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PREFACE

In these days of dizzying scientific progress some apology is called for when offering to the

mathematical public a work written twelve years ago. It certainly bears the stamp of a juvenile hand,

and I had always hoped to revise it, but my inclination to a real effort grew ever slighter, and the

manuscript was becoming an albatross about my neck. There were two possibilities: to forget about it

completely, or to publish it as it stood; and I preferred the second.

There were, when it was first written, other reasons for delaying publication. The study of

Eisenstein series is a preliminary to the development of a trace formula, and the trace formula has

been a long time evolving. Not only does it present serious analytic difficulties, but also the uses to

which it should be put have not been clear. A sustained attack on the analytic difficulties is now being

carried out, by Arthur and others, and, thanks to a large extent to developments within the theory

of Eisenstein series itself, we now have a clearer picture of the theorems that will flow from the trace

formula. However a great deal remains to be done, and a complete treatment of Eisenstein series, even

imperfect, may be useful to those wishing to try their hand at developing or using the trace formula.

Much of the material in §2–§6 is included in Harish–Chandra’s notes (Lecture Notes 62). He,

following an idea of Selberg with which I was not familiar, uses the Maass–Selberg relations. Since

I was not aware of them when I wrote it, they do not figure in the present text; they would have

simplified the exposition at places.

In §2–§6 Eisenstein series associated to cusp forms are treated. However the central concern is with

the spectral decomposition, and for this one needs all Eisenstein series. The strategy of these notes is,

the preliminary discussion of §2–§6 completed, to carry out the spectral decomposition and the study

of the general Eisenstein series simultaneously, by an inductive procedure; so §7 is the heart of the text.

It has proven almost impenetrable. In an attempt to alleviate the situation, I have added some

appendices. The first is an old and elementary manuscript, dating from 1962. Its aim when written

was to expose a technique, discovered by Godement and Selberg as well, for handling some Eisenstein

series in several variables. The method, involving a form of Hartog’s lemma, has not yet proved to be

of much importance; but it should not be forgotten. In addition, and this is the reason for including it,

it contains in nascent form the method of treating Eisenstein series associated to forms which are not

cuspidal employed in §7.

The second appendix may be viewed as an introduction to §7. The principal theorems proved there

are stated as clearly as I could manage. The language of adèles is employed, because it is simpler and
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because it is the adèlic form of the theorems which is most frequently applied. I caution the reader that

he will not appreciate the relation between §7 and this appendix until he has an intimate understanding

of §7. The appendix should be read first however.

It is also difficult to come to terms with §7 without a feeling for examples. Some were given in my

lecture on Eisenstein series in Algebraic Groups and Discontinous Subgroups. Others exhibiting the

more complicated phenomena that can occur are given in the third appendix, whose first few pages

should be glanced at before §7 is tackled.

The last appendix has nothing to do with §7. It is included at the suggestion of Serge Lang, and is

an exposition of the Selberg method in the context in which it was originally discovered.

In the introduction I thank those who encouraged me during my study of Eisenstein series. Here

I would like to thank those, Godement and Harish–Chandra, who encouraged me after the notes

were written. Harish–Chandra’s encouragement was generous in the extreme and came at what was

otherwise a difficult time. Its importance to me cannot be exaggerated.

It has been my good fortune to have had these notes typed by Margaret (Peggy) Murray, whose

skills as a mathematical typist are known to all visitors to the IAS. I thank her for another superb job.
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1. Introduction.

One problem in the theory of automorphic forms that has come to the fore recently is that of

explicitly describing the decomposition, into irreducible representations, of the regular representation

of certain topological groups on Hilbert spaces of the form L2(Γ\G)when Γ is a discrete subgroup of

G. Usually Γ is such that the volume of Γ\G is finite. Except for some abelian groups, this problem

is far from solved. However, Selberg has discovered that the gross features of the decomposition

are determined by simple properties of the group Γ and this discovery has led to the development,

mostly by Selberg himself, of the theory of Eisenstein series. Of course he has preferred to state the

problems in terms of eigenfunction expansions for partial differential equations or integral operators.

At present the theory is developed only for the connected reductive Lie groups which, without real loss

of generality, may be assumed to have compact centres. Even for these groups some difficulties remain.

However, some of the problems mentioned in [19] are resolved in this paper, which is an exposition of

that part of the theory which asserts that all Eisenstein series are meromorphic functions which satisfy

functional equations and that the decomposition of L2(Γ\G) is determined by the representations

occurring discretely in L2(Γ\G) and certain related Hilbert spaces. For precise statements the reader

may refer to Section 7.

At present it is expected that the main assertions of this paper are true if the volume of Γ\G is

finite. It is of course assumed that G is a connected reductive Lie group. Unfortunately not enough is

known about the geometry of such discrete groups to allow one to work with this assumption alone.

However, the property which is described in Section 2 and which I thereafter assume Γ possesses is

possessed by all discrete groups known to me which have a fundamental domain with finite volume.

Indeed it is abstracted from the results of Borel [2] on arithmetically defined groups. Section 2 is

devoted to a discussion of the consequences of this property. In Section 3 the notion of a cusp form

is introduced and some preliminary estimates are derived. In Section 4 we begin the discussion of

Eisenstein series, while Section 5 contains some important technical results. In Section 6 the functional

equations for Eisenstein series associated to cusp forms are proved. For series in one variable the

argument is essentially the same as one sketched to me by Professor Selberg nearly two years ago, but

for the series in several variables new arguments of a different nature are necessary. In Section 7 the

functional equations for the remaining Eisenstein series are derived in the course of decomposition

L2(Γ\G) into irreducible representations.

I have been helped and encouraged by many people while investigating the Eisenstein series

but for now I would like to thank, as I hope I may without presumption, only Professors Bochner
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and Gunning for their kind and generous encouragement, three years ago, of the first results of this

investigation.
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2. The assumptions.

Let G be a Lie group with Lie algebra g. It will be supposed that G has only a finite number

of connected components and that g is the direct sum of an abelian subalgebra and a semi-simple Lie

algebra gs. It will also be supposed that the centre of Gs, the connected subgroup of G with Lie algebra

gs, is finite. Suppose a is a maximal abelian subalgebra of gs whose image in ad g is diagonalizable.

Choose an order on the space of real linear functions on a and let Q be the set of positive linear functions

α on a such that there is a non-zero element X in g such that [H,X] = α(H)X for all H in a. Q is called

the set of positive roots of a. Suppose a′ is another such subalgebra and Q′ is the set of positive roots

of a′ with respect to some order. It is known that there is some g in Gs such that Adg(a) = a′ and such

that if α′ ∈ Q′ then the linear function α defined by α(H) = α′(Adg(H)) belongs to Q. Moreover any

two elements of Gs with this property belong to the same right coset of the centralizer of a in Gs. G

itself possesses the first of these two properties and it will be assumed that it also possesses the second.

Then the centralizer of a meets each component of G.

For the purposes of this paper it is best to define a parabolic subgroup P of G to be the normalizer

in G of a subalgebra p of g such that the complexification pc = p⊗R C of p contains a Cartan subalgebra

jc of gc together with the root vectors belonging to the roots of jc which are positive with respect to

some order on jc. It is readily verified that the Lie algebra of P is p so that P is its own normalizer. Let

n be a maximal normal subalgebra of ps = ps ∩ gs which consists entirely of elements whose adjoints

are nilpotent and let m′ be a maximal subalgebra of p whose image in ad g is fully reducible. It follows

from [16] that p = m′ + n and that m′ contains a Cartan subalgebra of g. Let a be a subalgebra of the

centre of m′ ∩ gs whose image in ad g is diagonalizable. If m is the orthogonal complement of a, with

respect to the Killing form on g, in m′ then a ∩ m = {0}. There is a set Q of real linear functions on a

such that n =
∑
α∈Q na where

na = {X ∈ n
∣∣ [H,X] = α(H)X for allH in a}.

a or A, the connected subgroup of P with the Lie algebra a, will be called a split component of P if the

trace of the restriction of adY to nα is zero for any Y in m and any α in Q. There is a Cartan subalgebra

j of g and an order on the real linear functions on jc such that a ⊆ j ⊆ m′ and such that Q consists of the

restrictions of the positive roots to a except perhaps for zero. Let Q′
α be the set of positive roots whose

restriction to a equals α; then

1/ dim nα
∑
α′∈Q′

α

α′
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is zero on j ∩m and equals α on a. Thus if
∑
α∈Q cαα = 0 and cα ≥ 0 for all α then∑

α∈Q

∑
α′∈Q′

α

(dim nα)−1cαα
′ = 0

which implies that cα = 0 for all α. In particular zero does not belong to Q so that m′ is the centralizer

and normalizer of a in g.

Since m′ contains a Cartan subalgebra it is its own normalizer. Let us show that if M′ is the

normalizer of m′ in P then the connected component of M ′ is of finite index in M ′. M ′ is the inverse

image in G of the intersection of an algebraic group with AdG. Since AdG contains the connected

component, in the topological sense, of the group of automorphisms of g which leave each element of

the centre fixed the assertion follows from Theorem 4 of [23]. Since the Lie algebra of M′ is m′ it follows

from Lemma 3.1 of [16] that M ′ is the inverse image in G of a maximal fully reducible subgroup of the

image of P in AdG. Let N be the connected subgroup of G with the Lie algebra n. Since the image of

N in AdG is simply connected it follows readily from [16] that M′ and N are closed, that P =M ′ ·N ,

and that M ′ ∩N = {1}.

We must also verify that M ′ is the centralizer of a in G. M ′ certainly contains the centralizer of

a in G. Let b be a maximal abelian subalgebra of gs which contains a such that the image of b in ad g is

diagonalizable. Certainly m′ contains b. Let b = b1+b2 where b1 is the intersection of b with the centre

of m′ and b2 is the intersection of b with the semi-simple part of m′. b2 is a maximal abelian subalgebra

of the semi-simple part of m′ whose image in adm′ is diagonalizable. It may be supposed (cf. [11],

p. 749) that the positive roots of b are the roots whose root vectors either lie in nc, the complexification

of n, or lie in m′
c and belong to positive roots of b2. If m lies in M ′ then Adm(b1) = b1. Moreover

replacing if necessary m by mm0 where m0 lies in the connected component of M ′ and hence in the

centralizer of a we may suppose thatAdm(b2) = b2 and thatAdm takes positive roots of b2 to positive

roots of b2. Thus Adm(b) = b and Adm leaves invariant the set of positive roots of b; consequently, by

assumption, m lies in the centralizer of b and hence on a. It should also be remarked that the centralizer

of A meets each component of P and G and P meets each component of G.

If M is the group of all m in M ′ such that the restriction of Adm to nα has determinant ±1 for

all a then m is closed; since Q contains a basis for the space of linear functions on a the intersection

A ∩M is {1}. Let α1, · · · , αp be such a basis. To see that AM = M ′ introduce the group M1 of all m

in M ′ such that the restriction ofAdm to nαi
has determinant ±1 for 1 ≤ i ≤ p. Certainly AM1 =M ′.

So it has merely to be verified that M , which is contained in M1, is equal to M1. Since the Lie algebra

of both M and M1 is m the group M contains the connected component of M1. Since A ∩M1 = {1}
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the index [M1 :M ] equals [AM1 : AM ]which is finite. It follows readily that M =M1. It is clear that

M and S =MN are uniquely determined by P and A. The pair (P,S)will be called a split parabolic

subgroup with A as split component. Its rank is the dimension of A. Observe that A is not uniquely

determined by the pair (P,S).

The next few lemmas serve to establish some simple properties of split parabolic subgroups

which will be used repeatedly throughout the paper. If (P,S) and (P1, S1) are any two split parabolic

subgroups then (P,S) is said to contain (P1, S1) if P contains P1 and S contains S1.

Lemma 2.1. Suppose (P,S) contains (P1, S1). Let A be a split component of (P,S) and A1 a split

component of (P1, S1). There is an element p in the connected component of P such that pAp−1

is contained in A1.

Since S is a normal subgroup of P , pAp−1 will be a split component of (P,S). According to

Theorem 4.1 of [16] there is a p in the connected component of P such that a1+m ⊆ Adp(a+m). Thus

it suffices to show that if a1 +m1 is contained in a +m then a is contained in a1. If a1 + m1 ⊆ a + m

then a and a1 commute so that a is contained in a1 + m1; moreover m contains m1 because m ∩ s1 =

(a+m)∩ s∩ s1 ⊇ (a1+m2)∩ s1 = m1. Consequently a is orthogonal to m1 with respect to the Killing

form and hence is contained in a1.

Lemma 2.2. Suppose P is a parabolic subgroup and a is a split component of P . Let {α1,, · · · , αp,}
be a minimal subset of Q such that any α in Q can be written as a linear combination

∑p
i=1 miαi

with non-negative integers mi. Then the set {α1,, · · · , αp,} is linearly independent.

This lemma will be proved in the same manner as Lemma 1 of [13]. Let 〈λ, µ〉 be the bilinear

form on the space of linear functions on a dual to the restriction of the Killing form to a. It is enough

to show that if i and j are two distinct indices that αi, − αj, neither equals zero nor belongs to Q and

that if α and β belong to Q neither α− β nor β − α belongs to Q or is zero then 〈α, β〉 ≤ 0. If this is so

and
∑p
i=1 aiαi, = 0 let F = {i ∣∣ ai ≥ 0} and F ′ = {i ∣∣ ai < 0}. Set

λ =
∑
i∈F

ai αi, = −
∑
i∈F ′

ai αi,

then

0 ≤ 〈λ, λ〉 = −
∑
i∈F

∑
j∈F ′

aiaj〈αi,, αj,〉 ≤ 0
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which implies that λ = 0. As a consequence of a previous remark ai = 0, 1 ≤ i ≤ p. Certainly αi,−αj,

is not zero of i �= j; suppose that αi, − αj, = α belongs to Q. Then

αi, − αj, =
p∑
k=1

mkαk,

or

(mi − 1)αi, + (mj + 1)αj, +
∑
k �=i,j

mkαk, = 0

so that mi − 1 < 0. Hence mi = 0 and

αi, = (mj + 1)αj, +
∑
k �=i,j

mkαk,

which is a contradiction. Suppose α and β belong to Q and neither α− β nor β − α belongs to Q or is

zero. Choose the Cartan subalgebra j as above and let (λ′, µ′) be the bilinear form on the space of linear

functions on the complexification of j ∩ gs dual to the Killing form. If µ is the restriction of µ′ to a then

〈α, µ〉 = 1/ dim nα
∑
α′∈Q′

α

(α′, µ′)

In particular of β′ belongs to Q′
β then

〈α, β〉 = 1/ dim nα
∑
α′∈Q′

α

(α′, β′)

Because of the assumptions on α and β, α′ − β′ is neither a root nor zero; thus (cf. [15], Ch. IV) each

term of the sum and hence the sum itself is non-positive. It is clear that the set {α1,, · · · , αp,} is unique

and is a basis for the set of linear functions on a; it will be called the set of simple roots of a. It is also

clear that if P1 contains P and A1 is a split component of P1 contained in A then the set of simple roots

a1 is contained in the set of linear functions on a1 obtained by restricting the simple roots of a to a1.

Lemma 2.3 Suppose

P = P1 � P2 � · · · � Pk

is a sequence of parabolic subgroups with split components

A1 ⊃ A2 ⊃ · · · ⊃ Ak

and

dimAi+1 − dimAi = 1, 1 ≤ i < k
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If {α1,, · · · , αp,} is the set of simple roots of a and {αj,, · · · , αp,} restricted to aj is the set of simple

roots for aj, 1 ≤ j ≤ k, then

aj = {H ∈ a
∣∣αi,(H) = 0, i < j}

and if

Q′
j = {α ∈ Q

∣∣α(H) �= 0 for some H in aj}

then

nj =
∑
α∈Q′

j

nα, 1 ≤ j ≤ k.

Conversely if F is a subset of {1, · · · , p}; if

∗a = {H ∈ a
∣∣αi,(H) = 0 for all i ∈ F};

if
∗Q′ = {α ∈ Q

∣∣α(H) �= 0 for some H ∈ ∗a};

if
∗n =

∑
α∈∗Q′

nα;

and if ∗m is the orthogonal complement of ∗a in the centralizer of ∗a in g then ∗p =∗ a +∗m+∗n is

the Lie algebra of a parabolic subgroup ∗P of G which contains P and has ∗a as a split component.

In the discussions above various objects such as A, Q, n have been associated to a parabolic

subgroup P ; the corresponding objects associated to another parabolic group, say P1, will be denoted

by the same symbols, for example A1, Q1, n1, with the appropriate indices attached. It is enough to

prove the direct part of the lemma for k = 2. Since P2 properly contains P1 and since, as is readily

seen, Pj is the normalizer of nj , j = 1, 2 the algebra n2 must be properly contained in n1. Consequently

there is an α ∈ Q whose restriction to a2 is zero and α =
∑p
i=1 miαi, with non-negative integers mi.

Let ᾱi, be the restriction of αi, to a2 and let ᾱ1, =
∑n
j=2 njᾱj,; then

0 =
p∑
j=2

(mj +m1nj)ᾱj ;

so mj = 0, j ≥ 2 and α = m1α1,. Since dim a2 − dim a1 = 1 the direct part of the lemma is proved.

Proceeding to the converse we see that if ∗P is taken to be the normalizer of ∗p in G then ∗P is parabolic

by definition. ∗P contains the connected component of P and the centralizer of A in G; so it contains
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all of P . Moreover the image of ∗a+ ∗m in ad g is fully reducible and ∗n is a normal subalgebra of ∗p; so

to prove that ∗a is a split component of ∗P it has to be shown that if α belongs to ∗Q′ and

Qα = {β ∈ Q
∣∣α(H) = β(H) for allH in ∗a},

then the trace of the restriction of adX to
∑
β∈Qα

nβ is zero for all X in ∗m. It is enough to show this

when X belongs to the centre of ∗m. But then X commutes with a and so lies in a+m; say X = Y +Z .

If i belongs to F the trace of the restriction of adX to nαi,
is αi,(Y ) dim nαi,

; on the other hand it is

zero because nαi,
belongs to ∗m. Thus αi,(Y ) = 0 for all i ∈ F , so that Y belongs to ∗a and hence is

zero. Since the assertion is certainly true for Z it is true for X .

There are some simple conventions which will be useful later. If jc and j′c are two Cartan

subalgebras of gc and an order is given on the set of real linear functions on jc and j′c then there is

exactly one map from jc to j′c which takes positive roots to positive roots and is induced by an element

of the adjoint group of gc. Thus one can introduce an abstract Lie algebra which is provided with a set

of positive roots and a uniquely defined isomorphism of this Lie algebra with each Cartan subalgebra

such that positive roots correspond to positive roots. Call this the Cartan subalgebra of gc. Suppose

(P,S) is a split parabolic subgroup with A and A′ as split components. Let j be a Cartan subalgebra

containing a and let j′ be a Cartan subalgebra containing a′. Choose orders on jc and j′c so that the

root vectors belonging to positive roots lie in pc. There is a p1 in P such that Adp1(a) = a′; since the

centralizer of A meets each component of P there is a p in the connected component of P such that

Adp(H) = Adp1(H) for all H in a. Let Adp(j) = j′′. There is an element m in the adjoint group of mc

such thatAdpAdm(a) = a′,AdpAdm(j) = j′, andAdpAdm′ takes positive roots of j′ to positive roots

of j. The maps of a→ j→ jc and a′ → j′ → j′c determine maps of a and a′ into the Cartan subalgebra of

gc and if H belongs to a then H and Adp1(H) have the same image. The image of a will be called the

split component of (P,S). Usually the context will indicate whether it is a split component or the split

component which is being referred to. If F is a subset of the set of simple roots of the split component it

determines a subset of the set of simple roots of any split component which, acccording to the previous

lemma, determines another split parabolic subgroup. The latter depends only on F and will be called

simply the split parabolic subgroup determined by F ; such a subgroup will be said to belong to (P,S).

