and

another eigenspace of dimension one.

Before carrying out the deformation and computing the residues explicitly, we write out for the

collections {s1, 53,55} and {s2, 54,56} the matrix M (H) figuring in Lemma 7.4, observing as a check

upon tables (6) and (7) that they satisfy the conclusion of Lemma 7.4, that is, they are both of rank one.

H isnow A\ = A\(z) and the matrix elements are functions of z. The matrices are given in tables (10) and
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L
£(2)

simply (az + b). In (10) the element s° of the text is p; in (11) itis 7. Thus if A = A(z) the entry in

(11). Once again, to save space the factor has been omitted from all entries and £(az + b) is written
the box of (10) with row labelled o and column p_ is £(2) n(opp~", p—piA). It should perhaps be

stressed that if A = \(z) then for all o the coordinate of —o )\ is +z.

Since none of the functions n(o, \) has a singularity on Re A = A\(0) we may deform each of the
terms in (8) and (9) separately. Since there are eighteen terms in each of the two expressions, and since
some of the residues arising are complicated, the computation will be lengthy. Nonetheless it is best to
write it out completely, for one appreciates better the difficulties faced in §7 if one sees the procedure
which was there described in an abstract form carried out in a specific case, which is after all relatively

simple. Suppose that, near z = 1,

£(z) = Zil +a+bz—1)+0((z—1)%).
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(z—%) (+%) (ze—1) (2-8) +3%) | (re—1D (¢-%) (2+8) (z+8) —%) (zz—1) (% (§+7) -
(z—%) (=+%) (7g=) ($—2) (=+%) | ()2=) (—%) (#+%) (z+§) (:—%) (zg=) (§-2) ($+2)
(ze+1) (¢1%) (- %) (=+%5) z—%) (z=%) (z+8) (t42e) (3+7) (% (z-%) (1+z2) (§+2) | 4,
(ze) (§-2) (-%) (2+%) (2-%) (—%) (+%) (72) ($+2) (+—§ (2—%) (ze) (5-2)
(ze+1) (2+%) (:—%) (2+%) (2-%) (z=%) +%) (ze+D) (+3%) (3—% (2=%) (1+z2) (§+2) | -,
(7g¢) (+%) (%) (z+%) —%) (z==%) (z+%) (ze) (=4+%) (=—% (z-%) (&) (§+2)
(2=%) (¢+%) (zz—1) 3—§) (>+§) | (rz—1) >—%) (>+%) (2+%) (2—%) (ze—D (:—%) (5+2) +o
(z—%) (=+%) (ze—) (—%) +%) | (7e—) (z—-%) (=+%) (=+%) (== %) (z2—) (=—%) (3+2)
(zz+1) (§+2) (=+%) (=+%) (1+22) (§+2) I (1+22) (§+2) | 4
(=2) ($-2) (z+¢) (=+%) (z2) (%+7) (z2) (§-7)
(=-% (rz—1) (§+2-) (zz—1) - %) (=—%) (zz—1) (- %) I +d
(2-%) (72—) (§—2-) (7z—) (2-%) (z=9) (72—) (§—2)
L i 0 o —d +d
,ﬂmm“mmﬁmw
(1)
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I (§+28) (ze+1) (§+2) (ze+§) (=+§) (ze+8) (ze+1) (#+5) (F+78) (1+2) (=+§) (z+%) -
G2 (0 (52 Fe+%) (+%) Gets) (280) (++%) (§—=8) (@) (++%) E+9)

(ze=%) (rz-D (:-%) . (ze=%) (ce-1) (=%) (ze=%) (:=%) (z=%) (z¢=%) (z-1D) (:=9)
Ge—%-) (e—) (z-%-) (e—%) (e) -%) =5 -9 (B2 (Fe—%-) (o) (—%)
(z6=%) (ze-1) (== %) (+2) (Btze)  |(e+d) (2e=8) (e—1) (+5) (:=5)|(ze=%) (:e+§) (et (:=8) (+D)|(E+78) e+ (+5) =8)|  (2e=§) (-9 (=+8) | |
(ze—%) (F2-) (=-%) (G+2) (rze)  |(ret%) e— %) (em) 45) G-9)|(e—%) Gets) (o) %) GHH|(G+ze) Fo) +5) (-5 (G5 (%) G+%)
(ze=%) (;z-1) (:=%) (5+47) (5428)  |(ze+D) (8=9) (ra—1) (+8) (=9)|  (:e=8) (=) (+5) (ze+]) (3+2e) (=+5) (:=%) | (ze=%) (;e-1) (=) (:+8) |4
(e—%) (ze-) (-%) (5+7) (5F28)  |(et5) Ge—%) (Fa—) (:4%) :=9)|  (7e—%) (:—%) (z+%) (e+%) (5428) G+9) :-%) | (Fe—%) (Fa) (:=%) (4%)
(£=%) (;z-1) (:=%) (5+2) (+%) (=8 (;2=%) (22-1) (re=%) (:=%) (z+%) (+%) (=% (z-1) (&= (=%) (+5)|_y
(ze-%-) (za-) (=%) G+ +%) (=%) (ze=%) (ze-) (Fe—%) (2= %) (z+%) +%) ==%) Ga-) (e=%-) (:=%) (z+%)

(=) (§+28) (1+2) (3+7) (ze+3) (++5) (=9 (=%) (+8) (ze+9) (et |Getn) (F+78) (+5) (:—F) (z=%) (=+§) +d

=% (G—2e) (o) (5+2) (Fe+%) (:4%) (:=%) =% (+%) e+ (70 Fo) (5—zp) (4%) —9) =%) (=1%)

- +1 -0 +o0 -d +d

Awmhwmbme

(11)
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1) We begin by finding the residues for s;. At A\,

< <5
p— Z p—
2 2

Let R(p+), R(p—), and so on, denote the residues arising from the corresponding terms of (8). Making

use of (4) and (6) we obtain the following results. Observe that the relevant singularities occur at the

intersections of s; with some other s;.