If (P,S) is a split parabolic subgroup with the split component a let α,1, · · · , α,p be the linear

functions on a such that 〈α,i, αj,〉 = δij , 1 ≤ i, j ≤ p. Of course α1,, · · · , αp, are the simple roots of a.

If −∞ ≤ c1 < c2 ≤ ∞ let

a+(c1, c2) = {H ∈ a
∣∣ c1 < αj,(H) < c2, 1 ≤ i ≤ p}
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and let
+a(c1, c2) = {H ∈ a

∣∣ c1 < α,i(H) < c2, 1 ≤ i ≤ p}

It will be convenient to set a+(0,∞) = a+ and +a(0,∞) = +a. If A is the simply-connected abstract

Lie group with the Lie algebra a then A will also be called the split component of (P,S). The map

H → expH is bijective; if λ is a linear function on a set ξλ(expH) = exp(λ(H)). If 0 ≤ c1 ≤ c2 ≤ ∞
we let

A+(c1, c2) = {a ∈ A
∣∣ c1 < ξαi,

(a) < c2, 1 ≤ i ≤ p}

and
+A(c1, c2) = {a ∈ A

∣∣ c1 < ξα,i
(a) < c2, 1 ≤ i ≤ p}

We shall make frequent use of the two following geometrical lemmas.

Lemma 2.4. For each s < ∞ there is a t < ∞ such that a+(s,∞) is contained in +a(t,∞). In

particular a+ is contained in +a.

For each s there is an element H in a such that a+(s,∞) is contained in H+a+; thus it is enough

to show that a+ is contained in +a. Suppose we could show that 〈αi, αj〉 ≥ 0, 1 ≤ i, j ≤ p. Then

α,i =
∑p
j=1 a

i
jαj, with aij ≥ 0 and it follows immediately that a+ is contained in +a. Since 〈αi,, αj,〉 ≤ 0

if i �= j this lemma is a consequence of the next.

Lemma 2.5. Suppose V is a Euclidean space of dimension n and λ1,, · · · , λn, is a basis for V such

that (λi,, λj,) ≤ 0 if i �= j. If λ,i, 1 ≤ i ≤ n, are such that (λ,i, λj,) = δij then either there are two

non-empty disjoint subsets F1 and F2 of {1, · · · , n} such that F1∪F2 = {1, · · · , n} and (λi,, λj,) = 0

if i ∈ F1, j ∈ F2 or (λ,i, λ,j) > 0 for all i and j.

The lemma is easily proved if n ≤ 2 so suppose that n > 2 and that the lemma is true for n− 1.

Suppose that, for some i and j, (λ,i, λ,j) ≤ 0. Choose k different from i and j and project {λ�,
∣∣ % �= k}

on the orthogonal complement of λk, to obtain {µ�,
∣∣ % �= k}. Certainly for % �= k the vector λ,� is

orthogonal to λ,k and (λ,�, µm,) = µ�m. Moreover

(µ�,, µm,) = (λ�,, λm,)− (λ�,, λk,)(λm,, λk,)/(λk,, λk,) ≤ (λ�,, λm,)

with equality only if λ�, or λm, is orthogonal to λk,. By the induction assumption there are two disjoint

subsets of F ′
1 and F ′

2 of {% ∣∣ 1 ≤ % ≤ n, % �= k} such that (µ�,, µm,) = 0 if % ∈ F ′
1 and m ∈ F ′

2. For such

a pair (µ�,, µm,) = (λ�,, λm,); so either (λ�,, λk,) = 0 for all % ∈ F ′
1 or (λm,, λk,) = 0 for all m ∈ F ′

2.

This proves the assertion.



Chapter 2 10

Suppose that a is just a split component of P and F is a subset of Q. Let c = {H ∈ a
∣∣α(H) =

0 for all α ∈ F}; if F is a subset of the set of simple roots c is called a distinguished subspace of a. Let

gc be the orthogonal complement of c in the centralizer of c in g and let Gc be any subgroup of G with

the Lie algebra gc which satisfies the same conditions as G. Then p∩ gc is the Lie algebra of a parabolic

subgroup P ′ of Gc and b, the orthogonal complement of c in a, is a split component of P ′. We regard

the dual space of b as the set of linear functions on a which vanish on c. Let β1,, · · · , βq, be the simple

roots of b; {β1,, · · · , βq,} is a subset of Q. There are two quadratic forms on the dual space of b, namely

the one dual to the restriction of the Killing form on g to b and the one dual to the restriction of the

Killing form on gc to b. Thus there are two possible definitions of β,1, · · · , β,q and hence two possible

definitions of +b. In the proof of Theorem 7.7 it will be necessary to know that both definitions give the

same +b. A little thought convinces us that this is a consequence of the next lemma.

The split parabolic subgroup (P,S)will be called reducible if g can be written as the direct sum

of two ideals g1 and g2 in such a way that p = p1+ p2 with pi = p∩ gi and s = s1+ s2 with si = s∩ gi.

Then n = n1 + n2 with ni = n ∩ gi. If a is a split component of (P,S) and m′ is the centralizer of a in g

then m′ = m′
1 +m′

2 with m′
i = m′ ∩ gi. Since m = m′ ∩ s, it is also the direct sum of m1 and m2 and a,

being the orthogonal complement of m in m′, is the direct sum of a1 and a2. If (P,S) is not reducible it

will be called irreducible.

Lemma 2.6. Suppose that the split parabolic subgroup (P,S) is irreducible and suppose that π is a

representation of g on the finite-dimensional vector space V such that if α is a linear function on

a and

Vα = {v ∈ V
∣∣π(H)v = α(H)v for all H in a},

then the trace of the restriction of π(X) to Vα is zero for all X in m. Then there is a constant c

such that trace{π(H1)π(H2)} = c〈H1,H2〉 for all H1 and H2 in a.

If g contains a non-trivial centre then g is abelian and a = {0}; so there is nothing to prove. We

suppose then that g is semi-simple, so that the Killing form 〈X,Y 〉 is non-degenerate. Consider the

bilinear form traceπ(X)π(Y ) = (X,Y ) on g. It is readily verified that

([X,Y ], Z) + (Y, [X,Z]) = 0

Let T be the linear transformation on g such that (X,Y ) = 〈TX,Y 〉; then 〈TX,Y 〉 = 〈X,TY 〉 and

T ([X,Y ]) = [X,TY ]. If H belongs to a and X belongs to m the assumption of the lemma implies that
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(H,X) = 0. Moreover choosing a basis for V with respect to which the transformations π(H), H ∈ a,

are in diagonal form we see that (X,Y ) = 0 if X belongs to p and Y belongs to n. If α belongs to Q let

n−
α = {X ∈ g

∣∣ [H,X] = −α(H)X for allH in g}

and let n− =
∑
α∈Q n−

α . If X belongs to a +m+ n− and Y belongs to n− then (X,Y ) = 0. Thus if H

belongs to a then 〈TH,Y 〉 = 0 for Y in m+ n+ n−, so that TH lies in a. For the same reason Tm ⊆ m

and Tn ⊆ n. Let λ1, · · · , λr be the eigenvalues of T and let gi = {X ∈ g
∣∣ (T −λi)nX = 0 for some n}.

gi, 1 ≤ i ≤ r, is an ideal of g and g = ⊕gi, p = ⊕(p ∩ gi), and s = ⊕(s ∩ gi). We conclude that r = 1.

The restriction of T to a is symmetric with respect to the restriction of the Killing form to a. Since the

latter is positive definite the restriction of T to a is a multiple of the identity. This certainly implies the

assertion of the lemma.

Now suppose Γ is a discrete subgroup of G. When describing the conditions to be imposed on

Γ we should be aware of the following fact.

Lemma 2.7. If Γ is a discrete subgroup of G, if (P1, S1) and (P2, S2) are two split parabolic

subgroups, if Γ ∩ Pi ⊆ Si, i = 1, 2, if the volume of Γ ∩ Si\Si is finite for i = 1, 2, and if P1 ⊇ P2,

then S1 ⊇ S2.

Let S = S1 ∩ S2; then Γ ∩ P2 ⊆ S. S is a normal subgroup of S2 and S\S2 is isomorphic

to S1\S1S2 and is consequently abelian. It follows readily from the definition of a split parabolic

subgroup that the Haar measure on S2 is left and right invariant. This is also true of the Haar measure

on S\S2 and hence it is true of the Haar measure on S. Thus∫
Γ∩S2\S2

ds2 =
∫
S\S2

ds2

∫
Γ∩S2\S

ds = µ(S\S2)µ(Γ ∩ S\S)

Consequently µ(S\S2) is finite and S\S2 is compact. Since the natural mapping from S\S2 to S1\S1S2

is continuous S1\S1S2 is also compact. But S1\S1S2 is a subgroup of S1\P1 which is isomorphic to

A1 and A1 contains no non-trivial compact subgroups. We conclude that S2 is contained in S1.

If Γ is a discrete subgroup of G and (P,S) is a split parabolic subgroup then (P,S) will be

called cuspidal if every split parabolic subgroup (P ′, S′) belonging to (P,S) is such that Γ ∩ P ′ ⊆ S′,

Γ ∩ N ′\N ′ is compact, and Γ ∩ S′\S′ has finite volume. A cuspidal subgroup such that Γ ∩ S\S is

compact will be called percuspidal. Since the last lemma implies that S is uniquely determined by P

and Γwe will speak of P as cuspidal or percuspidal. If P is a cuspidal subgroup the group N\S which

is isomorphic to M satisfies the same conditions as G. It will usually be identified with M . The image



Chapter 2 12

Θ of Γ ∩ S in M is a discrete subgroup of M . If (∗P,∗S) is a split parabolic group belonging to (P,S)

then (†P, †S) = (∗N\P ∩ ∗S, ∗N\S) is a split parabolic subgroup of ∗M . If (P,S) is a cuspidal group

of G then (†P, †S) is a cuspidal subgroup of ∗M with respect to the group ∗Θ.

Once we have defined the notion of a Siegel domain we shall state the condition to be imposed

on Γ. Fix once and for all a maximal compact subgroup K of G which contains a maximal compact

subgroup of G0. If (P,S) is a split parabolic subgoup, if c is a positive number, and if ω is a compact

subset of S then a Siegel domain S = S(c, ω) associated to (P,S) is

{g = sak
∣∣ s ∈ ω, a ∈ A+(c,∞), k ∈ K}

A is any split component of (P,S).

A set E of percuspidal subgroups will be said to be complete if when (P1, S1) and (P2, S2)

belong to E there is a g in G such that gP1g
−1 = P2 and gS1g

−1 = S2 and when (P,S) belongs to E

and γ belongs to Γ the pair (γPγ−1, γSγ−1) belongs to E.

Assumption. There is a complete set of E of percuspidal subgroups such that if P is any cuspidal

subgroup belonging to an element of E there is a subset {P1, · · · , Pr} of E such that P belongs to

Pi, 1 ≤ i ≤ r, and Siegel domain Si associated to (N\P1 ∩ S, N\Si) such that M =
⋃r
i=1ΘSi.

Moreover there is a finite subset F of E such that E =
⋃
γ∈Γ

⋃
P∈F γPγ−1.

Henceforth a cuspidal subgroup will mean a cuspidal subgroup belonging to an element of E

and a percuspidal subgroup will mean an element of E. It is apparent that the assumption has been

so formulated that if ∗P is a cuspidal subgroup then it is still satisfied if the pair Γ, G is replaced by

the pair ∗Θ,∗M . Let us verify that this is so if E is replaced by the set of subgroups ∗N\P ∩∗S where

P belongs to E and ∗P belongs to P . It is enough to verify that if (∗P,∗S) is a split parabolic group

belonging to (P1, S1) and to (P2, S2) and gP1g
−1 = P2, gS1g

−1 = S2 then g lies in ∗P . Let ∗a be

a split component of (∗P,∗S); let a1 be a split component of (P1, S1) containing ∗a; and let b be a

maximal abelian subalgebra of gs containing a1 whose image in ad g is diagonalizable. Choose p in ∗P

so that (pP2p
−1, pS2p

−1) has a split component a1 which contains ∗a and is contained in b and so that

Adpg(a1) = a2 and Adpg(b) = b. Replacing g by pg if necessary we may suppose that p = 1. Choose

an order on the real linear functions on b so that any root whose restriction to a1 lies in Q1 is positive.

If the restriction of the positive root α to ∗a lies in ∗Q then the restriction to a1 of the root α′ defined by

α′(H) = α
(
Adg(H)

)
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lies in Q1 and is thus positive. The roots whose restrictions to ∗a are zero are determined by their

restrictions to the intersection of b with the semi-simple part of ∗m. It is possible (cf. [11]) to choose an

order on the linear functions on this intersection so that the positive roots are the restrictions of those

roots α of b such that α′, with α′(H) = α(Adg(h)), is positive. It is also possible to choose an order

so that the positive roots are the restrictions of the positive roots of b. Consequently there is an m in
∗M such that Admg(b) = b and Admg takes positive roots to positive roots. Then mg belongs to the

centralizer of b and hence to ∗P ; so the assertion is proved.

Some consequences of the assumption which are necessary for the analysis of this paper will

now be deduced. If (P,S) is a split parabolic subgroup of G the map (p, k) → pk is an analytic map

from P × K onto G. If A is a split component of (P,S) then every element p of P may be written

uniquely as a product of p = as with a in A and s in S. Although in the decomposition g = pk the

factor p may not be uniquely determined by g the factor a = a(g) of the product p = as is. In fact

the image of a(g) in the split component of (P,S) is. Henceforth, for the sake of definiteness, a(g)

will denote this image. Every percuspidal subgroup has the same split component which will call h.

Suppose the rank of h is p and α,1, · · · , α,p are the linear functions on h dual to the simple roots.

Lemma 2.8. If P is a percuspidal subgroup there is a constant µ such that ξα,i

(
a(γ)

) ≤ µ, 1 ≤ i ≤
p, for all γ in Γ.

If C is a compact subset of G so is KC and {a(h) ∣∣h ∈ KG} is compact; thus there are two

positive numbers µ1 and µ2 with µ1 < µ2 such that it is contained in +A(µ1, µ2). If g = ask with a in

A, s in S, and k in K and h belongs to C then a(gh) = a(kh) a(g), so that

µ1ξα,i
(a) < ξα,i

(
a(gh)

)
< µ2ξα,i

(a), 1 ≤ i ≤ p,

In particular in proving the lemma we may replace Γ by a subgroup of finite index which will still

satisfy the basic assumption, and hence may suppose that G is connected. If P is a cuspidal subgroup

let ∆ = Γ ∩ S. If P is percuspidal there is a compact set ω in S such that every left coset ∆γ of ∆ in

Γ contains an element γ′ = sa(γ)k with s in ω. For the purposes of the lemma only those γ such that

γ′ = γ need be considered. It is not difficult to see (cf. [22], App. II) that there is a finite number of

elements δ1, · · · , δn in Γ ∩ N such that the connected component of the centralizer of {δ1, · · · , δn} in

Γ ∩N is Nc, the centre of N . A variant of Lemma 2 of [18] then shows that Γ ∩Nc\Nc is compact so

that, in particular, there is an element δ �= 1 in Γ∩Nc. If Qc is the set of α in Q such that nα ∩ nc �= {0}
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there is a constant ν such that, for all γ in Γ, ξα
(
a(γ)

) ≤ ν for at least one α in Qc. If not there would

be a sequence {γ�} with {ξ−1
α

(
a(γ�)

)} converging to zero for all α in Qc, so that

γ−1δγ = k−1
�

(
a−1(γ�) (s−1

� δs�) a(γ�)
)
k�

would converge to 1 which is impossible.

If g = ⊕ri=1gi with gi simple, then p = ⊕ri=1p ∩ gi so that nc = ⊕ri=1n
c ∩ gi. If j is a Cartan

subalgebra containing a, if an order is chosen on j as before, and if w is a subspace of nc ∩ gi invariant

under Ad p for p ∈ P then the complexification of w contains a vector belonging to the lowest weight

of the representation g → Ad(g−1) of G on gi. Since this vector is unique nc ∩ gi ⊆ nβi
for some βi in

Q. The lowest weight is the negative of a dominant integral function; so βi =
∑p
j=1 b

j
i α,j with bji ≥ 0.

Thus there is a constant ν′ such that, for all γ in Γ,

min
i≤j≤p

ξα,j

(
a(γ)

) ≤ ν′

In any case Lemma 2.8 is now proved for percuspidal subgrouops of rank one.

If G0 is a maximal compact normal subgroup of G then in the proof of the lemma G may be

replaced by G0\G and Γ by G0\ΓG0. In other words it may be supposed that G has no compact

normal subgroup. Let Z be the centre of G. If we could show that Γ ∩ Z\Z was compact we could

replace G by Z\G and Γ by Z\ΓZ and assume that G has no centre. We will show by induction on

the dimension of G that if Γ\G has finite volume then Γ ∩ Z\Z is compact. This is certainly true if G

is abelian and, in particular, if the dimension of G is one. Suppose then that G is not abelian and of

dimension larger than one. Because of our assumptions the group G has a finite covering which is a

product of simple groups. We may as well replace G by this group and Γ by its inverse image in this

group. Let G =
∏n
i=1 Gi where Gi is simple, 1 ≤ i ≤ r. We may as well assume that Gi is abelian for

some i. Choose δ in Γ but not in Z . It follows from Corollary 4.4 in [1] that the centralizer of δ in Γ is

not of finite index in Γ and hence that for some γ in Γ δ−1γ−1δγ = ε does not lie in the centre of G.

Let ε =
∏n
i=1 εi and suppose that εi does not lie in the centre of Gi for 1 ≤ i ≤ m where 1 ≤ m < n. It

follows as in [20] that the projection of Γ on G′ =
∏m
i=1 Gi is discrete and that the volume of Γ∩G′′\G′′

is finite if G′′ =
∏n
i=m+1 Gi. Since G′′ contains a subgroup of Z which is of finite index in Z and

otherwise satisfies the same conditions as G the proof may be completed by induction.

If G has no centre and no compact normal subgroup Γ is said to be reducible if there are two

non-trivial closed normal subgroups G1 and G2 such that G1 ∩ G2 = {1}, G = G1G2, and Γ is

commensurable with the product of Γ1 = Γ ∩ G1 and Γ2 = Γ ∩ G2. Γ is irreducible when it is not
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reducible. Since if one of a pair of commensurable groups satisfies the basic assumption so does the

other, it may be supposed when Γ is reducible that it is the product of Γ1 and Γ2. If we show that Γ1

and Γ2 satisfy the basic assumption we need only prove the lemma for irreducible groups. If ∗P is a

cuspidal subgroup for Γ then ∗P = ∗P1
∗P2 with ∗Pi = ∗P ∩Gi and ∗N = ∗N1

∗N2 with ∗Ni = ∗N ∩Gi.

SinceΓ∩∗N\∗N is thus the product ofΓ∩∗N1\∗N1 andΓ∩∗N2\∗N2 both factors are compact. Moreover

if ∗Si = ∗S ∩Gi then Γi ∩ ∗Pi ⊆ ∗Si and Γ ∩ ∗P ⊆ ∗S1
∗S2. If ∗A is a split component of (∗P, ∗S) and ∗Ai

is the projection of ∗A on Gi then ∗A1
∗A2 is a split component of ∗P and determines the split parabolic

subgroup (∗P, ∗S1
∗S2). Since the measure of Γ ∩ ∗S1

∗S2\∗S1
∗S2 is clearly finite Lemma 2.7 implies that

∗S = ∗S1
∗S2. It follows readily that (∗Pi, ∗Si) is a cuspidal subgroup for Γi, i = 1, 2. Once this is known

it is easy to convince oneself that Γi, i = 1, 2, satisifes the basic assumption.

To make use of the condition that Γ is irreducible another lemma is necessary.

Lemma 2.9. Suppose Γ is irreducible. If P is a cuspidal subgroup of Γ and α,1, · · · , α,q are the

linear functions on a dual to the simple roots then 〈α,i, α,j〉 > 0 for all i and j.

To prove this it is necessary to show that if the first alternative of Lemma 2.6 obtains then Γ

is reducible. Let F1 and F2 be the two subsets of that lemma and let P1 and P2 be the two cuspidal

subgroups determined by them. We will show in a moment that n is the Lie algebra generated by∑q
i=1 nai,

and that if i ∈ F1, j ∈ F2 then [nαi,
, nαj,

] = 0. Thus n = n1 ⊕ n2 if ni is the algebra

generated by
∑
j �∈Fi

nαj
. Moreover ni is the maximal normal subalgebra of pi ∩ gs containing only

elements whose adjoints are nilpotent. The centralizer of a1 is a fully reducible subalgebra of g and

lies in the normalizer of n1. The kernel of the representation of this algebra on n1 is a fully reducible

subalgebra g2. The normalizer g′ of g2 is the sum of a fully reducible subalgebra g1 and g2. g′ contains

n1 in the centralizer of a1 and thus contains p1. Since p1 is parabolic g′ = g. Since g2 contains n2 and

Γ ∩Ni �= {1} for i = 1, 2 it follows from Theorem 1′ of [20] that Γ is reducible.

To begin the proof of the first of the above assertions we show that if α is in Q then 〈α,αj,〉 > 0

for some j. If this were not so then, since α =
∑q
j=1 mjαj,,

0 < 〈α,α〉 =
q∑
j=1

mj〈αj,, α〉 ≤ 0

Choose a Cartan subalgebra j of g containing a and choose an order as before on the real linear functions

on jc. If α′ is a positive root and the restriction α of α′ to a is neither zero nor αi,, 1 ≤ i ≤ q, then for
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some j there is a β′ in Q′
αj,

such that α′ − β′ is a positive root. Indeed if this were not so then, since

β′ − α′ is not a root for any such β′, we would have (α′, β′) ≤ 0. Consequently,

〈α,αi,〉 ≤ 0, 1 ≤ i ≤ q,

which is impossible. Let n′ be the algebra generated by
∑q
j=1 nαj,

; it is enough to show that n′c, the

complexification of n′, equals nc. We suppose that this is not so and derive a contradiction. Order the

elements of Q lexicographically according to the basis {α1,, · · · , αq,} and let α be a minimal element

for which there is a root α′ in Q′
α such that Xα′ , a root vector belonging to α′, is not in n′c. Choose a j

and a β′ in Q′
αj,

so that α′−β′ is a root. The root vectors of Xα′ and Xα′−β′ both belong to n′c and thus

Xα′ which is a complex multiple of [Xβ′ ,Xα′−β′ ] does also. As for the second assertion we observe

that if

i ∈ F1, j ∈ F2,

and

α′ ∈ Q′
αi,

, β′ ∈ Q′
αj,

,

then α′ − β′ is neither a root nor zero. Moreover

0 =
∑

β′∈Q′
αj,

(α′, β′).

So each term is zero and for no β′ in Q′
αj,

is α′ + β′ a root. This shows that

[nαi,
, nαj,

] = 0.

Suppose that Γ is irreducible and that the assertion of Lemma 2.8 is not true for the percuspidal

subgroup P . There is a sequence {γj} ⊆ Γ and a k, 1 ≤ k ≤ p, such that

lim
j→∞

ξα,k

(
a(γj)

)
=∞

It may be supposed that k = 1. Let ∗P be the cuspidal subgroup belonging to P determined by

{αi,
∣∣ i �= 1}. Let γj = njajmjkj with nj in ∗N , aj in ∗A, mj in ∗M , and kj in K . Replacing γj by δjγj

with δj ∈ ∗∆ = Γ ∩ ∗S and choosing a subsequence if necessary we may assume that {nj} belongs

to a fixed compact set and that {mj} belongs to a given Siegel domain associated to the percuspidal

subgroup †P ′ = ∗N\P ′ ∩ ∗S of ∗M . P ′ is a percuspidal subgroup of G to which ∗P belongs. If †A′ is
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the split component of †P ′ and A′ = A is the split component of P ′ then a′(γj) = aj
†a′(mj). There is

a constant c such that

ξα,i

(
a′(γj)

) ≥ c ξα,i
(aj)

This follows immediately if i = 1 since

ξα,1

(
a′(γj)

)
= ξα,1(a

′)

and from Lemma 2.5 if i > 1. Since

〈α,i, α,1〉 > 0, 1 ≤ i ≤ q

there is a positive constant r such that

†ξrα,i
(aj) ≥ ξα,1(aj).

However

ξα,1(aj) = ξα,1

(
a(γj)

)
;

so

lim
j→∞

ξα,i

(
a′(γj)

)
=∞, 1 ≤ i ≤ p,

which we know to be impossible.

The next lemma is a simple variant of a well known fact but it is best to give a proof since it is

basic to this paper. Suppose P is a parabolic with split component a. Let j be a Cartan subalgebra such

that a ⊆ j ⊆ p and choose an order on the real linear functions on jc as before. Let α,1, · · · , α,q be the

linear functions on a dual to the simple roots and let ᾱ,i be the linear function on j which agrees with

α,i on a and is zero on the orthogonal complement of a. There is a negative number di such that diᾱ,i

is the lowest weight of a representation ρi of G0, the connected component of G, acting on the complex

vector space Vi to the right.

Lemma 2.10. If λ is a linear function on a such that there is a non-zero vector v in Vi with

vρi(a) = ξλ(a) for all a in A then

λ = diα,i +
q∑
j=1

njαj,

with nj ≥ 0, 1 ≤ j ≤ q. Moreover if vi is a non-zero vector belonging to the lowest weight then

{g ∈ G0

∣∣ viρi(g) = µvi with µ ∈ C}
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is the intersection with G0 of the split parabolic subgroup Pi determined by {αj,
∣∣ j �= i}.

Let

ai = {H ∈ a
∣∣αj,(H), j �= i}

and let Q′
i be the set of positive roots of a which do not vanish on ai. Set

n−
i =

∑
α∈Q′

i

n′
α;

then

g = n−
i + ai +mi + ni.

Let

V ′
i = {v

∣∣ vρi(X) = 0 forX ∈ ni}.

If W is a subspace of V ′
i invariant and irreducible under ai+mi then the vector belonging to the lowest

weight of the representation of ai +mi on W must be a multiple of vi and the lowest weight must be

diᾱ
i. Consequently V ′

i is the set of multiples of vi. Let V (n)
i be the linear space spanned by

{viρi(X1) · · · ρi(Xk)
∣∣Xj ∈ g and k ≤ n}

and let (n)Vi be the linear space spanned by

{viρi(X1) · · · ρi(Xk)
∣∣Xj ∈ n−

i and k ≤ n}.

We show by induction that V
(n)
i ⊆ (n)Vi. This is certainly true for n = 1 since k may be zero. If

X1, · · · ,Xn−1 belong to n−i and Xn belongs to g then

viρi(X1) · · · ρi(Xn)

is equal to

viρi(X1) · · · ρi(Xn−2) ρi([Xn−1,Xn]) + viρi(X1) · · · ρi(Xn−2) ρi(Xn) ρi(Xn−1).

Applying induction to the two terms on the right we are finished. The first assertion of the lemma

follows immediately. Let

P ′
i = {g ∈ G0

∣∣ viρi(g) = µvi with µ ∈ C}

The intersection of Pi with G0 is just the normalizer of ni in G0. Thus it leaves V ′
i invariant and is

contained in P ′
i . To complete the proof we need only show that p′i is contained in pi. If m′

i is a maximal
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fully reducible subalgebra of p′i containing ai+mi then {X ∈ m′
i

∣∣ vi ρi(X) = 0} is a normal subalgebra

of m′
i and its orthogonal complement in m′

i with respect to the Killing form lies in ai + mi because it

commutes with ai. Thus its orthogonal complement is ai and [ai,m′
i] = 0; so m′

i = a+mi. Let n′
i be a

maximal normal subalgebra of p′i such that adX is a nilpotent for all X in n′i. Then n′
i is contained in

ni and p′i = m′
i + n′

i. It follows that p′i = pi.

Before stating the next lemma we make some comments on the normalization of Haar measures.

We suppose that the Haar measure on G is given. The Haar measure on K will be so normalized that

the total volume of K is one. If P is a cuspidal subgroup the left-invariant Haar measure on P will be

so normalized that ∫
G

φ(g) dg =
∫
P

∫
K

φ(pk) dp dk.

Let ρ be one-half the sum of the elements of Q and if a = expH belongs to A let ω(a) = exp
(−ρ(H)

)
.

Let dH be the Lebesgue measure a normalized so that the measure of a unit cube is one and let da be

the Haar measure on A such that d(expH) = dH . Choose, as is possible, a Haar measure on S so that∫
P

φ(p) dp =
∫
S

∫
A

φ(sa)ω2(a) ds da.

Choose the invariant measure on Γ∩N\N so that the volume of Γ∩N\N is one and choose the Haar

measure on N so that ∫
N

φ(n) dn =
∫

Γ∩N\N

∑
δ∈Γ∩N

φ(δn) dn.

Finally choose the Haar measure on M so that∫
S

φ(s) ds =
∫
N

∫
M

φ(nm) dn dm

Lemma 2.11 Let P be a percuspidal subgroup and ω a compact subset of S. There are constants c

and r such that for any t ≤ 1 and any g in G the intesection of Γg and the Siegel domain S(ω, t)

associated to p has at most ct−r elements.

It is easy to convince oneself that it is enough to prove the lemma when G is connected. In this

case the representations ρi introduced before Lemma 2.10 are representations of G. Choose a norm on

Vi so that ρi(k) is unitary for all k in K . If g = sa(g)k then

vi ρi(g) = ξdi
α,i

(
a(g)

)
vi ρi(k),

so that

‖vi ρi(g)‖ = ξdi
α,i

(
a(g)

)‖vi‖.
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If T is a linear transformation then ‖T‖ denotes as usual the norm of T . Choosing a basis of vij ,

1 ≤ j ≤ ni, for Vi such that

vij ρi(a) = ξλij
(a) vij

for all a in A, we see that there is a constant c1 such that, for all v in Vi and all a in A,

‖vρi(a)‖ ≥ c1
(
min

1≤j≤ni

ξλij
(a)
)‖v‖.

Moreover, it follows from Lemma 2.10 that there is a constant s such that, for all a in A+(t,∞),

min
1≤j≤ni

ξλij
(a) ≥ ts ξdi

α,i
(a).

Let c2 be such that, for all s in ω and all v in Vi,

‖vρi(s)‖ ≥ c2‖v‖.

Suppose g and g′ = γg, with γ in Γ, both belong to S(ω, t). Certainly

‖vi ρ(g′)‖ = ξdi
α,i

(
a(g′)

) ‖vi‖.
On the other hand

‖vi ρi(γg)‖ ≥ c1c2 t
s ξdi
α,i

(
a(g)

) ‖viρi(γ)‖
and

‖viρi(γ)‖ = ξdi
α,i

(
a(γ)

) ‖vi‖.
It follows from Lemma 2.8 that there are constants c3 and c4 and s1 such that

ξα,i

(
a(g′)

) ≤ c3 t
s1 ξα,i

(
a(γ)

)
ξα,i

(
a(g)

) ≤ c4 t
s1 ξα,i

(
a(g)

)
.

Since g = γ−1g′, the argument may be reversed. Thus there are constants c5, c6, and s2 such that

c5 > ξα,i

(
a(γ)

)
> c6 t

s2 , 1 ≤ r ≤ p.

Let us estimate the order of

U(t) = {γ = sak
∣∣ s ∈ ω1, a ∈+A(c6ts2 , c5), k ∈ K}
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with ω1 a compact subset of S. There are certainly constants b1, b2 and r1, r2 such that +A(c6 ts2 , c5) is

contained in A+(b1tr1 , b2tr2). Choose a conditionally compact open set in G such that γ1U ∩ γ2U �= φ

implies γ1 = γ2; then b1 can be so chosen that γ ∈ U(t) implies

γU ∈ ω2(t)A+(b1tr1 , b2tr2)K,

where

ω2(t) = {s1as2a
−1
∣∣ s1 ∈ ω1, s2 ∈ ω2, a ∈ A+(b1tr1 , b2tr2}

and ω2 is the projection of KU on S. Consequently the order of U(t) is at most a constant times the

product of ∫
A+(b1tr2 ,b2tr2)

ω2(a) da

and the volume of ω2(t). A simple calculation, which will not be given here, now shows that the order

of U(t) is bounded by a constant times a power of t. If it can be shown that for each g in S(ω, t) and

each γ in Γ the number of elements δ in ∆ = Γ ∩ P such that δγg belongs to S(ω, t) is bounded by

a constant independent of t, γ, and g then the lemma will be proved. If γg = sak then δs must be in

ω. If there is no such δ the assertion is true; if there is one, say δ0, then any other δ equals δ′δ0 with

δ′ω ∩ ω �= φ.

Corollary. Let P1 and P2 be percuspidal subgroups and let ∗P be a cuspidal subgroup belonging

to P2. Let S1 be a Siegel domain associated to P2, let †S2 be a Siegel domain associated to
†P2 = ∗N\P2 ∩ ∗S, let ω be a compact subset of ∗N , and let b, s, and t be positive numbers. Let
†a2 be the split component of †P2. There is a constant r, which depends only on G and s, and a

constant c such that if g ∈ S1, γ ∈ Γ, and γg = namk with n in ω , a in ∗A+(t,∞), m in †S2, k

in K, and η(a) ≤ bηs
(†as(m)) then

η
(
a1(g)

) ≤ cηr
(†a2(m)

)
Moreover if ∗P = G the constant r can be taken to be 1.

If α1,, · · · , αp, are the simple roots of a1, then

η
(
a1(g)

)
= sup

1≤i≤p
ξαi,

(
a1(g)

)
;

similarly, if β1,, · · · , βq, are the simple roots of †a2,

η
(†a2(m)

)
= sup

1≤i≤q
ξβi,

(†a2(m)
)
.
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Suppose that

µ ≤ ξβi,

(†a2(m)
)
, 1 ≤ i ≤ q,

for all m in ψS. If m is given as in the lemma, let M = η(†a2(m)); then

logµ ≤ ξβi,

(†a2(m)
) ≤ logM, 1 ≤ i ≤ q.

Since

log t ≤ log ξαi,
(a) ≤ log b+ s logM

and since a2(γg) = a†a2(m) there is a constant r1, which depends only on G and s, and a constant r2

such that

| log ξαi,

(
a2(γg)

)| ≤ r1 logM + r2, 1 ≤ i ≤ p.

In particular there is a constant r3, which depends only on G and s, and two positive constants c1 and

c2 such that

ξαi,

(
a2(γg)

) ≥ c1M
−r3

and

ξα,i

(
a2(γg)

) ≤ c2M
r3 ,

for 1 ≤ i ≤ p. Choose u so that uP2u
−1 = P1; then a1(uγgu−1) = a2(γg). Let vi have the same

significance as above except that the group P is replaced by P1. Then there is a constant r4, which

depends only on G and s, and a constant c3 such that

ξdi
α,i

(
a1(g)

) ‖vi‖ = ‖vi ρi(γ−1u−1(uγgu−1)u
)‖ ≥ c3 M

r4ξdi
α,i

(
a2(γg)

) ‖vi‖.
Thus there is a constant r5, which depends only on G and s, and a constant c4 such that

ξα,i

(
a1(g)

) ≤ c4 M
r5 .

Appealing to Lemma 2.4 we see that ξα,i

(
a1(g)

)
is bounded away from zero for 1 ≤ i ≤ p. Since

log ξαj,

(
a1(g)

)
is a linear combination of log ξα,i

(
a1(g)

)
, 1 ≤ i ≤ p the first assertion of the lemma is

proved.

To complete the proof of the lemma we have to show that if S1 and S2 are Siegel domains

associated to P1 and P2 respectively then there is a constant c such that if g belongs to S1 and γg

belongs to S2 then

η
(
a1(g)

) ≤ cη
(
a2(γg)

)
Using Lemma 2.10 as above we see that ξα,i

(
a1(g) a−1

2 (γg)
)

is bounded away from zero and infinity

for 1 ≤ i ≤ p. Thus ξαi,

(
a1(g) a−1

2 (γg)
)

must be also.

The next lemma will not be needed until Section 5.
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Lemma 2.12. Suppose P and P ′ are two percuspidal subgroups and S and S′ are associated Siegel

domains. Let F and F ′ be two subsets, with the same number of elements, of the set of simple roots

of h and let ∗P and ∗P ′ be the cuspidal subgroups belonging to P and P ′ respectively determined by

F and F ′. If 0 ≤ b < 1 there are constants t and t′ such that if g belongs to S and ξα
(
a(g)

)
> t

when α does not belong to F and ξbα
(
a(g)

)
> ξβ

(
a(g)

)
when β belongs to F and α does not, if g′

belongs to S′ and satisifes the corresponding conditions, and if γ belongs to F and γg = g′ then

γ∗Pγ−1 = ∗P ′. Moreover if P = P ′ and, for some g in G, g∗Pg−1 = ∗P ′ and g∗Sg−1 = ∗S′ then
∗P = ∗P ′, ∗S = ∗S′.

Suppose, for the moment, merely that g belongs to S, g′ belongs to S′, and γg = g′. Choose u

so that uγ belongs to G0 and so that uP ′u−1 = P . Choosing vi in Vi as above we see that

ξdi
α,i

(
a(g)

) ‖vi‖ = ξdi
α,i

(
a(γ−1u−1)

)‖wiρi(uγg)‖ ≥ ci ξ
di
α,i

(
a(γ−1u−1)

)
ξdα,i

(
a′(g′)

)‖vi‖
if wi is such that

ξdi
α,i

(
a(γ−1u−1)

)
wi = vi ρi(γ−1u−1).

Of course a similar inequality is valid if g and g′ are interchanged. Since u may be supposed to lie in a

finite set independent of γ we conclude as before that a−1(g) a′(g′) lies in a compact set. Moreover, as

in the proof of Lemma 2.11, γ−1 must belong to one of a finite number of left-cosets of∆. Consequently

wi, 1 ≤ i ≤ p, must belong to a finite subset of Vi and there must be a constant c such that

‖wi ρi(ug′u−1)‖ ≤ c ξdα,i

(
a′(g′)

)
Moreover, it follows from the proof of Lemma 2.10 that there are positive constants b and r such that if

wi is not a multiple of vi then

‖wi ρi(ug′u−1)‖ ≥ b ξdi
αi,

(
a′(g′)

)
ξdi
α,i

(
a′(g′)

)
.