R(p-i-) = 07
Rip )= 28 (5 0(Bs) + (52 U(B)
- £(2)&%(4) 26(2)€(3) ’
1 _
R(U+) = W q’(ﬁQ)\Ij(ﬁ2)-

The term R(o_) is more complicated because the poles of n(o_, \) are not simple. We let D, be

the differential operator
d

Then, as the conscientious reader will readily verify, R(o_) is the sum of

Mio-

1 - _
W{‘I’(ﬂ2)D6‘l’(ﬂ4) + Dy ®(2)¥(B4) }
and
3a RS R -
{252@) 3) (B3)ER) 2222)eE) } 2(02)¥(Ba)-
Moreover R(7, ) is the sum of
-1 _ _
W{‘I’(ﬂzwz‘l’(&) + Dy ®(B2)V(B4)}
and
£(3) - —a £'(3) §'(2) -
£(2)€2(4) () ¥ (B) + {252(2) £(3) * 2£2(2) €2(3) + 22)£3) } P(B2)W(fa),
while

R(r_)=0.
Adding these six terms together we see that the total residue from s; is

3 a 1 ,
2£(2)€(3) 2(2)£(3) sE ) e3) D(P) D1 ().

Since there is considerable cancellation involved in these calculations which cannot be predicted from

O(B2)W(B2) + D(32)¥(0s) —

general principles, the interested reader is advised to verify each step for himself.
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2) The residues for s, are easier to find. The coordinate of the point ), satisfies é <z < %

R(p"rT-‘rp—T-l) = 07

Ro-rert) =iy (3 (3)
S
Rlo-meri) = 3£§;)§<)§()¢(% "(3)
o) = g (243

R(r_mypi") = 0.
The sum of these six terms is 0. It is clear from the diagram of the spaces s; that there are no residues

for s3 or s4. The residues from s5 and sg are however extremely complicated.

5) The coordinate of A5 sat|3|fes 5 <z< 2 Putting our head down and bashing on we obtain the
following results for the residues. R(p+p+7+ ) is the sum of

-1

W{@(@)M (B2) + D2®(B4)¥(52)}

and

{ U 4 ) £'(2)
262(2)€(3)  262(2)€2(3)  £(2)€03)

R(p_p.7;"') is easier to find; it equals

}‘1’(54)@(52)'

1
£2(2)

Since — g does not lie in the dual of the positive chamber, we infer from Lemma 7.5 that this term will

©(34)¥(—e)-

be cancelled by another, for it cannot remain when all the residues are added together.

The other terms grow more complicated. R(a+p+7;1) is the sum of the following expressions.

mwz@(mw&(m) + %<b(ﬂ4)D§‘If(ﬂ4) + %D%@(m)@(@)};
1 1 "(2 "(3 a - _
£@2) {5 <£3(£2§5)<3) e é)(fg(?))) T 2)0) } {D2‘1’</34)‘1“(/34> + 2 (04 Do (5a) }
1 £(2) £(3) @
(@ "\ 8RR " ee >§2<3>>+52 ) }‘”4
L 5 €@ 2e@)Ty 1 §"<> 2(£(3))° .
5(2){45<2>5<3>(52<2>‘ &(2) )+4§2(2)< 23) 803 )} P(B2) ¥ (Ba);

1 (s’<2)§’<3) 2(¢'(2)°

8(2)€2(3) €42 >§<3>) (BB
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R(o_py7; ") is not so bad; it is the sum of

1

w{@(@)p&(ﬁg) — Dy®(B4)¥(32)}

and

£B) e )
{52(2)52(3) 53(2)5(3)}‘1’(54>‘1’(ﬂ2)-

R(rypyryt)is simply

With R(T_,oJJ;l) complications appear once again. It is the sum of the following terms.

1
263(2)€(3)

{D2®(84) D2V (B4)
21(2 { €@ <g(3)}{D2q>(g4) (Ba) + D(Ba) DT (Ba) };
2

+ 3 DRR(B)T(5) + 5@ (G DET(5:)

( )€(3) ( )
1 1 3) (2) 1 _ 3a® .

£(2) 2)¢ 2)¢€(3
- 5 g«) (Z)> 252 (f” 2(¢ ))}@m@(m

We add up all the terms above and find that the total contribution from s5 is the sum of the

following six expressions.

a £'(2) £'(3) B a2 - .
{5(2) <53(2)f( )+ ( ) £2(3 )) 63(2)5(3)}(1)(54)‘1’(@1)7

a

_SQL(Q)(p(ﬂZL)‘IJ(_ﬂG) m (B4)¥(Bs);
e e P BODII(B) — s DAb(B) ()
1 —a  3¢(3) _ 1 s e .
emem (7 ) POV + g 03 - DR,
1 1 ¢'(2) ¢(3) _
253(2)5(3)D2¢(ﬂ4)D1\IJ(54) 202) <§3(2)§(3) + 52(2)52(3)> D(64)D1¥(Bs).