Choose t′ so large that bt′ > c and choose t in an analogous fashion. If g and g′ satisfy the conditios of

the lemma then γ−1u−1 must belong to
⋂
αi,∈F Pi, where Pi is defined as in Lemma 2.10. It is easily

seen that
∗P =

⋂
αi,∈F

Pi

so γ−1u−1 belongs to ∗P . Index the system of simple roots so that

ξα1,

(
a′(g′)

) ≥ ξα2,

(
a′(g′)

) ≥ · · · ≥ ξαp,

(
a′(g′)

)
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There is an integer q such that F ′ = {αq+1,, · · · , αp,}. If t′ is very large then

ξα1,

(
a(g)

)
> ξαj,

(
a(g)

)
if i ≤ q < j. Thus if β1,, · · · , βp, is the system of simple roots indexed so that

ξβ1,

(
a(g)

) ≥ ξβ2,

(
a(g)

) ≥ · · · ≥ ξβp,

(
a(g)

)
,

then

{β1,, · · · , βq,} = {α1,, · · · , αq,}

Since {βq+1,, · · · , βp,} = F the sets F and F ′ are equal and u∗P ′u−1 = ∗P . Then

γ−1∗P ′γ = γ−1 u−1∗Puγ = ∗P .

To prove the second assertion we observe that (∗P ′, ∗S′) belongs to (P,S) and to

(gPg−1, gSg−1). We have proved while discussing the basic assumption that this implies that g

belongs to ∗P ′.

The next lemma will not be needed until Section 6 when we begin to prove the functional

equations for the Eisenstein series in several variables. Let P be a cuspidal subgroup of rank q with

a as split compoment. A set {β1,, · · · , βq,} of roots of a is said to be a fundamental system if every

other root can be written as a linear combination of β1,, · · · , βq, with integral coefficients all of the same

sign. It is clear that if P1 and P2 are two cuspidal subgroups, g belongs to G, Adg(a1) = a2, and

B = {β1,, · · · , βq,} is a fundamental system of roots for a2, then

g−1B = {β1, ◦Adg, · · · , βq, ◦Adg}

is a fundamental system. The Weyl chamber WB associated to a fundamental system is

{H ∈ a
∣∣ βi,(H) > 0, 1 ≤ i ≤ q},

so that

Ad(g−1)WB =Wg−1B

It is clear that the Weyl chambers associated to two distinct fundamental systems are disjoint. The only

fundamental system immediately at hand is the set of simple roots and the associated Weyl chamber

is a+. If P1 and P2 are as above we defined Ω(a1, a2) to be the set of all linear transformations from a1
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to a2 obtained by restricting Adg to a1 if g in G is such that Adg(a1) = a2. P1 and P2 are said to be

associate if Ω(a1, a2) is not empty.

Suppose P0 is a percuspidal subgroup and P is a cuspidal subgroup belonging to P0. Let

{α1,, · · · , αp,} be the set of simple roots for h and suppose that P is determined by {αq+1,, · · · , αp,}.

If 1 ≤ j ≤ q let ∗Pj be the cuspidal subgroup determined by {αj,, αq+1,, · · · , αp,}. Suppose ∗aj is

contained in a. To prove the next lemma it is necessary to know that for each P and j there is an

element g in ∗Mj such that Adg(a ∩ ∗mj) is the split component of a cuspidal subgroup which belongs

to P0 ∩ ∗Mj and such that if α is the unique simple root of a ∩ ∗mj then α ◦ Adg−1 is a negative root

of Adg(a ∩ ∗mj). Unfortunately the only apparent way to show this is to use the functional equations

for the Eisenstein series. Since the lemma is used to prove some of these functional equations a certain

amount of care is necessary. Namely if q > 1 one needs only the functional equations of the Eisenstein

series for the pairs (∗Θj , ∗Mj) and since the percuspidal subgroups have rank less than those for (Γ, G)

one can assume them to be proved. On the other hand if q = 1 the lemma is not used in the proof of

the functional equations. In any case we will take this fact for granted and prove the lemma. Everyone

will be able to resolve the difficulty for himself once he has finished the paper.

Lemma 2.13. Let P0 be a percuspidal subgroup and let F = {P1, · · · , Pr} be a complete family

of associate cuspidal subgroups belonging to P0. If P belongs to F and E is the collection of

fundamental systems of roots of a then a is the closure of
⋃
B∈E WB. If B ∈ E then there is a

unique i, 1 ≤ i ≤ r, and a unique s in Ω(ai, a) such that sa+
i =WB.

Suppose as before that P is determined by {αq+1,, · · · , αp,}. If 1 ≤ j ≤ q let gj be one of the

elements of ∗Mj whose existence was posited above. Denote the restriction of Adgj to a by sj and let

sj(a) = bj . Denote the restriction of α1,, · · · , αq, to a also by α1,, · · · , αq,. Then αj, ◦ s−1
j restricted

to bj ∩ ∗mj is the unique simple root. Thus the simple roots β1,, · · · , βq, of bj can be so indexed that

αj, ◦ s−1
j = −βj, and αi, ◦ s−1

j = βi, + bijβj, with bij ≥ 0 if i �= j. More conveniently, βj, ◦ sj = −αj,

and βi, ◦ sj = αi, + bijαj,. To prove the first assertion it is enough to show that if H0 belongs to a and

α(H0) �= 0 for all roots α then there is some i and some s in Ω(ai, a) such that s−1(H0) belongs to a+
i .

There is a point H1 in a+ such that the line through H0 and H1 intersects none of the sets

{H ∈ a
∣∣α(H) = β(H) = 0}

where α and β are two linearly independent roots. If no such i and s exist let H2 be the point closest

to H0 on the segment joining H0 and H1 which is such that the closed segement from H1 to H2 lies
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entirely in the closure of
r⋃
i=1

⋃
s∈Ω(ai,a)

s(a+
i ).

H2 is not H0. Let H2 lie in the closure of ta+
k with t in Ω(ak, a). Replacing H0 by t−1(H0) and P by Pk

if necessary it may be supposed that H2 lies in the closure of a+. Choose j so that

α�,(H2) > 0, 1 ≤ % ≤ q, % �= j,

and αj,(H2) = 0. Then αj,(H0) < 0, so that if H lies on the segment joining H0 and H2 and is

sufficiently close to H2 then sjH lies in b+
j ; this is a contradiction.

It is certainly clear that if B belongs to E then there is an i and an s in Ω(ai, a) such that

sa+
i = WB . Suppose that t belongs to Ω(ak, a) and ta+

k = WB . Then s−1t(a+
k ) = a+

i . If s is the

restriction of Adh to a+
i and t is the restriction of Adg to a+

k then h−1gPkg
−1h = Pi. The previous

lemma imples that i = k and that h−1g belongs to Pi. Since the normalizer and centralizer of ai in Pi

are the same it follows that s−1t is the identity.

If a is as in the lemma the transformations s1, · · · , sq just introduced will be called the reflections

belonging, respectively, to α1,, · · · , αq,. We have proved that if a and b belong to {a1, · · · , ar} then

every element of Ω(a, b) is a product of reflections; if s is the product of n but no fewer reflections then

n is called the length of s. Two refinements of this corollary will eventually be necessary; the first in

the proof of Lemma 6.1 and the second in the proof of Lemma 7.4.

Corollary 1. Every s in Ω(a, b) can be written as a product sn · · · s2s1 of reflections in such a

way that if sk lies in Ω(aik , ajk) and belongs to the simple root αk of aik , then sk−1 · · · s1(a+
i1
) is

contained in

{H ∈ aik
∣∣αk(H) > 0}.

Of course n is not necessarily the length of s. Let WB = sa+. Take a line segment joining

a point in the interior of WB to a point in the interior of b+ which does not meet any of the sets

{H ∈ b
∣∣α(H) = β(H) = 0} where α and β are two linearly independent roots. If the segment

intersects only one Weyl chamber the result if obvious. The lemma will be proved by induction on

the number, m, of the Weyl chambers which it intersects. If m is greater than one, let the segment

intersect the boundary of b+ at H0. Index the simple roots β1,, · · · , βq, of b so that β1,(H0) = 0 and

βj,(H0) > 0 if j > 1. Then if H belongs to b+ the number β1,(sH) is negative, so that if r is the

reflection belonging to β1, the number (−β1, ◦ r−1)(rsH) is positive. Let t = rs; if r belongs to Ω(b, c)
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then t belongs toΩ(a, c). Since there is a line segment connecting WB and r−1(c+)which meets only in

m− 1Weyl chambers, there is a line segment connecting c+ and ta+ = rWB which meets only m− 1
Weyl chambers. If the corollary is true for t, say t = sn−1 · · · s1 and sn = r−1 then s = sn · · · s1 and

this product satisfies the conditions of the corollary.

Suppose a1, · · · , ar are, as in the lemma, split components of P1, · · · , Pr respectively. Suppose

that, for 1 ≤ i ≤ r, Si is a collection of m-dimensional affine subspaces of the complexification of ai

defined by equations of the form α(H) = µ where α is a root and µ is a complex number. If s belongs

to Si and t belongs to Sj we shall define (s, t) as the set of distinct linear transformations from s to

{H ∣∣ −H̄ ∈ t} obtained by restricting the elements ofΩ(ai, aj) to s. Suppose that each s in S =
⋃r
i=1 Si

is of the form X(s) + s̃ where s̃ is the complexification of a distinguished subspace of h and the point

X(s) is orthogonal to s̃; suppose also that for each s in S the set Ω(s, s) contains an element s0 such

that

s0

(
X(s) +H

)
= −X(s) +H

for all H in s̃. Then if r ∈ Ω(r, s) and t ∈ Ω(s, t) the transformation ts0r belongs to Ω(r, t). Every

element s ofΩ(s, t) defines an element ofΩ(s̃, t̃) in an obvious fashion. s is called a reflection belonging

to the simple root α of s̃ if the element it defines inΩ(s̃, t̃) is that reflection. It is easy to convince oneself

of the following fact.

Corollary 2. Suppose that for every s in S and every simple root α of S̃ there is a t in S and a

reflection in Ω(s, t) which belongs to α. Then if s and t belong to S and s belongs to Ω(s, t) there

are reflections rn, · · · , r1 such that if rk belongs to Ω(s, sk) and sk in Ω(sk, sk) defines the identity

in Ω(s̃k, s̃k) the transformation s equals the product rnsn−1rn−1 · · · r2s1r1.

As before the minimal value for n is called the length of s.
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3. Cusp forms.

As usual the invariant measure on Γ\G is normalized by the condition that∫
G

φ(g) dg =
∫

Γ\G

{∑
Γ

φ(γg)
}
dg

If φ is a locally integrable function on Γ\G, P is a cuspidal subgroup, and T = N∆, then

φ̂(g) =
∫

∆\T
φ(tg) dg =

∫
Γ∩N\N

φ(ng) dn

is defined for almost all g. A function φ in L(Γ\G), the space of square-integrable functions on Γ\G,

such that φ̂(g) is zero for almost all g and all cuspidal subgroups except G itself will be called a cusp

form. It is clear that the space of all cusp forms is a closed subspace of L(Γ\G) invariant under the

action of G on L(Γ\G); it will be denoted by L0(Γ\G). Before establishing the fundamental property

of L0(Γ\G) it is necessary to discuss in some detail the integral

(
λ(f)φ

)
(g) =

∫
G

φ(gh) f(h) dh

when φ is a locally integral function on Γ\G and f is a once continuously differentiable function on G

with compact support.

Suppose P is a percuspidal subgroup of G and F is a subset of the set of simple roots of h. Let

P1 be the cuspidal subgroup belonging to P determined by the set F . Let

φ2(g) =
∫

Γ∩N1\N1

φ(ng) dn

and let φ1 = φ− φ2. Then
(
λ(f)φ

)
(g) equals

(3.a)
∫
G

φ(h) f(g−1h) =
∫
G

φ1(h) f(g−1h) dh+
∫
G

φ2(h) f(g−1h) dh.

The second integral will be allowed to stand. The first can be written as∫
N1(Γ∩N)\G

∑
δ∈Γ∩N1\Γ∩N

{∫
Γ∩N1\N1

φ1(nδh)
∑

δ1∈Γ∩N1

f(g−1δ1nδh) dn
}
dh.

If we make use of the fact that

φ1(δnh) = φ1(nh)

and ∫
Γ∩N1\N1

φ1(nh) dn = 0,
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this repeated integral can be written as∫
N1(Γ∩N)\G

{∫
Γ∩N1\N1

φ1(nh) f(g, nh) dn
}
dh

with

f(g, h) =
∑

δ∈Γ∩N
f(g−1δh)−

∑
Γ∩N1\Γ∩N

∫
N1

f(g−1nδh) dn

=
∫

Γ∩N1\N1

∑
δ∈Γ∩N

{
f(g−1δh)− f(g−1δnh)

}
dn

It should be recalled that N1 is a normal subgroup of N and Γ ∩N1 a normal subgroup of Γ ∩N .

If S = S(t, ω) is a Siegel domain associated to P it is necessary to estimate f(g, h)when g is in

S(t, ω). It may be supposed that (Γ∩N)ω contains N . Since f(g, δh) = f(g, h) if δ ∈ Γ∩N we can take

h = n1a1m1k1 with n1 in ω ∩N , a1 in A, m1 in M , and k1 in K . Suppose g = sak = a(a−1sa)k = au

with s in ω and a in A+(t,∞); then u lies in a compact set U1 which depends on ω and t. The integrand

in the expression for f(g, h) equals

∑
δ∈Γ∩N

{
f(u−1a−1δah1)− f(u−1a−1δnah1)

}
with h1 = a−1h. If ω1 is a compact subset of N1 such that (Γ ∩ N1)ω1 = N1 it is enough to estimate

this sum for n in ω1. Let U be a compact set containing the support of f . If a given term of this sum is

to be different from zero either a−1δah1 or a−1δnah1 must belong to U1U . Then either

(a−1δaa−1n1a)(a−1m1a1)

or

(a−1δnaa−1n1a)(a−1m1a)

belongs to P ∩ U1UK . It follows that there is a compact set V in N depending only on S and U such

that a−1δa belongs to V . Choose a conditionally compact open set V1 in N so that if δ belongs to Γ∩N

and δV1∩V1 is not empty then δ = 1; there is a compact set V2 in N such that a−1V1a is contained in V2

if a belongs to A+(t,∞). If a−1δa belongs to V then δV1 is contained in aV V2a
−1. Consequently the

number of terms in the above sum which are different from zero is at most a constant times the measure

of aV V2a
−1 and a simple calculation shows that this is at most a constant times ω−2(a). Finally there

is a compact subset ω2 of AM such that every term of the above sum vanishes unless m1a1 belongs to

aω2.
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If {Xi} is a basis of g there is a constant µ such that |λ(Xi) f(g)| ≤ µ for all i and g. If X ∈ g

then λ(X) f(g) is defined to be the value of df
dt
(g exp tX) at t = 0. Then

|f(u−1a−1δah1)− f(u−1a−1δnah1)|

is less than or equal to ∫ 1

0

∣∣λ(Ad(h−1
1 )Ad(a−1)X

)
f(u−1a−1δ exp tXah1)

∣∣ dt
if n = expX . Since n lies in a fixed compact set so does X . Moreover

h1 = a−1n1aa
−1m1a1k1

lies in a compact set depending only on S and U . Consequently the right hand side is less than a

constant, depending only on S, U , and µ, times the largest eigenvalue ofAd(a−1) on N1. In conclusion

there is a constant c, depending only on S, U , and µ, such that for all g in S and all h

|f(g, h)| ≤ cω−2
(
a(g)

){
min
αi, �∈F

ξαi,

(
a(g)

)}−1
.

Moreover the first integral in the expression for λ(f)φ(g) is equal to

∫
aω2×K

ω2(b)

{∫
N1(Γ∩N)\N

{∫
Γ∩N1\N1

φ1(n1nbmk) f(g, n1nbmk) dn1

}
dn

}
db dmdk

or, as is sometimes preferable,∫
aω2×K

ω2(b)
{∫

Γ∩N\N
φ1(nbmk) f(g, nbmk) dk

}
db dmdk.

The absolute value of the first integral is at most

cω−2
(
a(g)

){
min
α1, �∈F

ξαi,

(
a(g)

)}−1 ∫
aω2×K

ω2(b)
{∫

Γ∩N\N
|φ1(nbmk)| dn

}
db dmdk.

If ω3 is a compact subset of N such that (Γ ∩N)ω3 = N this expression is at most

(3.b) cω−2
(
a(g)

){
min
αi, �∈F

ξαi,

(
a(g)

)}−1 ∫
ω3aω2K

|φ1(h)| dh

For the same reasons the absolute value of the second integral is at most

(3.c) cω2
(
a(g)

){
min
αi �∈F

ξαi

(
a(g)

)}−1 ∫
ω3aω2K

|φ(h)| dh.
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Lemma 3.1. Let φ belong to L0(Γ\G), let f be a once continuously differentiable function with

compact support, and let P be a percuspidal subgroup. If S = S(t, ω) is a Siegel domain associated

to P there is a constant c depending only on S and f such that for g in S

|λ(f)φ(g)| ≤ cω−1
(
a(g)

)
η−1
(
a(g)

) ‖φ‖.
Here ‖φ‖ is the norm of φ in L(Γ\G) and if a belongs to A then

η(a) = max
1≤i≤p

ξαi,
(a)

It is enough to establish the inequality on each

Si =
{
g ∈ S

∣∣ ξαi,

(
a(g)

) ≥ ξαj,

(
a(g)

)
, 1 ≤ j ≤ p

}
For simplicity take i = 1. In the above discussion take F = {αj,

∣∣ j �= 1}. The second term in (3.a) is

zero; so to estimate λ(f)φ(g)we need only estimate (3.b). The integral is at most{∫
ω3aω2K

dh
} 1

2
{∫

ω3aω2K

|φ(h)|2 dh
} 1

2

Since ω3aω2K is contained in a fixed Siegel domain S(t′, ω′) for all a in A+(t,∞), the second integral

is at most a constant times ‖φ‖2. If ω4 and ω5 are compact subsets of A and M respectively such that

ω2 is contained in ω4ω5 the first integral is at most{∫
ω3

dn
}{∫

ω4

ω2(ab) db
}{∫

ω5

dm
}
.

Since

min
αi, �∈F

ξαi
(a) = ξα1,

(a) = η
(
a(g)

)
if g = sak is in S1, the lemma follows.

It is a standard fact that λ(f) is a bounded linear operator on L(Γ\G). It is readily seen to leave

L0(Γ\G) invariant.

Corollary. If f is once continuously differentiable with compact support then the restriction of λ(f)

to L0(Γ\G) is a compact operator.

Sinceω−1(a) η−1(a) is square integrable on any Siegel domain the corollary follows immediately

from Ascoli’s lemma, the above lemma, and the fact that Γ\G is covered by a finite number of Siegel

domains. The significance of the corollary is seen from the following lemma.
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Lemma 3.2. Let G be a locally compact group and π a strongly continuous unitary representation

of G on the separable Hilbert space V. Suppose that for any neighbourhood U of the identity in G

there is an integrable function f on G with support in U such that

f(g) ≥ 0, f(g) = f(g−1),
∫
G

f(g) dg = 1

and π(f) is compact; then V is the orthogonal direct sum of countably many invariant subspaces

on each of which there is induced an irreducible representation of G. Moreover no irreducible

representation of G occurs more than a finite number of times in V.