The term involving ¥(— () has not yet disappeared.

The reader will be losing heart, for we still have sg to work through. He is urged to persist, for

the final result is very simple. | do not know the reason.
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6) The coordinate of )¢ is greater then % It will be seen from the diagram of the spaces s, that we may
pick up residues at three points, at the intersection of s and s, at the common intersection of sg, ss,
53, and s, and at the intersection of sg with s4. The corresponding values of z are % % and % The

contribution R(p.) is the sum of the following terms.

1
6£3(2)£(3)

o lem : (eves e flgs)@)}w?’/ )
E2)€0) {<E“Q+§b < +3§<;>)>
)

{Dg@(ﬂ4)D5 W(5,) + L D303, <ﬂ4>+<1></34>05@</34>};

(Ba) + ®(Ba) D5V (B4) } ;

,_;\_/

7
} (BT (B):

The value of R(p_) is simply

It cancels the term for s5; which had troubled us.

The value of R(o.) is

Fre M) +

For R(o_) we obtain the sum of three terms.

1 —
m{Dg@(ﬂ;ﬂ“’(ﬂZ) (ﬂél)Dl (52)}

3a B 35/(3) ~ ‘
{252(2) £(3)  2€2(2)€2(3) } D(B4) W (B2);

1)) i
35(%)2(%)22<2>¢(%)‘P(%)‘




Appendix 3 234

R(74) is of course zero, but R(7_) is the sum of the following nine terms. ¢ is now one-half the

sum of the positive roots.

_
£(2)£(6)

{Ds®(52) D5 B(5:) + 5 D3B(A)(B) + 5 0(5) DRT(5)):

1 { €@ €@
2%\ EREE) 8RR
—%2a _
wem o
2a &' (3
) {52@)5 3 ¢
)

—1 J9'(2)¢B)
6£(2) | £3(2) &3(

O(3)W(0);
1
6£%(2)£(3)

} {®(B4) D3 (B4) + D3®(84)¥(64) } ;

Ba) + Ds®(B4)¥(B4)};
£'(2)
£ (2
2(£'(

(
) .
: & 260,

3) (2))° (6.
DRSIORE >}‘D(ﬂ4mﬂ4>’

N

Adding the six contributions together we see that the total residue from sg is the sum of the

following terms.

1 1

52—(2)@(54)‘?(—56) + m@(@)@(%) + 5D e0 (0)%(p)
seae (P00 D1 ¥ () + Dab(5)F(50);
252(23)5(3) <a 55/(( ))> 2(B)¥ %HW (B4) (D3 — D3)¥(Bs);
a0+ 5 (52(5/@( * E >> 2P DT (B
e PO + g @) (D = 501) W)
#‘;Q)W (B - (a £2) (5352,525)( ) 525)@(3)) 2(Ba)¥(5).
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Now all we have to do is add together the contributions from s, ---,s5. The result may be
expressed simply in matrix notation as:
T V() 17 5(2)15(6) 0 0 0 T ®(p) ]
T (6) 0 o eom wowa || 00%)
V() 0 eotew wow wEw || 20
D) | 0 semam wowm woem ] LDi®(6).

That the matrix turns out to be symmetric and positive-definite is a check on our calculations. Since
it is of rank two, the discrete spectrum contains two points. One of the associated subspaces is the
space of constant functions. The constant term of the functions in the other space is not a sum of pure
exponentials. The appearance of a second point in the discrete spectrum is a surprise. One wonders

what its significance is.

In the example just discussed the functions n(c, \) were analytic on the line Re A = A(0), and
the corresponding residues of the Eisenstein series must be as well. This may not always be so,
and one must be content with a weaker assertion, that of Lemma 7.6. This is seen already with the

one-dimensional spectrum for the group of type As.

Thisisthe group SL(4). We may take as coordinates of A, parameters z1, z2, 23, z4 With > z; = 0.
The elements of the Weyl group are permutations and
£(zi — %)
M(s, ) = —_—
(87 ) H 5(1 + Zi

i<j - Zj)
s(i)>s(4)

At the first stage the integration will be taken over the set Re z; = 27 with 27 — 27 > 1ifi < j. Then
it is moved to Re z; = 0. Residues are obtained on the hyperplanes s;; defined by z; — z; = 1. These
give the two-dimensional spectrum. In order to obtain the one-dimensional spectrum the integration

has then to be moved to

where 4y, is Kronecker’s delta. If M (s, \) has a singularity on s;; then s(i) > s(j). If & < ¢ and

s(k) > s(£) with (ij) # (k£) then
§(z1 — 20)
f(l + Zk — Zg)
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is a factor of the residue. If k& # j then 1 + z, — z, > 1 during the deformation and the zeros of the

demonimator play no role. If £ = j then s(i) > s(¢) and the residue contains the factor

§(zi —z0) &z — 2)
f(l + Zi — Zg) f(l + Zj — Zg)

Since z; = 1+ z; on s;; the denominator is again harmless. The relevant singularities lie on the

intersection of s;; with some s;/ .

Because we are interested in the one-dimensional spectrum and want to proceed as expedi-
tiously as possible, we shall only write down those two-dimensional residues which in turn yield
one-dimensional residues. We take 2z — 29, | > 27 | — 2,1 =1,2.