Of course π(f) is defined by

π(f)v =
∫
F

f(g)π(g) v dg

if v belongs to V . Consider the families of closed mutually orthogonal subspaces of V which are

invariant and irreducible under the action of G. If these families are ordered by inclusion there will be

a maximal one. Let the direct sum of the subspaces in some family be W. In order to prove the first

assertion it is necessary to show that W equals V. Suppose the contrary and let W′ be the orthogonal

complement of W in V. Choose a v in W′ with ‖v‖ = 1 and choose U so that ‖v− π(g)v‖ < 1
2

if g is in

U . Choose f as in the statement of the lemma. Then ‖π(f)v−v‖ < 1
2 so that π(f)v �= 0. The restriction

of π(f) to W′ is self-adjoint and thus has a non-zero eigenvalue µ. Let W′
µ be the finite-dimensional

space of eigenfunctions belonging to the eigenvalue µ. Choose from the family of non-zero subspaces

of W′
µ obtained by intersecting W′

µ with closed invariant subspaces of W′ a minimal one W′
0. Take the

intersection V0 of all closed invariant subspaces of W′ containing W′
0. Since V0 �= {0} a contradiction

will result if it is shown that V0 is irreducible. If V0 were not then it would be the orthogonal direct

sum of two closed invariant subspaces V1 and V2. Since Vi ∩W′
µ is contained in V0 ∩W′

µ = W′
0 for

i = 1 and 2, the space Vi ∩W ′
µ is either {0} or W′

0. But π(f)Vi ⊆ Vi so

W′
0 = (V1 ∩W′

µ)⊕ (V2 ∩W′
µ)

and, consequently, Vi ∩ W′
µ = W′

µ for i equal to 1 or 2. This is impossible. The second assertion

follows from the observation that if some irreducible representation occurred with infinite multiplicity

then, for some f , π(f)would have a non-zero eigenvalue of infinite multiplicity.

Before proceeding to the next consequence of the estimates (3.b) and (3.c) we need a simple

lemma.
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Lemma 3.3. Let S(1), · · · ,S(m) be Siegel domains, associated to the percuspidal subgroups

P (1), · · · , P (m) respectively, which cover Γ\G. Suppose c and r are real numbers and φ(g) is a

locally integrable function on Γ\G such that

|φ(g)| ≤ c ηr
(
a(i)(g)

)
if g belongs to S(i). If ∗P is a cuspidal subgroup and

∗φ̂(a,m, k) =
∫

Γ∩∗N\∗N
φ(namk−1) dn

for a in ∗A, m in ∗M and k in K then there is a constant r1, which does not depend on φ, such

that for any compact set C in ∗A, any percuspidal subgroup †P of ∗M , and any Siegel doman †S
associated to †P there is a constant c1, which does not depend on φ, such that

|∗φ̂(a,m, k)| ≤ c1η
r1
(†a(m))

if a belongs to C and m belongs to ψS. In particular if ∗P = G then r1 can be taken equal to r.

If ω is a compact subset of ∗N such that (Γ ∩ ∗N )ω = ∗N then

|∗φ̂(a,m, k)| ≤ sup
n∈ω

|φ(namk−1)|

If g = namk−1 choose γ in Γ so that γg belongs to S(i) for some i. According to the corollary to

Lemma 2.11 there is a constant r2 such that for any C , †P , and †S there is a constant c2 such that

η
(
a(i)(γg)

) ≤ c2η
(†a(m))r2

Since η
(
a(i)(γg)

)
is bounded below on S(i) for each i, it can be supposed for the first assertion that

r ≥ 0. Then take r1 = rr2 and c1 = ccr2. If ∗P is G the lemma also asserts that if S is any Siegel domain

associated to a percuspidal subgroup P then there is a constant c1 such that |φ(g)| ≤ c1η
r
(
a(g)

)
on S.

Given g in S again choose γ in Γ so that γg belongs to S(i) for some i. The corollary to Lemma 2.11

asserts that there is a number c2 independent of i and g such that

c−1
2 ≤ η−1

(
a(g)

)
η
(
a(i)(g)

) ≤ c2

Take c1 = ccr2 if r ≥ 0 and take c1 = cc−r2 if r < 0.
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Lemma 3.4. Suppose S(1), · · · ,S(m) are Siegel domains, associated to percuspidal subgroups, which

cover Γ\G. Supose that φ(g) is a locally integrable function on Γ\G and that there are constants c

and r such that |φ(g)| ≤ cηr
(
a(i)(g)

)
if g belongs to S(i). Let U be a compact subset of G, let µ be

a constant, let {Xi} be a basis of g, and let f(g) be a once continuously differentiable function on

G with support in U such that |λ(Xi) f(g)| ≤ µ for all g and i. If S is a Siegel domain associated

to the percuspidal subgroup P and if k is a non-negative integer there is a constant c1, depending

on c, r, U , µ, S, and k but not on φ or f , such that

∣∣λ(k)(f)φ(g)− λk(f) φ̂i(g)
∣∣ ≤ c1 η

r−k(a(g))
on

S1 = {g ∈ S
∣∣ ξαi,

(
a(g)

) ≥ ξαj,

(
a(g)

)
, 1 ≤ j ≤ p}.

In accordance with our notational principles

φ̂i(g) =
∫

Γ∩Ni\Ni

φ(ng) dn

if Pi is the percuspidal subgroup belonging to P determined by {αj,
∣∣ j �= i}. The assertion of the

lemma is certainly true for k = 0. The proof for general k will proceed by induction. For simplicity

take i = 1. Since (
λk(f)φ

)∧
i
= λk(f) φ̂i,

it will be enough to show that if there is a constant s such that for any Siegel domain S associated to P

there is a constant c′ such that |φ̂i(g)| ≤ c′ηs
(
a(g)

)
on S1 then for any S there is a constant c′1 so that

|λ(f)φ(g)− λ(f) φ̂1(g)| ≤ c′1 η
s−1
(
a(g)

)
on S1. Of course it will also have to be shown that the constants c′1 do not depend on f or φ. Indeed

we apply this assertion first to φ with s = r and then in general to λk(f)φ with s = r − k. Since

λ(f)φ(g)− λ(f) φ̂1(g)

is nothing but the first term on the right side of (3.a) it can be estimated by means of (3.b). Thus

∣∣λ(f)φ(g)− λ(f) φ̂1(g)
∣∣ ≤ c2 ω

−2
(
a(g)

)
ξ−1
α1,

(
a(g)

) ∫
ω3aω2K

|φ1(h)| dh

if g belongs to S1. First observe that if g belongs to S1 then

η
(
a(g)

)
= ξα1,

(
a(g)

)
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There is a Siegel domain S′ such that when a = a(g) and g belongs to S the set ω3aω2K belongs to

S′. Let ω4 and ω5 be compact subsets of A and M respectively such that ω2 is contained in ω4ω5; then

the integral is less than or equal to a constant, which does not depend on φ, times∫
ω4

ω2(ab) ηs(ab) db

which is certainly less than a constant times ω2(a) ηs(a).

Corollary. Suppose V is a finite-dimensional subspace of L0(Γ\G) invariant under λ(f) for f

continuous with compact support and such that f(kgk−1) = f(g) for all g in G and all k in K.

Then given any real number r and any Siegel domain S associated to a percuspidal subgroup P

there is a constant c such that, for all φ in V and all g in S,

|φ(g)| ≤ cηr
(
a(g)

)‖φ(g)‖.
Since for a given t there are constants c1 and r1 such that ω−1(a) ≤ c1η

r1(a) for a in A+(t,∞),
the corollary will follow from Lemmas 3.1 and 3.3 if it is shown that there is a once continuously

differentiable function f0 satisfying the conditions of the lemma such that λ(f0)φ = φ for all φ in V .

Let {φ1, · · · , φn} be an orthonormal basis for V and let U be a neighbourhood of the identity in G such

that

‖λ(g)φi − φi‖ < (2n)−1

if g belongs to U and 1 ≤ i ≤ n. Then, for any φ in V,

‖λ(g)φ− φ‖ ≤ 1
2
‖φ‖

if g is in U . Choose f to be a non-negative function, once continuously differentiable with support in u,

such that
∫
G
f(g) dg = 1 and f(kgk−1) = f(g) for all g in G and all k in K . Then the restriction of λ(f)

to v is invertible. Thus there is a polynomial p with no constant term such that p
(
λ(f)

)
is the identity

on V . In the group algebra p(f) is defined; set f0 = p(f). If V was not a space of square-integrable

functions but a space of continuous functions and otherwise satisfied the conditions of the lemma then

a simple modification of the above argument would show the existence of the function f0.

If P is a cuspidal subgroup then the pair M,Θ satisfies the same conditions as the pair G,Γ. It

will often be convenient not to distinguish between functions on Θ\M , T\S, and AT\P . Also every

function φ on G defines a function on P ×K by φ(p, k) = φ(pk−1). Since G = PK , functions on G

may be identified with functions on P ×K which are invariant under right translation by (k, k) if k
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belongs to K ∩ P . If V is a closed invariant subspace of L(Θ\M) let E(V ) be the set of measurable

functions Φ on AT\G such that Φ(mg) belongs to V as a function of m for each fixed g in G and∫
Θ\M×K

|Φ(mk)|2 dmdk = ‖Φ‖2 <∞

If H belongs to ac, the complexification of a, and Φ belongs to E(V ) consider the function

exp
(
〈H(h),H〉+ ρ

(
H(h)

))
Φ(h)

on G. If g belongs to G it is not difficult to see that there is another function Φ1(h) in E(V ) such that

exp
(
〈H(hg),H〉+ ρ

(
H(hg)

))
Φ(hg) = exp

(
〈H(h),H〉+ ρ

(
H(h)

))
Φ1(h)

Φ1 depends on Φ, g, and H . If we set Φ1 = π(g,H)Φ then π(g,H) is a bounded linear transformation

from E(V ) to E(V ), π(g1g2,H) = π(g1,H)π(g2,H), and π(1,H) = I . In fact it is easy to see that

π(g,H) is a strongly continuous representation of G on E(V ) for each H in ac. The representation is

unitary if H is purely imaginary. If f is a continuous function on G with compact support then π(f,H)

can be defined as usual by

π(f,H) Φ =
∫
G

f(g)π(g,H) Φ dg

It is readily seen that for almost all g

exp
(
〈H(gh),H〉+ ρ

(
H(gh)

)) (
π(f,H)Φ

)
(g)

is equal to ∫
G

exp
(
〈H(gh),H〉+ ρ

(
H(gh)

))
Φ(gh) f(h) dh.

If F is a finite set of irreducible representations of K let W be the space of functions on K spanned

by the matrix elements of the representations in F . W will be called an admissible subspace of the

space of functions on K . Let E(V,W ) be the space of functions Φ in E(V ) such that, for almost all g,

Φ(gk) belongs to W , that is, agrees with an element of W except on a set of measure zero. With no

loss it may be assumed that it always belongs to W . E(V,W ) is just the space of functions Φ in E(V )

such that the space spanned by {λ(k)Φ ∣∣k ∈ K} is finite dimensional and contains only irreducible

representations of K equivalent to those in F . If f is a continuous function on G with compact support

and f(kgk−1) = f(g) for all g and k then π(f,H) leaves E(V,W ) invariant.

Suppose ∗P is a cuspidal subgroup belonging to P . If Φ belongs to E(V ), define a function

on ∗M × K by Φ(∗m,k) = φ(∗pk−1) if ∗p in ∗P projects onto ∗m. Since G = ∗PK this defines an
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isomorphism of E(V ) with a space of functions on ∗M ×K . Indeed let †P = ∗N\P ∩ ∗S then †P is a

cuspidal subgroup of ∗M and †M is the same as M . Also †P ×K is a cuspidal subgroup of ∗M ×K

for the group ∗Θ × {1}. If L is the space of square integrable functions on K then the image of E(V )

is the set of all functions in E(V ⊗ L) which are invariant under right translations by (k∗, k) where k

belongs to K ∩ ∗P and ∗k is the projection of k on ∗M . Denote the group of such elements by ∗K0 and

let ∗K be the projection of K ∩ ∗P on ∗M . The group ∗K plays the same role for ∗M as K does for G.

Suppose Φ belongs to E(V,W ). Then

Φ(∗m∗k1, kk2) = Φ(∗m∗k1k
−1
2 k−1).

For fixed ∗m and k this function belongs to the space of functions on ∗K×K of the form φ(k1k
−1
2 )with

φ in W . A typical element of W is of the form σij , that is, the matrix element of a representation in F .

Since

σij(k1k
−1
2 ) =

∑
�

σi�(k1)σ�j(k−1
2 )

it belongs to the space W ∗ if W ∗ is the space of functions on ∗K ×K spanned by the matrix elements

of those irreducible representations of ∗K ×K obtained by taking the tensor product of an irreducible

representation of K ∩ ∗P contained in the restriction to K ∩ ∗P , which is isomorphic to ∗K , of one of

the representations in F with a representation of K contragredient to one of the representations in F .

Thus the image of E(V,W ) is contained in E(V ⊗ L,W∗); indeed it is readily seen to be contained in

E(V ⊗W,W ∗) and to be the space of all functions in E(V ⊗W,W∗) invariant under right translation

by elements of ∗K0. On occasion it will be convenient to identify E(V,W )with this subspace.

Since the representation of M on L(Θ\M) is strongly continuous there is associated to each

element X in the centre Z′ of the universal enveloping algebra of m a closed operator λ(X) on L(Θ\M).

Indeed if π is any strongly continuous representation of M on a Hilbert space L there is associated to

each X in Z′ a closed operator π(X). If L is irreducible then

L = ⊕nj=1Lj

where each Lj is invariant and irreducible under the action of M0, the connected component of M .

The restriction of π(X) to Lj is equal to a multiple, ξj(X)I , of the identity. The map X → ξj(X) is

a homomorphism of Z′ into the complex numbers. Let us say that the representation belongs to the

homomorphism ξj . Suppose the closed invariant subspace V is a direct sum ⊕Vi of closed, mutually
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orthogonal subspaces Vi each of which is invariant and irreducible under the action of M . As we have

just remarked each Vi is a direct sum

⊕ni
j=1Vij

of subspaces invariant and irreducible under the action of M0. Suppose Vij belongs to the homomor-

phism ξij . V will be called an admissible subspace of L(Θ\M) if V is contained in L(Θ\M) and there

are only a finite number of distinct homomorphisms in the set {ξij}.

Lemma 3.5. If V is an admissible subspace of L0(Θ\M) and W is an admissible subspace of the

space of functions on K then E(V,W ) is finite dimensional.

In the discussion above take ∗P equal to P . Then E(V,W ) is isomorphic to a subspace of

E(V ⊗W,W ∗). It is readily seen that V ⊗W is an admissible subspace of L0(Θ× {1}\M ×K) and

that W ∗ is an admissible subspace of the space of functions on ∗K ×K . Since it is enough to show that

E(V ⊗W,W ∗) is finite dimensional we have reduced the lemma to the case that P and M are equal

to G. Suppose V = ⊕Vi. If V ′ = ⊕Vi where the second sum is taken over those Vi which contain

vectors transforming according to one of the representations in F then E(V,W ) = E(V ′,W ). In other

words it can be supposed that each Vi contains vectors transforming under K according to one of the

representations in F . For each i let

Vi = ⊕ni
j=1Vij

where each Vij is invariant and irreducible under the action of G0, the connected component of G, and

belongs to the homomorphism ξij . It is known ([10], Theorem 3) that there are only a finite number

of irreducible unitary representations of G0 which belong to a given homomorhpism of Z, the centre

of the universal enveloping algebra of g, and which contain vectors transforming according to a given

irreducible representation of K ∩ G0. Thus there is a finite set E of irreducible representations of G0

such that for each i there is a j such that the representation of G0 on Vij is equivalent to one of the

representations in E. As a consequence of Lemma 3.2 applied to G0 there are only a finite number of

Vi. It is known however (cf. [10], Theorem 4) that for each i the space of functions in Vi transforming

according to one of the representations in F is finite dimensional. This completes the proof of the

lemma. Since E(V,W ) is finite-dimensional it follows from the proof of the corollary to Lemma 3.4 that

it can be considered as a space of continuous functions.

Suppose φ(g) is a continuous function on T\G such that for each g in G the function φ(mg) on

Θ\M belongs to V and the function φ(gk) on K belongs to W . For each a in A consider the function

φ(sak) on T\S ×K or on AT\P ×K . If k0 belongs to K ∩ P = K ∩ S then φ(sk−1
0 ak0k) = φ(sak)
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since sk−1
0 ak0a

−1s−1 is in N . Thus it defines a function Φ′(a) on AT\G which is seen to belong to

E(V,W ). The space of all such functions φ for which φ′(·), which is a function on A with values in

E(V,W ), has compact support will be called D(V,W ).

Lemma 3.6. Suppose V is an admissible subspace of L0(Θ\M) and W is an admissible subspace

of functions on K. If φ belongs to D(V,W ) then
∑

∆\Γ φ(γg) is absolutely convergent; its sum

φ̂(g) is a function on Γ\G. If S0 is a Siegel domain associated to a percuspidal subgroup P0 and

if r is a real number there is a constant c such that |φ̂(g)| ≤ c ηr
(
a0(g)

)
for g in S0.

There is one point in Section 6 where we will need a slightly stronger assertion than that of the

lemma. It is convenient to prove it at the same time as we prove the lemma.

Corollary. Let φ(g) be a function on T\G and suppose that there is a constant t such that φ(namk) =

0 unless a belongs to A+(t,∞). Let P1, · · · , Pm be percuspidal subgroups to which P belongs and

suppose that there are Siegel domains †S1, · · · , †Sm associated to †Pi = N\Pi ∩ S which cover

Θ\M . Suppose that there is a constant s such that given any constant r1 there is a constant c1

such that, for 1 ≤ i ≤ m,

|φ(namk)| ≤ c1 η
s(a) ηr1

(†ai(m))
if m belongs to †Si. Finally suppose that there are constants u and b with 1 ≥ b > 0 such that

φ(namk) = 0 if η(a) > u and the projection of m on Θ\M belongs to the projection on Θ\M of

{m ∈ †Si
∣∣ η(†ai(m)) < ηb(a)}

for some i. Then ∑
∆\Γ

φ(γg) = φ̂(g)

is absolutely convergent and if S0 is a Siegel domain associated to a percuspidal subgroup P0 and

r is a real number there is a constant c such that |φ̂(g)| ≤ cηr
(
a0(g)

)
for g in S0.

It is a consequence of Lemma 3.5 and the corollary to Lemma 3.4 that the function of the lemma

satisfies the conditions of the corollary. Let ω be a compact subset of N such that (Γ∩N)ω = N . If g is

in S0 let U be the set of all elements γ in Γ such that γg = namk with n in ω, a in A+(t,∞), m in †Si
for some i, and k in K . Since any left coset of ∆ in Γ contains an element γ such that γg = namk with
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n in ω, a inA, m in †Si for some i, and k in K and since φ(namk) = 0 unless a belongs to A+(t,∞) it

is enough to estimate ∑
γ∈U

|φ(γg)|

We first estimate the number of elements in U(v), which is the set of all γ in U such that γg = namk

with n in ω, a in A+(t,∞), m in †Si for some i and such that η
(†ai(m)) ≤ v, and k in K . Suppose

†Si = †Si(†ωi, †ti) and let ωi = ω†ωi. If γ belongs to U(v) then, for some i, γg = niaaiki with ni

in ωi, a in A+(t,∞), ai in †A+
i (
†ti,∞) and such that η(ai) ≤ v, and k in K . Since ai is considered as

an element of †Ai the number η(ai) is the maximum of ξα(ai) as α varies over the simple roots of †ai.
Consider the point aai in Ai. Let α1,, · · · , αq, be the simple roots of h which vanish on a; then

ξαj,
(aai) = ξαj,

(ai) ≥ †ti

for 1 ≤ j ≤ q. If j > q then

ξαj,
(ai) =

1∏
k=1

ξδk
αk,
(ai)

with δk ≤ 0; thus if δ =
∑q
k=1 δk then

ξαj,
(aai) = ξαj,

(a) ξαj,
(ai) ≥ t ηδ(ai) ≥ t vδ

Consequently γg is contained in the Siegel domain Si(ωi, tvδ) associated to Pi if tvδ ≤
min{†ti, · · · , †tm}. In any case it follows from Lemma 2.11 that there are constants c2 and r2 which are

independent of g such that U(v) has at most c2vr2 elements. If φ(namk) is not zero either η(a) ≤ u

or η
(
ψai(m)

) ≥ ηb(a), where η(a) is the maximum of ξα(a) as α varies over the simple roots of a.