1) i = 1, j = 4. When we deform the two-dimensional integral on s;4 we pick up no residues. So this

hyperplane may be ignored.

2) i = 1, j = 3. Because of our choice of z?, the only singular hyperplane that we meet during the

deformation is s14. The intersection is s = (2,0, 5%, 51) + (u,v,u, u) with 3u + v = 0. We obtain

contributions from those s for which s(4) < s(1) and s(3) < s(1). For these we obtain the following

results:

5 R(s)

(1234) — (3412) (2,0, 2, 31 + (w,v,u,u) — (5, 3, 2,0) + (u,u, u,0) (23)(24)
— (4312) — (5,35, 2,0) + (u, u,u,v) —(23)(24)
— (3421) — (F,3,0,2) + (w,u,v,u)  (12)(23)(34)
— (4321) — (F, 3,0, 2) + (u,u,v,u)  —(12)(23)(34)
— (3241) — (5,0, 2) + (u,v,u,u) (12)(23)
— (4231) — (5,0,54 2) + (u, v, u,u) —(12)(24)
— (2341) — (0,54, 3, 2) + (v, u,u,u) (12)
— (2431) — (0,5, 3 2) + (v, u,u,u) —(12)

The symbol (k) is an abbreviation for
&l —2)
f(l + 2K — Zg)

and we have omitted from all the R(s) a common constant. But this is unimportant, for we see that the

residues cancel in pairs and that s;35 contributes nothing to the one-dimensional spectrum.
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3) i = 1, 7 = 2. There will be singularities at the intersections of s;» with s;3 and s14. Because of our

choice of 27, they are the only ones which affect our calculations.

S12N5 —<2 ! _10>+( )

12 13 — 37 3 ) 3 ) u,u,u,v),
2 —1 -1

S512 NS4 = (5,?,0,?) + (u,u,v,u).

If s contributes to the residue on the first intersection then s(2) < s(1) and s(3) < s(1). If 59 is
the interchange of (2) and (3) then ssy has the same effect on s15 N 513, but the residues of R(s) and

R(ss() are of opposite sign because
bz )
(14 22 — 23)

is —1 when z; = z3. Thus the contribution of the first intersection to the one-dimensional spectrum is
0.

If s contributes to the residue on the second intersection then s(2) < s(1) and s(4) < s(1). The

possibilities are given below.

s R(s)
(1234) — (2413) (43)
— (4213) —(43)
— (2431) (13)(34)
— (4231) —(13)(34)
— (2341) (13)

— (4321)  —(13)(23)(34)

— (3241) (13)(23)

— (3421) —(13)(23)
Since

Z]1 — 23 = _(23 - Z4)

on the intersection,
§(z2 — 23) §(2z3 — 24)
5(1 + Zo — 23) 6(1 + zZ3 — Z4)

Once again the cancellation is complete

=1.
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4) ; = 2, j = 4. The poles occur at the intersection of so4 with s12, 513, and s14. These intersections are:

S94 M S12 = (170707 _1) + (U,U,U,U),

11 -1 -1

524 m513 - (57 57 77 7) + (’LL,’U,U,’U),
11 —2

So4 N S14 = (g, 5,0, ?) + (u,u,v,u).

We list in the three cases the relevant s and the corresponding residues.

a) s R(s)

(1234) — (4213)  (1,0,0,—1) + (u,u,v,u) — (=1,0,1,0) + (u,u,u,v) (34)
— (4231) — (=1,0,0,1) + (u, u, v, u) (13)(34)
— (4321) — (=1,0,0,1) + (u,v,u,u)  (13)(23)(34)
— (3421) — (0,1,0,=1) + (v, u, u, u) (13)(23)

H 1
We have omitted the common factor ROBEOR

— (4321) — (3,35, 5) + (vu,v,u)  (12)(14)(23)(34)

— (4231) = (T35 5) + (W o,uu) (12)(14)(34)

b) s R(s)
(1234) - 3142) (34,35 3) + (wouwo) = (543,55 4) + (wuo0) (23)
— (3412) — (25 53) + o) (14)(23)
— (3421) = (FFE) tenw  (1204)(23)
~ (4312) = (5553 e (14E3)3Y
( )
( )

1
€2(2)"

c) If s contributes to the residue for the third intersection then s(4) < s(1) and s(4) < s(2). If s

We have omitted a common factor

interchanges 1 and 2 and leaves 3 and 4 fixed, then ssy contributes as well. Since

R(s) = —R(sso)
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the total contribution will be 0.

5) i = 2, j = 3. The relevant poles occur at the intersection of so3 with 515, $13, 514, and so4. These

intersections are as follows:

s93 Ns12 = (1,0,—1,0) + (u,u, u,v),
11 -2
523 mﬁl (§7§7?7 ) (u7u7u7v)7
11 -1 —
5923 M 614 = (57 5 5 7) + (u,v,v,u),
523 ﬂ524 = (07 ga _?17 %) + (u,’u,v,v).