Consequently given any number r1 there is a constant c′1 such that

|φ(namk)| ≤ c′1 η
r1
(†ai(m))

If N(g) is the largest integer such that γg = namk with n in ω, a in A+(t,∞), m in †Si for some i, k

in K , and φ(γg) �= 0, implies η
(†ai(m)) ≥ N(g) then

∑
γ∈U

|φ(γg)| ≤ c′1c2
∞∑

n=N(g)

(n+ 1)r2 nr1

which in turn is at most

−c′1c22
r2(r1 + r2 − 1)

(
N(g) + 1

)r1+r2+1
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if N(g) > 1, r1 < 0, r2 > 0, and r1 + r2 + 1 < 0. Since the corollary to Lemma 2.11 implies that there

are positive constants c3 and r3 such that

N(g) + 1 ≥ c3 η
r3
(
a0(g)

)
the lemma and corollary are proved.

Let P be a cuspidal subgroup and let φ(g) be a measurable function on T\G. Suppose that given

any Siegel domain †S associated to a percuspidal subgroup †P of M and any compact subset C of A

there are constants c and r such that

|φ(namk)| ≤ c ηr
(†a(m))

if a belongs to C and m belongs to †S. If V is an admissible subspace of L0(Θ\M) and W is an

admissible subspace of the space of functions on K and if ψ belongs to D(V,W ) then∫
T\G

ψ(g) φ̄(g) dg

is convergent. If it vanishes for all choices of V and W and all ψ then we say that the cuspidal

component of φ is zero.

Lemma 3.7. Let S(1), · · · ,S(m) be Siegel domains, associated to the percuspidal subgroups

P (1), · · · , P (m) respectively, which cover Γ\G. Suppose that φ(g) is a continuous function on Γ\G
and that there are constants c and r such that

|φ(g)| ≤ c ηr
(
a(i)(g)

)
if g belongs to S(i). If the cuspidal component of

φ̂(g) =
∫

Γ∩N\N
φ(ng) dn

is zero for every cuspidal subgroup P then φ(g) is identically zero.

It is a consequence of Lemma 3.3 that it is meaningful to speak of the cuspidal component of φ̂

being zero. The lemma will be proved by induction on the rank of the percuspidal subgroups of G.

If they are of rank 0 so that Γ\G is compact then φ is itself a cusp form. It follows from Lemma 3.2

and the corollary to Lemma 3.1 that the subspace of L(Γ\G) spanned by the space E(V,W )with V an

admissible subspace of L0(Γ\G) and W an admissible subspace of the space of functions on K is dense
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in L(Γ\G). Since in this case D(V,W ) = E(V,W ) and φ̂(g) = φ(g) when P = G, the assumptions of

the lemma imply that φ is orthogonal to every element of L(Γ\G) and is consequently zero.

If the rank of the percuspidal subgroups of G is p, suppose that the lemma is true when the

percuspidal subgroups are of rank less than p. Let ∗P be a cuspidal subgroup and consider

∗φ̂(a,m, k) =
∫

Γ∩∗N\∗N
φ(namk−1) dn

According to Lemma 3.3 ∗φ̂(a,m, k) is for each fixed a in ∗A a function on ∗Θ × {1}\∗M ×K which

satisfies the given conditions on its rate of growth on Siegel domains of ∗M ×K . If †P is a cuspidal

subgroup of ∗M there is a cuspidal subgroup P to which ∗P belongs such that †P = ∗N\P ∩ ∗S. Then

†(∗φ̂)∧(a,m, k) =
∫

∗Θ∩†N\†N
∗φ̂(a, nm, k) dn

=
∫

∗Θ∩†N\†N
dn
{∫

Γ∩∗N\∗N
φ(n1namk−1) dn1

}
dn

=
∫

Γ∩N\N
φ(namk−1) dn,

so that

(3.d) †(∗φ̂)∧(a,m, k) = φ̂(amk−1)

Suppose that V ′ is an admissible subspace of L0(Θ× {1}\M ×K) and W ′ is an admissible subspace

of the space of functions on ∗K ×K . As in the remarks preceding Lemma 3.5, ∗K is the projection on
∗M of K ∩ ∗P . If ψ belongs to D(V ′,W ′) then∫

†T×{1}\∗M×K
ψ(m,k) ˆ̄φ(amk−1) dmdk

is equal to ∫
†T×{1}\∗M×K

{∫
∗K0

ψ(mk0, kk0) dk0

}
ˆ̄φ(amk−1) dmdk.

This equality will be referred to as (3.e). Suppose ζ(a) is a continuous function on ∗A with compact

support. Then we can define a function ξ(g) on T\G by setting

ξ(namk−1) = ζ(a)
∫

∗K0

ψ(mk0, kk0)

If F ′ is the set of irreducible representations of ∗K × K whose matrix elements span W ′, let F be a

finite set of irreducible representations of K which contains the representations contragredient to the
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irreducible representations of K occurring in the restrictions of the representations of F′ to K . If W

is the space of functions on K spanned by the matrix elements of the representations in F then, for

each g in G, ξ(gk) is a function in W . It is also easy to see that there is an admissible subspace V of

L0(Θ\M) such that V ′ is contained in V ⊗W if F is suitably chosen. Then ξ(g) belongs to D(V,W ).

Consequently ∫
∗A

ω2(a) ζ(a)
{∫
†T×{1}\∗M×K

ψ(m,k) ˆ̄φ(amk−1) dmdk
}
da

is equal to ∫
T\G

ξ(g) ˆ̄φ(g) dg = 0

Since ζ(a) is arbitrary we conclude that the left side of (3.e) is zero and hence that for each a in ∗A the

function ∗φ̂(a,m, k) on ∗M × K satisfies the conditions of the lemma. By the induction assumption

∗φ̂(a,m, k), and hence ∗φ̂(g), is identically zero if the rank of ∗P is positive.

Suppose f1, · · · , f� are once continuously differentiable functions on G with compact support.

Let φ1 = λ(f1) · · · λ(fk)φ. It follows from Lemma 3.4 that there is a constant c1 such that

|φ1(g)| ≤ c1 η
r−�(a(i)(g)

)
if g belongs to S(i), 1 ≤ i ≤ m. Let % be some fixed integer greater than r so that φ1(g) is bounded and

hence square integrable on Γ\G. If P is a cuspidal subgroup different from G then

φ̂1 = λ(f1) · · ·λ(fk)φ̂ = 0

so that φ1 is a cusp form. f1, · · · f� can be so chosen that fj(kgk−1) = f(g) for all g and all k and for

1 ≤ j ≤ % and φ1(h) is arbitrarily close to φ(h) for any given h in G. Consequently if it can be shown

that φ1 is identically zero for all such f1, · · · , f� it will follow that φ is identically zero. Suppose V is an

admissible subspace of L0(Γ\G), W is an admissible subspace of the space of functions on K , and ψ

belongs to E(V,W ); then∫
Γ\G

ψ(g) φ̄1(g) dg =
∫

Γ\G
λ(f∗

� ) · · ·λ(f∗
1 )ψ(g) φ̄(g) dg = 0

since λ(f∗
� ) · · ·λ(f∗

1 )ψ also belongs to E(V,W ). The functions f∗
j are defined by f∗

j (g) = f̄j(g−1).

Since, as follows from Lemma 3.2, the space spanned by the various E(V,W ) is dense in L0(Γ\G) the

function φ1 must be identically zero.

We also see from the above proof that if φ(g) satisfies the first condition of the lemma and if the

cuspidal component of φ̂ is zero for all cuspidal subgroups of rank at least q then φ̂ is identically zero

for all cuspidal subgroups of rank at least q. Let us now prove a simple variant of the above lemma

which will be used in Section 4.
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Corollary. Suppose that φ belongs to L(Γ\G) and that if P is any cuspidal subgroup, V an admis-

sible subspace of L0(Θ\M), W an admissible subspace of the space of the functions of K, and ψ

an element of D(V,W ) then ∫
Γ\G

ψ̂(g) φ̄(g) dg = 0

The function φ is then zero.

It is enough to show that if f is a once continuously differentiable function on G with compact

support such that f(kgk−1) = f(g) for all g and k then λ(f)φ is identically zero. Let φ1 = λ(f)φ.

Then, if ψ belongs to D(V,W ) and ψ1 = λ(f∗)ψ,∫
T\G

ψ(g) ˆ̄φ1(g) dg =
∫
T\G

ψ1(g) ˆ̄φ(g) dg

=
∫

∆\G
ψ1(g) φ̄(g) dg

=
∫

Γ\G
ψ∧

1 (g) φ̄(g) dg

= 0

since ψ1 also belongs to D(V,W ). If we can obtain a suitable estimate on φ1, we can conclude from the

lemma that φ1 is identically zero. But λ(f)φ(g) is equal to∫
G

φ(g) f(g−1h) dh =
∫

Γ\G
φ(h)

{∑
Γ

f(g−1γh)
}
dh.

Consequently |λ(f)φ(g)| is at most

{∫
Γ\G

|φ(h)|2 dh
} 1

2
{∫

Γ\G
dh
} 1

2
{
sup
h∈G

∑
Γ

|f(g−1γh)|
}

Let U be the support of f and suppose that for all h in G the set {γ ∣∣ γh ∈ gU} has at most N(g)

elements; then the above expression is less than or equal to a constant times N(g). Let S0 = S0(ω, t)

be a Siegel domain associated to the percuspidal subgroup P0; at the cost of increasing the size of S0

it may be supposed that ∆0ω = S0. Let ω1 and ω2 be compact subsets of S0 and A0 respectively such

that KU is contained in ω1ω2K . Choose a number t′ such that A+
0 (t

′,∞) contains the product of ω2

and A+
0 (t,∞) and let S′

0 = S0(ω, t′). Every element γ′ of Γ such that γ′h belongs to gU can be written

as a product δγ in such a way that γh belongs to S′
0 and δω ∩ ωa0ω1a

−1
0 is not empty if a0 = a0(g). It

follows from Lemma 2.11 that the number of choices for γ is bounded independent of h. The condition

on δ is that a−1
0 δa0 is contained in a−1

0 ωa0a
−1
0 ω−1a0. But the union over all a0 in A+

0 (t,∞) of these
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sets is contained in a compact set. We conclude first of all that the projection of δ on M = M\S must

belong to a fixed compact set and therefore must be one of a finite number of points. Consequently δ

can be written as a product of δ1δ2 where δ2 is one of a finite set of points, δ1 belongs to Γ ∩ N0, and

a−1
0 δ1a0 belongs to a fixed compact subset of N0. The discussion preceding Lemma 3.1 shows that the

number of choices for δ1 is at most a constant times ω−2(a0). Thus, on S0, N(g) can be taken as a

constant times ω−2
(
a0(g)

)
. The required estimate is now established.
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4. Eisenstein Series.

Let P be a cuspidal subgroup of G, let V be an admissible subspace of L(Θ\M), and let W be

the space of functions on K spanned by the matrix elements of some representation of K . It will follow

from Lemma 4.3 that E(V,W ) is finite-dimensional and thus by the argument used in Section 3 that

every element of E(V,W ) is continuous. We assume then that E(V,W ) is a finite-dimensional space of

continuous functions. If Φ is an element of E(V,W ) and H belongs to ac, the series

(4.a)
∑
∆\Γ

exp
(
〈H(γg),H〉+ ρ

(
H(γg)

))
Φ(γg)

is called an Eisenstein series.

Lemma 4.1. The series (4.a) converges uniformly absolutely on compact subsets of the Cartesian

product of

A = {H ∈ ac
∣∣ Reαi, > 〈αi,, ρ〉, 1 ≤ i ≤ rankP}

and G0. If the sum is E(g,Φ,H) then E(g,Φ,H) is infinitely differentiable as a function of g and

H and is analytic as a function of H for each fixed g. Moreover if P0 is a percuspidal subgroup of

G and S0 a Siegel domain associated to P0 there is a locally bounded function c(H) on U which

depends only on the real part of H such that, for g in S0,

|E(g,Φ,H)| ≤ c(H) exp
(
〈H0(g),ReH〉+ 2ρ

(
H0(g)

)− ρ
(
H ′

0(g)
))

where H ′
0(g) is the projection of H0(g) on a.

Let B be the universal enveloping algebra of g. The map

Y → df

dt
(g exp tY ) = λ(Y ) f(g)

of g into the space of the left-invariant vector fields on G can be extended to an isomorphism X → λ(X)

of B with the algebra of left-invariant differential operators on G and the map

Y → df

dt

(
exp(−tY )g

)
= λ′(Y )

of g into the space of right-invariant vector fields on G can be extended to an isomorphism X → λ′(X)

of B with the algebra of right-invariant differential operators on G. If f is an infinitely differentiable

function on G with compact support and if

F (g,Φ,H) = exp
(
〈H(g),H〉+ ρ

(
H(g)

))
Φ(g)
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with Φ in E(V,W ), then as we have observed above

(4.b) λ(f)F (g,Φ,H) = exp
(
〈H(g),H〉+ ρ

(
H(g)

))
F
(
g, π(f,H)Φ,H

)
It is easily verified that if φ(g) is any locally integrable function on G then

λ(X)λ(f)φ(g) = λ(λ′(X)f)φ(g)

Arguing as in the corollary to Lemma 3.3 we see that for a given H0 there is an infinitely differentiable

function f0 with compact support such that f0(kgk−1) = f0(g) for all g in G and all k in K and such

that π(f0,H0) is the identity on E(V,W ). For H close to H0, π(f0,H) is non-singular and we see from

(4.b) that for any such H

λ(X)F (g,Φ,H) = exp
(
〈H(g),H〉+ ρ

(
H(g)

))
f
(
g, π(X,H)Φ,H

)
if we define π(X,H) to be π

(
λ′(X)f0,H

)
π−1(f0,H). Of course π(X,H) is independent of the choice

of f0. The map (X,Φ)→ π(X,H)Φ can be extended to a linear map of B⊗E(V,W ) into E(V ), if Bm

is the space spanned by

{X1 · · ·Xk
∣∣ k ≤ m, xi ∈ g, 1 ≤ i ≤ k}

then Bm is invariant under the adjoint group of G. If k ∈ K and φ is a differentiable function then

λ
(
Adk(X)

)
λ(k)φ(g) = λ(k)λ(X)φ(g),

so that the map of Bm ⊗ E(V,W ) into E(V ) commutes with K . If W1 is the space of functions on K

which is spanned by the matrix elements of the representation of K in Bm ⊗W and if the degree of

X is at most m, then π(X,H)φ belongs to E(V,W1). Consequently the second assertion of the lemma

follows immediately from the first.

To prove the last assertion we will estimate the series

∑
∆\Γ

∣∣∣ exp(〈H(γg),H〉+ ρ
(
H(γg)

))
Φ(γg)

∣∣∣
which equals

(4.c)
∑
∆\Γ

exp
(
〈H(γg),ReH〉+ ρ

(
H(γg)

))|Φ(γg)|,
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so that it may as well be supposed that H is real. To prove the first assertion it is enough to show that

the second series is uniformly convergent on compact subsets of A × G. It follows from Lemma 2.5

that if C is a compact subset of A there is a constant µ such that

α,i
(
H(γg)

) ≤ µ, 1 ≤ i ≤ q,

for γ in Γ and g in C . This number q is of course the rank of P . If C1 is a compact subset of A and if

H0 is such that α,i(H0) ≤ Reα,i(H) for all H in C1 and 1 ≤ i ≤ q then∣∣∣ exp(〈H(γg),H〉+ ρ
(
H(γg)

))∣∣∣ ≤ c exp
(
〈H(γg),H0〉+ ρ

(
H(γg)

))
for all H in C1 and all g in C . Here c is some constant depending on µ. To prove the first assertion it

is then enough to prove that the series (4.c) converges uniformly for H0 fixed and for g in a compact

subset of G.

Given H0 choose f0(g) as above so that π(f0,H) is the identity on E(V,W ). Then

F (γg,Φ,H0) =
∫
G

F (γg,Φ,H0) f0(g−1h) dh.

Let C2 be the support of f0 and let C3 = CC2; then if g belongs to C the series on the right is dominated

by

M
∑
∆\Γ

∫
C3

|F (γh,Φ,H0)| dh

if M = suph∈G |f(h)|. If the numbers of elements in {γ ∣∣ γg ∈ C3} is less than or equal to N for all g

in G and if C4 is the projection of C3 on Γ\G, the sum above is at most N times∫
C4

∑
∆\Γ

|F (γh,Φ,H0)| dh ≤
∫
C5

|F (h,Φ,H0)| dh

where C5 is the projection on T\G of ΓC3. To prove the first assertion it has merely to be shown that

the integral on the right is finite. Before doing this we return to the last assertion. If H is in a sufficiently

small neighbourhood of H0 then π(f0,H) is non-singular on E(V,W ) and if Φ ∈ E(V,W ) then

2‖π(f,H0)Φ‖ ≥ ‖Φ‖.

Given Ψ in E(V,W ) and H in this neighbourhood choose Φ so that π(f0,H)Φ = Ψ. Then

|F (γg,Ψ,H)| ≤
∫
G

|F (γh,Φ,H)| |f0(g−1h)| dh,
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so that to estimate the series (4.c) and establish the last assertion it will be enough to show that there is

a locally bounded function c1(H) on A such that for g in S0, Φ in E(V,W ), and H real and in A

(4.d)
∑
∆\Γ

∫
G

|F (h,Φ,H)| |f0(g−1γ−1h)| dh

is at most

c1(H) ‖Φ‖ exp
(
〈H0(g),H〉+ 2ρ

(
H0(g)

)− ρ
(
H ′

0(g)
))

.

The expression (4.d) equals∫
∆\G

|F (h,Φ,H)|
{∑

Γ

|f0(g−1γ−1h)|
}
dh ≤ cω−2

(
a0(g)

) ∫
C(g)

|F (h,Φ,H)| dh

if g is in S0. The set C(g) is the projection on T\G of ΓgC2 and c is some constant. The inequality is

a consequence of the estimate used to prove the corollary to Lemma 3.7. Lemma 2.10 can be used to

prove that ΓgC2 is contained in

{
s exp

(
H +H ′

0(g)
)
k
∣∣ s ∈ S, k ∈ K, H ∈ +a(−∞, µ)

}
where µ is some constant. The integral is at most exp

(
〈H ′

0(g),H〉 − ρ
(
H ′

0(g)
))

times

∫
+a(−∞,µ)

exp
(〈X,H〉 − ρ(X)

) |dx|∫
Θ\M×K

|Φ(mk)| dmdk.

The second integral is at most µ(Θ\M)
1
2 ‖Φ‖ and the first is a constant times

q∏
i=1

{(
αi,(H)− 〈αi, ρ〉

)−1 expµαi, (H)
}

This completes the proof of both the first and the last assertion.