Again we list the pertinent s and the corresponding R(s)

a) s R(s)
(1234) — (3214) (1,0,—-1,0) + (u,u,u,v) — (=1,0,1,0) + (u, u,u,v) 1
— (3241) — (-1,0,0,1) + (w, u,v,u) (14)
— (3421) — (—1,0,0,1) + (u,v,u,u) (14)(24)
— (4321) —(0,—-1,0,1) + (v,u,u,u) (14)(24)(34)
Again a common factor ng(g) has been omitted.

b) The same argument as above establishes that the total contribution from this intersection is 0.

c) s

(1234) — (4132) <§, 1=

— (4312)
— (4321)
— (3412)
— (3421)

— (3241)

R(s)

3 + o0 — (33,55 1) + (o) (24)(34)
- (—g,—g,%,%) + (w0, u,0) (13)(24)(34)

= (—71 =1 %) +(uyv,v,u) (12)(13)(24)(34)

= (—71—71;;) + (0, u,u,0) (13)(24)

- (—71 =1 %) + (v, u, v, 1) (12)(13)(24)

= (34555 8) + o) (12)(13)
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d) Here again the total contribution is 0

6) i = 3, j = 4. The intersections with any of the other s, are now relevant. These intersections are

as follows:

1 -1 1 -1
5&1ﬂ512::(577?35775>'+(U7UJ%U%
534 M S13 = (170707_1) + (U,U,U,U),

1 1 -2
534 N S14 = (gaoa gv ?) + (U,U,U,U),
534 M S23 = (Oa 1707_1) + (U,U,'U,U),

11 -2
534 NS94 = (0, g, g, ?> + (U,U,U,U).

Again we take each possibility in order and list the pertinent s and the corresponding R(s).

a) s
(1234) — (2143)
— (2413)
— (2431)
— (4213)
— (4231)

— (4321)

A common factor

b)

(1234) — (4312)

£2(2)

— (4321)
— (4231)

— (2431)

has been omitted.

(1,0,0,—-1) + (u,v,u,u) — (=1,0,1,0) + (u, u, u,v)

— (=1,0,0,1) + (u,u,v,u)
— (—1,0,0,1) + (u,v,u,u)

— (0,-1,0,1) + (v, u, u,u)

R(s)

(14)
(13)(14)
(14)(24)

(13)(14)(24)

(13)(14)(23)(24)

R(s)
(28)(24)
(12)(23)(24)
(12)(24)

(12)
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The common factor has been omitted.

1
£(2)€3)
¢) The total contribution is again 0.

d) s
(1234) — (1432)  (0,1,0,—1) + (u,v,v,v)

— (4132)

— (4312)

— (4321)

- 1 -
Again the common factor ROBEG) has been omitted.

e) The total contribution is 0.

— (0,-1,0,1) + (u,v,v,v,)

— (-1,0,0,1) + (v, u,v,v)
- (_170707 1) + (v,’u,u,v)

— (—=1,0,1,0) + (v, v,v,u)

R(s)
1

(14)
(13)(14)

(12)(13)(14)

The one-dimensional spectrum is therefore determined by two collections of subspaces. The first

collection is formed by:

(0,1,0,-1) + (u,v,v,v),
(1,0,0,-1) + (v, u,v,v),
(1,0,0,-1) + (v,v,u,v),
(1,0,-1,0) + (v,v,v,u).

For any two, s and t, of these subspaces, the set {)(s, t) consists of a single element. The matrix M (H)

- - - H H 71
figuring in Lemma 7.4 is given, apart from the factor ROBEEL

in Table (12). It is, as it must be of rank

one. However, it does have singularities at « = v = 0, that is, on the line over which we must finally

integrate.
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© Jo doy oy ye £13ud Oy, s £q SUWN[OO oY} puR ‘7 Aq POXOPUL oIe SMOI dYT, ([ ,55 ‘;1_5,5%) JA 9I8 SOLIJUS Y],

! s o el (nfa‘a‘a)+(0'1-"0T)
=3 o Gy | s (s Gy e+ =00
Gy | Gy G | Gemoveeens | e [0m@+0-00)
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Ab\n@n:ngvl_lﬂ.—”l no non.—“v

Agn\wﬁgnzvl_lﬂ.—ﬂl nOn.—” nOv

(¢1)
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This is disconcerting at first, but, as shown in the text, presents no insurmountable problem. The
constant term of the Eisenstein series, or system, associated to the line (1,0, —1,0) + (u, v, v, v) is, apart

from the factor

3 1 1 3
6221+222 323524

£(2)€(3) ’

given by the sum of

6—22+Z4eu21+v22+7123+v24 + g(u —U— 1) 6—21+23€v21+7122+v23+v24
E(u—v+2)

which has no poles on the line Re(u — v) = 0 and

5(1 tu— ’U) e #1124 {6v21+u22+v23+7124 4 f(u _ U) evzl+v22+u23+v24} .
€2+ u—v) 0+ u—v)

Since the factor % equals —1 at u = v, this term too has no poles on the lines Re(u — v). Thus the
constant term, and hence the Eisenstein series itself is analytic on that line. This is a simple illustration

of the corollary to Lemma 7.6.

The second collection is formed by

1 -1 1 -1

<_ PEPE )+(U,U,U,U)
2
-1

222 2
11 -1
(337 7)+ v
11 -1 -1
Gz 7)o

The sets (s, t) now consist of two elements. The matrix of Lemma 7.4 is given in Table (13). It may be
readily verified that it is of rank one.
References

1. R.P.Langlands, Eisenstein series, in Algebraic Groups and Discontinuous Subgroups, Amer. Math.

Soc. (1966).
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Appendix IV

The Simplest Case

I have been requested to append an independent exposition of the methods employed in the text
in the simplest case, that of a Fuchsian subgroup I" of G = PSL(2, R) with a single cusp, the Eisenstein
series being taken to be invariant under right multiplication by elements of K = PSO(2,R). The
methods of the text when applied to SL(2,R) are basically those of Selberg, with the inner product
formula of §4 taking the place of what Harish—-Chandra has called the Maass—Selberg relation. But this

and a few other minor modifications do not affect the essence of the proof.

In order to be as brief as possible, | shall tailor the exposition to the needs of a competent analyst
familiar with the first part of Lang’s book and the geometry of fundamental domains. Moreover | shall

use the Maass-Selberg relation as well as the inner product formula.

a 0 1 =z
g_<0 Oé_1><0 1>k7 Oé—Oé(g)>0,

with k£ in K and A a complex number, set

If

F(g,\) = oM.

If P is the group of upper-triangular matrices and the cusp is supposed to lie at infinity then the

Eisenstein series

E(g,\)= Y_ F(vg,\)

NP\l
converges for Re A > 1. It is continuous as a function of g and A and analytic as a function of X in this

region. It needs to be analytically continued.

If IV is the group of matrices in P with eigenvalues 1 then
(1) / E(ng,\) dn
CNN\N
is easily evaluated. We take the measure of I' 1 V\ NV to be 1 and write I" as a union of double cosets
(IT'NN)y(I'nP).
The integral then becomes the sum over these double cosets of

/ F(yng, \) dn
(TNN)y—1 (TNP)y\N
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If -y lies in the trivial double coset this integral is equal to F'(g, \). Otherwise it is

/ F(vyng, \) dn.
N

=606 ) ()G Y) e

we see that this integral equals

a)‘“{/NF((_Ol (1)>nA> dn}F(g,—)\)

and conclude that the integral (1) is equal to

Writing

F(g,A) + M(N)F(g,-})

where M () is analytic for Re A > 1. The analytic continuation of E(g, A) is bound up with that of
M(N).

If ¢ is a smooth, compactly supported function on N\G/K we may write

1

" or

o(9) /R RPN,

where ®(\) is an entire function. The function

dg)= > o(vg)

NP\
is smooth and compactly supported on I'\G and in particular lies in L?(T'\G). It is given by

1

T o

(2) Mo =5 [ S@E@NIaN. x>,

If we have chosen the Haar measures properly we may calculate the inner product

<-p

(év"ﬁ) = é(g)

NG

(9)dg

as follows. Substitute the formula (2) for qg(g) and write out &(g) according to its definition. We obtain

1

27 JRex=x0

oN{ [ B9, > blvg)dg}lan.

NG ~AP\D
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The inner integral is equal to

/FQP\G E(g, N (g) dg = /OOO (M 4 Mo M1 a2 <<g aql )) o

By the Fourier inversion formula this integral is equal to

U(=A) + M(A)T(N).

We see that the product is given by

1

1 (DO)T(=X) + MBSV TR} dA,
2T JRe a=Ao

3)

We can already deduce a great deal from the fact that (3) defines an inner product which is
positive semi-definite. By approximation, we may extend the inner product to the space of functions
analytic and bounded in some strip |[Re A| < 1 + &, ¢ > 0, and decreasing to 0 at infinity faster than
any polynomial. We denote it by (<I>(-), \If(-)). We may form the completion with respect to this inner
product and obtain a Hilbert space H.

If f is bounded and analytic in some strip |[Re \| < 1 + ¢, > 0, and

f(=2) =),

then
(fO)2(), ¥ () = (@), 7 ()¥())

Here

Fr) = F(=N
Suppose

B TN < E

Then

9N = VE2 = fFrNFN)

is analytic and bounded for | Re A| < 1 4 €. Moreover

and
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Thus

(2 = () 2(), 2()) = (90)2(), 9()2()).
We conclude that multiplication by f extends to a bounded linear operator on H with adjoint given by
multiplication by f*.

If © > 1 we may in particular take

The associated operator is bounded and self-adjoint. Its range is clearly dense. We deduce that

multiplication by \? defines an unbounded self-adjoint operator A on H with

1
R(p, A) = A
being the operator defined by the given f.
If Rep > Mg > 1then
1 1 - -
(Mﬁﬂ@@ﬂ@%ﬁ;/ 33 (PVT(=X) + MR T(A)} [
ReA=Xo M

This integral may be evaluated by moving the lines of integration off to the right. We obtain the sum of

(4) i@WWPm+MWMMMm}

and, if Ay is very large,

1 1

27 Jroros, mE =32 (BTN + MR T} A

The resolvent R(u?, A) is certainly analytic in the domain Rey > 0, u ¢ (0,1]. We infer that the

expression (4) is too. Taking

we can deduce that M () is analytic in the same region.

We next continue the function E(g, \) into this region. Observe that if f is a continuous function
on GG with compact support and invariant under multiplication by elements of K from the left or the

right then
r(Fg.N) = [ Floh Nk di

G



Appendix 4 249

is equal to
ap(A)F(g, ).

Here () is an entire function of A and for any given A\ we may choose f so that oy (\) # 0. We
conclude immediately from the definition of E(g, \) that

r(f)E(g,\) = ay(AN)E(g, A), Re X > 1.

If \ — E(-,\) can be analytically continued when regarded as a function with values in the space of
locally integrable functions on I'\G this relation will persist and we may infer that the continuation

yields in fact a continuous function of g and \.