Two remarks should now be made. The first is that if C is a compact subset of Γ\G and ε is a

positive number there is a constant c and a point H0 in a such that if

Re
(
αi,(h)

)
> 〈αi,, ρ〉+ ε

for 1 ≤ i ≤ q and Φ is in E(V,W ) then, for g in C ,

|E(g,Φ,H)| ≤ c‖Φ‖ exp〈H0,ReH〉.
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The second is that if X belongs to B, then

λ(X)E(g,Φ,H) = E
(
g, π(X,H)Φ,H

)
.

Both statements have been essentially proved in the course of proving the above lemma.

We can in particular choose V and W to be the space of constant functions on M and K

respectively. It is clear that if Φ(g) ≡ 1 and H is real then

E(g,Φ,H) ≥ F (g,Φ,H)

This observation will allow us to prove a vairant of Lemma 4.1 which will be used in the proof of

the functional equations for the Eisenstein series in several variables. Suppose that ∗P is a cuspidal

subgroup belonging to P and φ(g) a function on ∗A∗T\G. The orthogonal complement †a of ∗a in a can

be regarded as the split component of †P = ∗N\P∩∗S. It is contained in †h, the orthogonal complement

of ∗a in h, which in turn can be regarded as the split component of the percuspidal subgroups of ∗M .

Suppose that there is a point †H in †a such that if †S0 is a Siegel domain associated to the percuspidal

subgroup †P0 of ∗M then

|φ(mk)| ≤ c exp
(
〈†H0(m), †H〉+ ρ

(†H ′
0(m)

))
if m belongs to †γ0 and k belongs to K . Here †H ′

0(m) is the projection of †H0(m) on †a. Suppose ∗H

belongs to ∗ac. Let us verify that the series

∑
∗∆\Γ

exp
(
〈∗H(γg), ∗H〉+ ρ

(∗H(γg))φ(γg))

converges absolutely if H = ∗H + †H belongs to a. Suppose that P01, · · · , P0r are percuspidal

subgroups of G to which ∗P belongs and †S1, · · · , †Sr are Siegel domains of ∗M , associated to the

groups †P01, · · · , †P0r respectively, such that
⋃r
i=1
†Si covers ∗Θ\∗M . Let P1, · · · , Pr be the cuspidal

subgroups with the split component a belonging to P01, · · · , P0r respectively. The function |φ(g)| is

bounded by a constant multiple of

r∑
i=1

∑
∆i\∗∆

exp
(
〈Hi(δg), †H〉+ ρ

(†H ′
0i(δg)

))
which equals

r∑
i=1

∑
†∆i\∗Θ

exp
(
〈†Hi(θm), †H〉+ ρ

(
H ′

0i(θ)
))
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if g = namk with n in ∗N , a in ∗A, m in ∗M , and k in K and if †H ′
0i(g) is the projection of H0i(g) on

†a. Since

〈Hi(g),H〉+ ρ
(
Hi(g)

)
= 〈∗H(g), ∗H〉+ ρ

(∗H(g))+ 〈Hi(g), †H〉+ ρ
(†H ′

0i(δg)
)

the assertion is seen to follow from the lemma. The assertion has now to be refined slightly.

Suppose that in Lemma 2.10 the parabolic group is a percuspidal subgroup. If s belongs to

Ω(h, h) then λ can be taken to be the linear function defined by λ(H) = diα,i(sH). We infer from

the lemma that α,i(H) − α,i(sH) is non-negative on h+. It will be seen eventually that if a and b are

distinguished subspaces of h then Ω(a, b) is the set of linear transformations from a to b obtained by

restricting to a those elements of Ω(h, h)which take a onto b. It follows readily that if H belongs to a+

and s belongs to Ω(a, b) then H − sH belongs to +h.

Suppose that ∗P and P are as before but that the function φ(g) on ∗A∗T\G satisfies

|φ(mk)| ≤ c
n∑
i=1

∑
s∈†Ω(a,ai)

exp
(
〈†H0(m), s(†H)〉+ ρ

(
H ′

0(m)
))

.

Here a1, · · · , an are the distinguished subspaces of h such that ψΩ(a, ai), which is the set of all linear

transformations from a to ai induced by elements ofΩ(h, h) that leave each point ∗a fixed, is not empty.

Combining the result of the previous paragraph with the convexity of the exponential function we see

that ∑
∗∆\Γ

exp
(
〈∗H(γg), ∗H〉+ ρ

(∗H(γg)))φ(γg)
converges if ∗H + †H belongs the the convex hull of

n⋃
i=1

⋃
s∈†Ω(a,ai)

s−1(ai)

There is no need to be explicit about the sense in which the convergence is uniform.

For the further study of Eistenstein series some facts about differential operators on G must be

reviewed. In [9] it has been shown that Z, the centre of B, is isomorphic to the algebra J of polynomials

on jc invariant under the Weyl groupΩ of gc. Let this isomorphism take X in Z to pX . For our purposes

the form of the isomorphism is of some importance. If P is a split parabolic subgroup of G with A as a

split component and if α is in Q let

n−
α = {X ∈ g

∣∣ [H,x] = −α(H)X for allH in a}.
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If n− =
∑
α∈Q n−

α then gc = nc + ac +mc + n−
c . If the universal enveloping algebras of n, a, m, n− are

N, A, M, N− respectively then the map

X1 ⊗X2 ⊗X3 ⊗X4 → X1X2X3X4

extends to a vector space isomorphism of N⊗A⊗M⊗N− with B. Identify the image of 1⊗A⊗M⊗1
with A ⊗M. If X belongs to Z then X is congruent modulo ncB to a unique element X1 in A ⊗M,

say X = X1 +X2. If Z′ is the centre of M it is clear that X1 belongs to A ⊗ Z′. The advantage of this

decomposition for us rests on the fact that if X belongs to Z then λ(X) = λ′(X ′) if X ′ is the result of

applying to X the anti-automorphism of B which sends Y in g to −Y . Thus, if φ(g) is a function on

N\G, λ(X)φ(g) = λ′(X ′
1)φ(g). Let jc = ai ⊕ j′c where j′c is the Cartan subalgebra of mc. There is of

course an isomorphism of Z′ with the algebra Z′ of polynomials on j′c invariant under the Weyl group

of mc. Let X → pX be that isomorphism of A with the algebra of polynomials on ac which assigns to

Y in a the polynomial pY (H) = 〈H,H〉+ ρ(H). Since jc is the direct sum of ac and j′c a polynomial on

either of the latter defines a polynomial on jc. If X =
∑

Xi⊗ Yi belongs to A⊗ Z′ let pX =
∑

pXi
pYi

.

The image of A⊗Z′ is the set J1 of all polynomials on jc invariant under the Weyl group Ω′ of ac+mc.

If X belongs to Z and X = X1 + X2 as above then pX = pX1 . J1 is a finite module over J and so is

the set of all polynomials on jc. If X → ξ(X) is a homomorphism of J or J′ into the complex numbers

there is a point Z in jc or in j′c respectively such that ξ(X) = pX(Z).

If P is a cuspidal subgroup and V is an admissible subspace of L(Θ\M) then V can be written

as a direct sum,

⊕ri=1Vi

where Vi is closed and invariant under the action of the connected component of M and λ(X)φ =

pX(Z ′
i)φ if φ belongs to Vi and X belongs to Z′. Z′

i is some point in j′c. Although Vi is not admissible

we can still define E(Vi,W ) and E(V,W ) = ⊗ri=1E(Vi,W ). If Φ belongs to E(Vi,W ), X belongs to Z,

and X = X1 +X2 as above then

λ(X)F (g,Φ,H) = λ′(X ′
1)F (g,Φ,H)

=
∑
j

λ′(U ′
j) exp

(
〈H(g),H〉+ ρ

(
H(g)

))
pYj
(Zi) Φ(g)

=
∑
j

pUj
(H) pYj

(Z ′
i)F (g,Φ,H)

= pX(Zi)F (g,Φ,H)
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if X1 =
∑
j Uj ⊗ Yj and Zi = H + Z ′

i. Thus

(4.e) λ(X)E(g,Φ,H) = pX(Zi)E(g,Φ,H)

Lemma 4.2. Let P be a cuspidal subgroup of G; let φ be an infinitely differentiable function on

N\G; and suppose that there is an integer % and a Z in jc such that, for all X in Z,
(
λ(X) −

pX(z)
)�
φ = 0. Let k = [Ω : Ω′]. If {pj} is a basis for the polynomials on a of degree at most k2%,

if {Z1, · · · , Zt} is a set of representatives of the orbits of Ω′ in ΩZ, and Zi = Hi + Z ′
i with Hi in

ac and Z ′
i in j′c then there are unique functions φij on NA\G such that

(
λ′(X ′)− pX(Z ′

i)
)k2�

φij = 0

if X belong to Z′ and

φ(g) =
t∑
i=1

exp
(
〈H(g),Hi〉+ ρ

(
H(g)

)){∑
pj
(
H(g)

)
φij(g)

}
.

If {Y1, · · · , Yu} generate A ⊗ Z′ over the image of Z and if {X1, · · · ,Xv} generate Z the linear

space W spanned by

{λ′(X ′
1)
α1 · · ·λ′(X ′

v)
αvλ′(Y ′

j )φ
∣∣ 1 ≤ αi ≤ %, 1 ≤ j ≤ u}

if finite-dimensional and is invariant under λ′(X ′) for X ′ in A⊗ Z′. Since A⊗ Z′ is commutative one

has a representation of this algebra on W. Let K be a set of representatives for the left-cosets of Ω′ in Ω

and if s ∈ Ω and p is a polynomial on jc let ps(W ) = p(sW ) for W in jc. If X belongs to A ⊗ Z′ the

polynomial

p(U) =
∏
s∈K

(U − psX)

has coefficients in J; by means of the isomorphism between J and Z it defines a polynomial q with

coefficients in Z and q(X) = 0. If p(U,Z) is the polynomial

∏
s∈K

(
U − pX(sZ)

)
with constant coefficients then, restricted to W,

(
p
(
λ′(X ′), Z

)− λ′(p(X ′)
))k�

= 0.
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So ∏
s∈K

(
λ′(X ′)− pX(sz)

)k� = 0
From this it follows immediately that W is the direct sum of spaces W1, · · · ,Wt with

Wi =
{
ψ ∈W

∣∣ (λ′(X ′)− pX(Zi)
)k2� = 0 for allX in A⊗ Z′}.

Then φ can be written uniquely as
∑t
i=1 φ

′
i with φ′

i in Wi. Suppose ψ belongs to Wi for some i. If g is

fixed in G let ψ(a, g) be the function ψ(ag) on A. If X belongs to A then

(
λ(X)− pX(Hi)

)k2�
ψ(a, g) = 0

This implies that

ψ(expH, g) = exp
(〈H,Hi〉+ ρ(H)

)∑
j

ψ′
j(g) pj(H)

where the functions ψ′
j(g) are uniquely determined and infinitely differentiable. If a′ = expH ′ let

exp
(〈H −H ′,Hi〉+ ρ(H −H ′)

)
pm(H −H ′) =

∑
j

τjm(a′) exp
(〈H,Hi〉+ ρ(H)

)
pj(H)

Since ψ(a′−1
a, a′g) = ψ(ag) we have

∑
j

τmj(a′)ψ′
j(a

′g) = ψ′
m(g).

Consequently

ψj(g) =
∑
m

τjm
(
a(g)

)
ψ′
m(g)

is a function on A\G and

ψ(g) =
∑
m

ψ′
m(g) pm(0) = exp

(
〈H(g),H〉+ ρ

(
H(g)

)){∑
j

ψj(g) pj
(
H(g)

)}
.

Since the functions ψj(g) are readily seen to be functions on N\G the lemma follows.

Two remarks should be made in connection with this lemma. The first is just that if φ is a function

on T\G then, for all i and j, φij will be a function on AT\G. For the second, suppose that % = 1 and

suppose that there is a subset {Z1, · · · , Zu} of {Z1, · · · , Zt} such that φij is identically zero unless

1 ≤ i ≤ u. Suppose moreover that for 1 ≤ i ≤ u there is a unique element si in K such that siZ = Zi

and that

Hi = Hj , 1 ≤ j ≤ t



Chapter 4 55

implies Zi = Zj . Referring back to the proof we see that

p
(
λ′(X ′), Z

)− λ′(p(X ′)
)
= 0;

so ∏
s∈K

(
λ′(X ′)− pX(sZ)

)
= 0.

If X belongs to A we see also that

r∏
i=1

(
λ(X)− pX(Hi)

)
φ = 0.

Hence

λ(X)φ′
i = pX(Hi)φ′

i

and

(4.f) φ(g) =
u∑
i=1

exp
(
〈H(g),Hi〉+ ρ

(
H(g)

))
φi(g),

where φi(g) is a function on NA\G such that

λ′(X ′)φi = pX(Z ′
i)φi

is X belongs to Z′.

If % is a fixed integer, Z1, · · · , Zm points in jc, and σ1, · · · , σn irreducible representations of K let

H(Z1, · · · , Zm; σ1, · · · , σn; %)

be the set of infinitely differentiably functions φ on Γ\G such that

m∏
i=1

(
λ(X)− pX(Zi)

)�
φ = 0

for every X in Z, {λ(k)φ ∣∣ k ∈ K} spans a finite-dimensional space such that the restriction of λ(k),

k ∈ K , to this space contains only irreducible representations equivalent to one of σ1, · · · , σn, and there

is a constant r such that for any Siegel domain S, associated to a percuspidal subgroup P , there is a

constant c such that

|φ(g)| ≤ cηr
(
a(g)

)
for g in S. The following lemma is essentially the same as the one stated in [14].
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Lemma 4.3. The space

H(Z1, · · · , Zm; σ1, · · · , σn; %)

is finite-dimensional.

There is no less of generality in assuming that Zi and Zj do not belong to the same orbit under

Ω unless i = j. Then

H(Z1, · · · , Zm; σ1, · · · , σn; %)

is the direct sum of

H(Zi, σ1, · · · , σn; %), 1 ≤ i ≤ m

In other words it can be assumed that m = 1. Let

H(Z, σ1, · · · , σn; %) = H

The first step is to show that the set H0 of all functions φ in H such that∫
Γ∩N\N

φ(ng) dn ≡ 0

for all cuspidal subgroups except G itself is finite-dimensional. From Lemma 3.4 we see that H0 ∩
L0(Γ\G) is finite-dimensional. Consequently to prove that H0 is finite-dimensional it would be enough

to show that H0 is contained in L0(Γ\G). If s is a real number let H0(s) be the set of functions in H0

such that for any Siegel domain S there is a constant c such that

|φ(g)| ≤ cηs
(
a(g)

)
for g in S. Since

H0 =
⋃
s∈R

H0(s)

it must be shown that H0(s) is contained in L0(Γ\G). This is certainly true if s = 0 and if it is true for

s1 it is true for all s less than s1. If it is not true in general let s0 be the least upper bound of all the s for

which it is true. If f is once continuously differentiable with compact support and, for all g and k,

f(kgk−1) = f(g)

then λ(f) takes H and H0 into themselves. Indeed according to Lemma 3.3 if φ belongs to H0(s0 + 1
2)

then λ(f)φ belongs to H0(s0 − 1
2) and hence to H0 ∩ L0(Γ\G). There is a sequence {fn} of such

functions such that λ(fn)φ converges uniformly to φ on compact sets. Since {λ(fn)φ} belongs to
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H0 ∩ L0(Γ\G) which is finite-dimensional so does φ. This is a contradiction. We have in particular

proved the lemma if the percuspidal subgroups of G are of rank 0 so that we can use induction on the

rank of the percuspidal subgroups of G. To complete the proof it will be enough to show that the range

of the map φ→ φ̂ where

φ̂(g) =
∫

Γ∩N\N
φ(ng) dn

is finite-dimensional for every cuspidal subgroup of rank one. According to the previous lemma there

is a finite set {Z1, · · · , Zt} of elements of jc such that if Zi = Hi + Z ′
i then φ̂(g)may be written as

t∑
i=1

exp
(
〈H(g),Hi〉+ ρ

(
H(g)

)){∑
j

pj
(
H(g)

)
, φij(g)

}
where the φij are functions on AT\G. We shall show that, for each i and j, φij lies in a certain

finite-dimensional space. Consider φij as a function on Θ× {1}\M ×K . The percuspidal subgroups

here have rank one less than for G. It will be enough to show that there are points W1, · · · ,Wu in j′c,

representations τ1, · · · , τv of N\N(K ∩ P )×K , and an integer %′ such that φij belongs to

H(W1, · · · ,Wu; τ1, · · · , τv; %′}

This follows almost immediately from Lemma 4.2 and Lemma 3.3.

Observe that if φ belongs to

H(Z1, · · · , Zm; σ1, · · · , σn; %)

and ψ belongs to

H(Z1, · · · , Zm;σ1, · · · , σn; %) ∩ L0(Γ\G) = H0

then, by the corollary to Lemma 3.3, ∫
Γ\G

ψ(g) φ̄(g) dg

is defined. Thus there is a unique φ′ in H0 such that φ− φ′ is orthogonal to J0; φ′ is called the cuspidal

component of φ. It is easy to see that if V is any admissible subspace of L0(Γ\G) and W is any

admissible subspace of the space of continuous functions on K and ψ belongs to E(V,W ), then∫
Γ\G

ψ(g) φ̄(g) dg =
∫

Γ\G
ψ(g) φ̄′(g) dg.

These two lemmas will now be used to study the Eisenstein series. Suppose P (1) and P (2) are

two cuspidal subgroups and V (1) is an admissible subspace of L(Θ(1)\M (1)). As before write V (1) as
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∑r
i=1 V

(1)
i where λ(X)φ = pX(Z

(1)
i )φ if φ belongs to V

(1)
i and X belongs to Z(1). Z(1)

i is some point

in j
(1)
c . Because we have two cuspidal subgroups it is notationally convenient to replace the prime

that has been used earlier by the superscript (1) or (2). If Φ belongs to E(V (1)
i0

,W ) and H(1) and a
(1)
c

satisfies the conditions of Lemma 4.1 consider∫
Γ∩N(2)\N(2)

E(ng,Φ,H(1)) dn =
∫

∆(2)\T (2)
E(tg,Φ,H(1)) dt

which is equal to∫
∆(2)\T (2)

∑
∆(1)\Γ

exp
(
〈H(1)(γtg),H(1)〉+ ρ

(
H(1)(γtg)

))
Φ(γtg) dt.

Replace the sum by a sum over double cosets to obtain

∑
∆(1)\Γ/∆(2)

∫
∆(2)∩γ−1∆(1)γ\T (2)

exp
(
〈H(1)(γtg),H(1)〉+ ρ

(
H(1)(γtg)

))
Φ(γtg) dt.

The terms of this sum will be considered individually.

If

Φ(g,H, γ) =
∫

∆(2)∩γ−1∆(1)γ\T (2)
exp
(
〈H(1)(γtg),H(1)〉+ ρ

(
H(1)(γtg)

))
Φ(γtg) dt

and if W1, · · · ,Wt is the set of representatives of the orbits of Ω(2) in Ω(H(1) + Z
(1)
i0
) and Wj =

H
(2)
j +W

(2)
j , we can write

Φ(g,H, γ) =
t∑
j=1

exp
(
〈H(2)(g),H(2)

j 〉+ ρ
(
H(2)(g)

)){∑
k

pk
(
H(2)(g)

)
φjk(g)

}
.

Setting

φj,k(m,k) = φj,k(mk−1),

we obtain functions on

Θ(2) × {1}\M (2) ×K.