We now introduce two auxiliary functions. If

o 0 1 «
(526 e

F/(g,)\): {F(g,)\), a <1,

let

0, a>1,

and let
7 _ F(g,/\), a <1,
F(g: ) = {—M()\)F(g,—)\), a1

If Re A > 1, Rex > 1 we may invoke an approximation argument and apply our inner product

formula to the pairs

(41) o(g) = F"(9,7),  ¥(9) = F"(g,1).

For the first pair the Fourier transform of ¢ is

1
P(z) =
() =1—;
Thus if
E'(g,N)= Y Fl(g,)
NP\
then

(E’(-,)\),E/(-,,u))
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is equal to

1 1 M)y,
271 /Rez:)\o (A=2)(a+ 2) - (A=2)(p—2) *

We evaluate the integral by moving the vertical line of integration off to the right. The result is

1 (A) M(’) _ _
In general
8n , an , _ 8271 B
(5) (WE (- A), 8—,u”E (3#)) = Ww()\aﬂ)-

Thus if Aq is any point with Re \; > 1,

Z A=

n—O

O

converges in the largest circle about A\; which does not meet the real or imaginary axis. Since the
formula (5) persists in any region in Re A > 0, Repu > 0, A\, ¢ (0, 1] to which the functions in it can

be analytically continued we deduce by iteration that
A— E'(-, )

may be analytically continued as a function with values in L?(I'\G) to the region Re A > 0, A ¢ (0, 1].

Since

> (F(yg, ) = F'(vg, )

NP\l
is clearly an analytic function of A, E(g, A) can itself be continued to this region.

For the second pair the Fourier transform of ¢ is

LMW

P(2) = —— .
(2) A—2z Atz

The integrand occurring in the formula for
(EH('7 )‘)7 EH('7 :U’))a
where

E//(g,A) — Z F//(g,A),

INP\T'
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will now be the sum of eight terms. They can each be easily evaluated by moving the line of integration

to the left or right. Carrying out the evaluation and summing one obtains

1
A+

1

{1~ MOYM()} = 3 (M) - M),

(6) -

The formula just obtained remains valid for Re A > 0, Re . > 0, A\, ¢ (0, 1]. Since (6) is positive
when A = u we infer that M () is bounded in the neighbourhood of any point different from 0 on
the imaginary axis. By this we mean that it is bounded in the intersection of a small disc about that
point with the region in which M () has so far been defined. We shall deduce that ||E”(-, \)|| is also

bounded in such a neighbourhood.

Assuming this for the moment we return to (6) once agin and conclude that
[M(A)] —1

as A — 7, a point on the imaginary axis different from 0. Of course we are constrained to approach it

from the right-hand side. Since

we also have

We define
(7) M) =M~H(=))

for Re A < 0, A € [—1,0) and infer from the reflection principle that A/ () can then be extended across
the imaginary axis as well. It is defined and meromorphic outside the interval [—1, 1] and satisfies the

functional equation (7).

To complete the proof of the analytic continuation and the functional equation we need a lemma.
Suppose A1, Ao, - - - is a sequence of points and A\, — \. Suppose in addition that for each )\; we are

given a continuous function Ej(g) on I'\ G with the following properties.

(i) There is a constant a and constants ¢, > 0 such that

|Ex(9)] < cralg)”

for a(g) > ¢ > 0. Here ¢ is fixed.
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(ii) Ex(g) is orthogonal to all rapidly decreasing cusp forms.

(iii) If f is a continuous, compactly supported function in G bi-invariant under K then
r(f)Ek(g) = ap(Ae)Ex(g)-

(iv)
/ Ei(ng)dn = AuF(g, M) + BeF (g, — M)
YNN\N
with Ak, Bk in C.

Then if the sequences { Ay}, { Bx} are bounded, the inequalities of (i) are valid with a bounded
sequence ci. Moreover, if the sequences { Ay}, { Bx} converge then the sequence { Ei(g)} converges

uniformly on compact sets.

In order to prove the lemma we have to look at

more carefully. Let

and define ¢4 (g) by
v(9) = ¢1(9) + ©2(9)-

The expression for r(f)y(g) breaks up then into the sum of two similar expressions, and we

want to consider the first

/cm(h)f(g‘lh) dh.

g
We write it as

/F e 3 s an

seI'nN

The qualitative behaviour of the kernel

(8) > flg7len)

seI'nN

1 =z a 0
g:<0 1)(0 a—1>k7 |$‘§b705>5>0,

for
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is easy enough to discover. Let

(0 2

We assume, for it is simply a matter of the proper choice of coordinates in the space defining SL(2,R),

cw={(} £)rez}

We may take b = 1 and assume that |y| < b. Itis clear that there is a 6 > 0 such that each term of the

that

sum (8) is 0 unless

9) §< =<

e
| =

However when this is so the sum becomes, at least if f is bi-invariant under K,

("0 ws) (o 7))

Replacing the sum by an integral, we see that (8) is equal to

/ f(g~'nh)dn + R(g,h)
N

where R(g, h) is 0 unless (9) is satisfied, and then it goes to zero faster than any power of o is @ — oo.
The integral
|emsianyan

is equal to

/ o1(h)R(g, h) dh.
I'NN\G

o(h)] < ca(h)”
for 5(h) > ¢’ > 0, with &’ sufficiently small, this integral is smaller in absolute value than
cd(r)a(g)*™"

for any real . Here d(r) and &’ depend on f, but there is an obvious uniformity.

We return to the proof of the lemma. Choose an f with a¢ () # 0. We may as well suppose that

Oéf()\k) 75 O forall k. If




then
(10) r(fi)Er(9) = Ex(9).
The inequality (i) implies a similar inequality

|Ek(9)] < ceralg)”

for a(g) > ¢’. Here ¢’ is a constant depending on T, ¢, ¢/, and a. Applying the discussion of the

previous paragraph to fi and ¢(g) = Ex(g), we see that

(11) Ey(g) = AxF(g, \) + BeF'(9, —Ax) + Ri(9)
with
(12) |Ri(g)| < dexa(g)® .

Here o’ is a real number with
(13) a’ < —Inf | Re Al a < a,

and d depends on a'.
We choose ci, to be as small as possible and yet still satisfy (i). If the sequence is not bounded we

pass to a subsequence and suppose ¢ T co. Then for some g with a(g) > ¢

(14) [B(9)] = S alg)".

It follows from (11), (12), and (13) that there is an R such that for all k any g satisfying (14) also satisfies
(15) a(g) < R.

>From (10) and Ascoli’s lemma we can pass to a subsequence and suppose that {CikEk (g)} converges
uniformly on compact sets to a function E(g). By (15) this function will not be identically zero. On the

other hand
/ E(ng)dn =0
CNN\N
and E(g) is orthogonal to all rapidly decreasing cusp forms. This is a contradiction.

Once we know that the ¢; can be taken to be bounded, we can apply (10) and Ascoli’s lemma to

find convergent subsequences of { E;(¢)}. If two subsequences converged to different limits then the
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difference of the limits would again be cusp forms and yet orthogonal to cusp forms. This contradiction

yields the second assertion of the lemma.

It also follows form the above proof that
Ey(g9) — AF (g, ) — BrF'(g, — k)

is uniformly rapidly decreasing as «(g) — oo and in particular is uniformly square integrable. If
Ex(g9) = E(g, \r) is an Eistenstein series then for a(g) sufficiently large this difference is just E' (g, Ax).
The boundedness of || E’(-, \)|| in a neighbourhood of a point on the imaginary axis which we asserted

above is therefore clear.

We define E(g, \) in the domain Re A < 0, A & [—1,0) by

Then
| B9 = Flg. ) + MOOF(g,~)
NN\N
and the discussion above allows us to extend by the reflection principle across the imaginary axis.

It remains to treat the interval [—1, 1]. Here it is simplest to depart from the methods of the text
and to employ instead the Maass—Selberg relations. To verify these it is best to regard a function on

G\ K as a function of

z=x+1y
in the upper half-plane. Here
gi =z
and if
1 =z a 0
9= (o 1) (o oz_1>k
then
gi = x +ia’.
If E(g) is a function on I'\G let
F(g) = / E(ng)dn
TNN\N
If
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for compactly supported, bi-invariant f then
r(f)F =ar(\)F

for all such f. Moreover if A is the operator

0x? 0y

then
A -1
AFE = E
4
and
2 _
AF — A 1F
4
Thusif A # 0
A+l —A+1
while if A =0

F(g) = Ay"? + By'*Iny

The proof of the lemma shows that if E(g) does not grow too rapidly as a(g) — oo then
E(g) ~ F(g).

Suppose we have two such function E and E’ corresponding to the same A. Remove from the
upper half-plane the region y > R, for a sufficiently large R, as well as the transforms under T" of all
such points. Division by I'" then yields a manifold M which may be thought of as a closed manifold
with a cylindrical tube protruding from it. The boundary is a circle, the image of y = R. If we integrate

with respect to the invariant area,
O:/ AE-E — E-AF'.
M
Integrating by parts we see easily that the right side is asymptoticas N — oo to

AMAB —BA')  A#0

BA" — AB’ A=0.

These are the Maass—Selberg relations. We conclude in particular that if £ and E’ are both orthogonal

to cusp forms then they are proportional.
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Now choose any point Ay # 0 in the interval [—1, 1]. Choose a nonsingular matrix
a b
c d
so that if E(g) is a function as above corresponding to Ay and orthogonal to cusp forms then
(16) aAg +bBy = 0.
If £(g) corresponds to A and is also orthogonal to cusp forms then for A close to )\

cA+dB

must dominate

aA+ dB.

Otherwise we could choose a sequence A\, — Ao and a sequence Fj(g) with
cA, +dBy — 0, aA, +bBp — 1.

Our lemma would then show that F;, — E, for some Ej, contradicting (16).

To show that M () is meromorphic near Ay we have only to show that

a+bM(N)
c+dM(N)

is continuous. We have just observed that it is bounded. If it were not continuous at A, or rather, since it
is only defined in a dense set, if it cannot be extended to be continuous, we could choose two sequences
{A\.}, {\}} both approaching X but with

a+ bM(N,)
¢+ dM(X,)

a+ bM(N)
c+ dM(\))

lim

# lim
The lemma would give two functions E’'(g) and E” (g) whose difference E(g) would have

with
aA+bB #0

cA+dB =0
This is a contradiction.

To show that M () is meromorphic at Ay = 0 we use for A near 0 the representation

sinh A\a(g)

F(g) = Aa(g) cosh Aa(g) + Ba(g) ——

and a simple variant of the basic lemma. Otherwise the argument is the same.