There are irreducible representations τ1, · · · , τn of

(
N (2)\N (2)(K ∩ P (2))

)×K

and an integer % such that φj,k belongs to

H(Z(2)
j , τ1, · · · , τn; %).
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Let φ′
j,k be the cuspidal component of φj,k. If V is an admissible subspace of

L0(Θ(2) × {1}\M (2) ×K)

and W ′ an admissible subspace of the space of continuous functions on

(
N (2)\N (2)(K ∩ P (2))

)×K

and if ψ belongs to E(V,W ′), then∫
Θ(2)\M(2)×K

Φ(expH(2)mk−1,H(1); γ) ψ̄(m,k) dmdk

is equal to

t∑
j=1

exp
(〈H(2),H

(2)
j 〉+ ρ(H(2))

){∑
pk(H

(2)
j )
∫

Θ(2)\M(2)×K
φ′
j,k(m,k) ψ̄(m,k) dmdk

}
.

The first integral is an analytic function of H(1) on

A(1) = {H(1) ∈ a(1)
c

∣∣ Reα1
i,(H

(1)) > 〈α1
i,, ρ〉, 1 ≤ i ≤ q(1)}

if q(1) is the rank of P (1). It vanishes identically if it vanishes identically on some open subset of A(1).

If s1 and s2 belong to K, a set of representatives for the left cosets of Ω(2) in Ω, and s belongs to Ω(2)

then the equation

ss1(H(1) + Z
(1)
i0
) = s2(H(1) + Z

(1)
i0
)

is satisifed on all of a(1) or on a proper subspace of a(1). Let A1 be the open set of points H(1) in A(1)

such that for any s, s1, and s2,

ss1(H(1) + Z
(1)
i0
) = s2(H(1) + Z

(1)
i0
)

only if this equation holds identically. On this set of points the number t above is constant. We can

then choose fixed elements s1, · · · , st in Ω and take, for H(1) in A1,

Wj = sj(H(1) + Z
(1)
i0
).

It is readily seen that

∑
k

pk(H
(2)
j )
∫

Θ(2)\M(2)×K
φ′
j,k(m,k) ψ̄(m,k) dmdk
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is a continuous function on A1. It vanishes unless Z
(2)
j is one of a finite number of points. Since Z

(2)
j

is a linear function of H(1) it will be a constant if this integral does not vanish identically. Then sj(A1)

will be contained in a(2). Since sj is non-singular this can only happen if the rank of P(2) is at least as

great as the rank of P (1). We conclude that the cuspidal component of Φ(g,H(1), ψ) and thus of∫
Γ∩N(2)\N(2)

E(ng,Φ,H(1)) dn

is zero if the rank of P (2) is less than the rank of P (1).

We now treat the case that V (1) is contained in L0(Θ(1)\M (1)). It will be shown later that if the

rank of P (2) is greater than the rank of P (1) then the cuspidal component of Φ(g,H(1), γ) vanishes

identically. Anticipating this result, we consider the case of equal rank. Let s1, · · · , sm be the elements

of K = {s1, · · · , sn} such that sj(a(1)) = a(2). Let H(2)
j now be the projection of sj(H(1) + Z

(1)
i0
) on

a
(2)
c . If 1 ≤ j1 ≤ m and m < j2 ≤ n the equation H

(2)
j1

= H
(2)
j2

cannot be identically satisfied. Let A2

be the set of points in H(1) in A1 such that H(2)
j1
�= H

(2)
j2

if 1 ≤ j1 ≤ m and m < j2 ≤ n and such that

sj1(H
(1) + Z

(1)
i0
) = sj2(H

(1) + Z
(1)
i0
)

or

sj1(H
(1)) = sj2(H

(1)), 1 ≤ j1, j2 ≤ m

only if this equation holds identically on a(1). Suppose H(1) belongs to A2 and

sj1(H
(1)) = sj2(H

(1)), 1 ≤ j1, j2 ≤ m

then sj1s
−1
j2

belongs to Ω(2), so that j1 = j2. According to the remark following Lemma 3.7 φj,k = φ′
j,k

and then according to the remark following the proof of Lemma 4.2

Φ(g,H, γ) =
m∑
j=1

exp
(
〈H(2)(g), sjH(1)〉+ ρ

(
H(2)(g)

))
φj(g)

Grouping together those sj which determine the same element of Ω(a(1), a(2)) we can write the right

hand side as ∑
s∈Ω(a(1),a(2))

exp
(
〈H(2)(g), sH(1)〉+ ρ

(
H(2)(g)

))
Φs(g; γ).

Φs(mk−1; γ) belongs to

L0(Θ(2) × {1}\M (2) ×K).
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This sum is of course zero if P (1) and P (2) are not associate.

In general for any Φ in E(V (1),W ) we see that, for H(1) in A2,∫
Γ∩N(2)\N(2)

E(ng,Φ,H(1)) dn

is equal to ∑
∆(2)\Γ/∆(1)

∑
s∈Ω(a(1),a(2))

exp
(
〈H(2)(g), SH(1)〉+ ρ

(
H(2)(g)

))
Φs(g; γ)

In order to simplify the statements of our conclusions let us introduce the notion of a simple admissible

subspace. Let P be a cuspidal subgroup and let jc = ac + j′c where j′c is the Cartan subalgebra of mc. If

Z ′ is a point in j′c and Z′
1, · · · , Z ′

r is the orbit of Z′ under those elements in the group of automorphisms

of gc generated by G and the adjoint group of gc which normalize both jc and ac then the sum V of all

closed subspaces of L0(Θ\M) which are invariant and irreducible under the action of the connected

component of M and which belong to one of the characters X → pX(Z ′
i) of Z′ will be called a simple

admissible subspace of L0(Θ\M). Since V is invariant under M it is an admissible subspace. A simple

admissible subspace of the space of continuous functions on K is the space of functions spanned by

the matrix elements of an irreducible representation of K . If P (1) and P (2) are two associate cuspidal

subgroups and Z(1) is a point of j
(1)
c let Z(2) be the image of Z(1) under some element of Ω which

takes a(1) onto a(2). If V (1) and V (2) are the simple admissible subspaces defined by Z(1) and Z(2)

respectively then V (1) and V (2) are said to be associated. As a convention two associate admissible

subspaces will always be simple. It will be enough to state the results for simple admissible subspaces

because every admissible subspace is contained in a finite sum of simple admissible subspaces. In

particular if V (1) and W are simple admissible subspaces and V (2) is the simple admissible subspace

associate to V (1), if Φ belongs to E(V (1),W ), and if H(2) belongs to U(2) then

(4.g)
∫

∆(2)∩γ−1∆(1)γ\T (2)
exp
(
〈H(1)(γtg),H(1)〉+ ρ

(
H(1)(γtg)

))
Φ(γtg) dt

is equal to

(4.h)
∑

s∈Ω(a(1),a(2))

exp
(
〈H(2)(g), sH(1)〉+ ρ

(
H(2)(g)

)) (
Nγ(s,H(1))Φ

)
(g).

Here Nγ(s,H(1)) is, for each H(1) in A2 and each s, a linear transformation from E(V (1),W ) to

E(V (2),W ); it is analytic as a function of H(1).

It is necessary to establish the formula (4.h) on all of A. To do this it is enough to show that all but

one of the terms in (4.h) vanish identically on A. Choose some s0 in Ω(a(1), a(2)); since A2 is connected
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the corresponding term of (4.h) will vanish identically if it vanishes for real values of the argument. If

H(1) is real and in A2 then

〈s0H
(1), sH(1)〉 < 〈s0H

(1), s0H
(1)〉

if s belongs to Ω(a(1), a(2)) but does not equal s0. In (4.h) take

g = expa(s0H
(1))mk,

where a is a positive real number, exp a(s0H
(1)) belongs to some split component A(2) of P (2), m

belongs to M (2), and k belongs to K , and replace H(1) by bH(1) where b is a positive real number such

that bH(1) belongs to A2. Then multiply by

exp
(− ab〈s0H

(1), s0H
(1)〉 − aρ(s0H

(1))
)

and take the limit as a approaches infinity. The result is

Nγ(s0;H(1)) Φ(mk).

On the other hand if the same substitution is effected in (4.g) the result is bounded by a constant times∫
∆(2)∩γ−1∆(1)γ\T (2)

exp
(〈

H(1)
(
h(t, γ)

)
, bH(1)

〉
+ ρ
(
H(1)

(
h(t, γ)

)))
dt

with h(t, γ) = γt exp a(s0H
(1))mk, becauseΦ(g) is a bounded function. Of course this integral is finite

and it equals the sum over ∆(2) ∩ γ−1∆(1)γ\∆(2)/Γ ∩N (2) of∫
δ−1γ−1∆(1)γδ∩N(2)\N(1)

exp
(〈

H(1)
(
h(n, γδ)

)
, bH(1)

〉
+ ρ
(
H(1)

(
h(n, γδ)

)))
dn.

Choose u in the connected component of G so that u−1P (2)u and P (1) both belong to the percuspidal

subgroup P . Suppose that split components a(1), a(2) and a have been chosen for P (1), P (2), and

P respectively so that Ad(u−1)a(2) and a(1) are both contained in a. p contains a subalgebra b such

that a ⊆ b ⊆ gs and b is a maximal subalgebra of gs such that {AdH ∣∣H ∈ b} is diagonalizable. By

Bruhat’s lemma [12] γδu can be written as pvp1 where p belongs to P , p1 to u−1P (2)u and v belongs to

the normalizer of b. Then each integral above is the product of

exp
(
〈H(1)(p), bH(1)〉+ ρ

(
H(1)(p)

))
and the integral over

δ−1γ−1∆(1)γδ ∩N (1)\N (1)



Chapter 4 63

of

exp
〈
H(1)

(
vp1u

−1nu exp a
(
Ad(u−1)(s0H

(1))
)
u−1mk

)
, bH(1) +Hρ

〉
if Hρ is such that 〈H,Hρ〉 = ρ(H) for H in h. Let N0 = u−1N (2)u and replace the integral by an

integral over

t−1p−1∆(1)pt ∩N0\N0.

Now v−1p−1∆(1)pv∩N is contained in v−1p−1S(1)pv∩N0 and both these groups are unimodular. So

the integral is a product of

µ(v−1p−1∆(1)pv ∩N0\v−1p−1S(1)pv ∩N0)

and an integral over v−1S(1)v ∩ N0\N0 since p−1S(1)p = S(1). If p1 = n1m1a1 with n1 in N0, m1 in

µ−1M (2)u, and a1 in u−1A(2)u the integrand is

exp
〈
H(1)

(
vn exp

(
aAd(u−1)(s0H

(1))
)
m1a1u

−1mk
)
, bH(1) +Hρ

〉
.

If H belongs to b then

n→ exp(−H)n expH = ξ(n)

defines a map of v−1S(1)v ∩ N0\N0 onto itself; let dn = exp ρ1(H) dξ(n). Then this integral is the

product of

exp
(
ab〈Ad(vu−1)(s0H

(1)),H(1)〉+ aρ
(
Ad(vu−1)s0H

(1)
))
+ aρ1

(
Ad(u−1)(s0H

(1))
)

and ∫
v−1S(1)v∩N0\N0

exp〈H(1)(vnm1a1u
−1mk), bH(1) +Hρ〉 dn.

This integral is of course independent of a. IfAd(vu−1)(s0H
(1)) does not equal H(1) choose b so large

that

ρ
(
Ad(vu−1)(s0H

(1))
)
+ ρ1

(
Ad(u−1)(s0H

(1))
)− ρ(s0H

(1))

is less than

b〈s0H
(1), s0H

(1)〉 − b〈Ad(vu−1)(s0H
(1)),H(1)〉

Then the result of multiplying (4.g) by

exp
(− ab〈s0H

(1), s0H
(1)〉 − aρ(s0H

(1))
)
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and taking the limit as a approaches infinity is zero. Thus if Nγ(s0,H
(1)) is not identically zero there

is some δ in ∆(2) such that Ad(vu−1) maps a(2) onto a(1) and is equal to the inverse of s0 on a(2). If

γδu = pvp1 then γu = pv(p1u
−1δ−1u) and v can be chosen to depend only on γ. Thus there is at

most one term of (4.h) which does not vanish identically. Before summarizing the conclusions reached

so far let us make some remarks which are useful for calculating the transformations Nγ(s,H(1))

explicitly. If Nγ(s,H(1)) does not vanish identically let γ = p(vu−1)(up1u
−1); simplifying we can

write γ = n1a1wn2 with n1 in N (1), a1 in A(1), n2 in N (2), and with w such that Adw takes a(2) onto

a(1) and is inverse to s on a(2). Then (4.g) equals the product of

exp
(
〈H(1)(a1),H(1))〉+ ρ

(
H(1)(a1)

))
and the sum over (Γ ∩N(2))(∆(2) ∩ γ−1∆(1)γ)\∆(2) of∫

δ−1γ−1∆(1)γδ∩N(2)\N(2)
exp
(〈H(1)(wn2δng),H(1)〉+ ρ

(
H(1)(wn2δng)

)
Φ(wn2δng) dn

Although we will not press the point here it is not difficult to see that the sum is finite and that

δ−1γ−1∆(1)γδ ∩N (2) is equal to δ−1γ−1(N (1) ∩ Γ)γδ ∩N (2). Consider the linear transformation on

E(V (1),W )which sends Φ to Φ′ with Φ′(g) equal to the product of

exp
(
− 〈H(2)(g), sH(2)〉 − ρ

(
H(2)(g)

))
and ∫

w−1N(1)w∩N(2)\N(2)
exp
(
〈H(1)(wng),H(1)〉+ ρ

(
H(1)(wng)

))
Φ(wng) dn.

Φ′ is a function onA(2)N (2)\G. Considered as a function onM(2)×K , it is a function onw−1Θ(1)w\M (2).

Since the sum is finite w−1Θ(1)w andΘ(2) are commensurable. We can define the subspace of V (2)(w)

of L0(w−1Θ(2)w\M (2)) associate to V (1) and Φ′ belongs to E
(
V (2)(w),W

)
. Denote the linear trans-

formation from E(V (1),W ) to E
(
V (2)(w),W

)
by B(w,H(1)). Let

µ
(
δ−1γ−1(N (1) ∩ Γ)γδ ∩N (2)\δ−1γ−1N (1)γδ ∩N (2)

)
,

which is independent of δ, equal µ; then

Nγ(s,H(1)) Φ(m,k)

equals ∑
(Γ∩N(2))(∆(2)∩γ−1∆(1)γ)\∆(2)

µ exp
(〈H(1)(a1),H(1)〉+ ρ

(
H(1)(a1)

))
B(w,H(1)) Φ(δ̄m, k)
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if δ̄ is the projection of δ on M(2). The sum is a kind of Hecke operator. However this representation

of the linear transformations will not be used in this paper.

If s belongs to Ω(a(1), a(2)) let

N(s,H(1)) =
∑

∆(1)\Γ/∆(2)

Nγ(s,H(1)).

Lemma 4.4. Suppose P (1) and P (2) are two cuspidal subgroups and suppose V (1) is a simple

admissible subspace of L0(Θ(1)\M (1)) and W is a simple admissible subspace of the the space of

continuous functions on K. If P (1) and P (2) are not associate then the cuspidal component of∫
Γ∩N(2)\N(2)

E(ng,Φ,H(1)) dn

is zero; however if P (1) and P (2) are associate then∫
Γ∩N(2)\N(2)

E(ng,Φ,H(1)) dn

is equal to ∑
s∈Ω(a(1),a(2))

exp
(
〈H(2)g, sH(1)〉+ ρ

(
H(2)(g)

))
N(s,H(1)) Φ(g)

where N(s,H(1)) is for each H(1) in A(1) a linear transformation from E(V (1),W ) to E(V (2),W )

which is analytic as a function of H(1).

This lemma is not yet completely proved; the proof will come eventually. First however let us

establish some properties of the functions N(s,H(1)).

Lemma 4.5 (i) There is an element H
(1)
0 in a(1) and a constant c = c(ε) such that, for all s in

Ω(a(1), a(1)),

‖N(s,H(1))‖ ≤ c exp〈H(1)
0 ,ReH(1)〉

for all H(1) in A(1) with αi,(H(1)) > 〈αi,, ρ〉 + ε.

(ii) Let F be a subset of the simple roots of h and let

∗a = {H ∈ h
∣∣α(H) = 0 if α ∈ F}

Suppose ∗a is contained in a(1) and a(2) and s in Ω(a(1), a(2)) leaves each point of ∗a fixed. Let
∗P (1) and ∗P (2) be the unique cuspidal subgroups belonging to P (1) and P (2) respectively with
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∗a as a split component. If ∗P (1) and ∗P (2) are not conjugate under Γ then N(s,H(1)) ≡ 0;
if ∗P (1) = ∗P (2) = ∗P then N(s,H(1)) is the restriction to E(V (1),W ) of N(†s, †H(1)).

(iii) If s belongs to Ω(a(1), a(2)) then N(s,H(1)) is analytic on the convex hull of A(1) and

−s−1(A(2)) and

N(s,H(1)) = N∗(s−1,−sH̄(1)).

Let us start with part (ii). First of all we have to explain the notation. If ∗P (1) = ∗P (2) = ∗P let

†P (i) = ∗N\P (i) ∩ ∗S, i = 1, 2.

†P (i) ×K is a cuspidal subgroup of ∗M ×K with split component †a(i) if a(i) is the orthogonal sum

of ∗a and †a(i). The restriction of s to †a(1) defines an element †s of Ω(†a(1), †a(2)). So †P (1) and †P (2)

are associate. As we remarked in Section 3, the space E(V (i),W ) can be identified with a subspace of

E(V (i) ×W,W ∗). Although the subspace W∗ is not simple it is a sum of simple admissible subspaces

so that if †H(1) belongs to †A(1), which is defined in the obvious manner, the linear transformation

N(†s, †H(1)) from E(V (1) ⊗W,W ∗) to E(V (2) ⊗W ∗, ∗W ⊗W ∗) is still defined. If H(1) belongs to

A(1) and H(1) = ∗H(1) + †H(1) then †H(1) belongs to †A(1) and part (ii) of the lemma asserts that

N(s,H(1)) is the restriction to E(V (1),W ) of N(†s, †H(1)). To prove it we start from the formula

(4.i) N(s,H(1)) =
∑

∆(1)\Γ/∆(2)

Nγ(s,H(1)).

If Nγ(s,H(1)) is not zero we know that γ = p1vp2 with p1 in P (1), p2 in P (2), and v such that the

restriction of Ad(v) to a(2) is the inverse of s. We are here considering a(1) and a(2) as subsets of g. Let
∗a(1) and ∗a(2) be the image of ∗a in a(1) and a(2) respectively. Adv takes ∗a(1) to ∗a(2) in such a way that

positive roots go to positive roots. Thus

v(∗P (2))v−1 = (∗P (1)).

So

γ(∗P (2)))γ−1 = ∗P (1),

which proves the first assertion. If ∗P (1) = ∗P (2) = ∗P then γ∗Pγ−1 = ∗P so γ belongs to ∗P . The sum

defining N(s,H(1))may be replaced by a sum over a set of representatives of the cosets∆(1)\∗∆/∆(2).

Moreover if γ1 and γ2 belong to ∗∆ and δ1γ2δ2 = γ2 with δ1 in ∆(1), δ2 in ∆(2) then project on

∗Θ = (∗∆ ∩ ∗N )\∗∆
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to obtain ∗δ1
∗γ1

∗δ2 = ∗γ2 with ∗δi in

†∆(i) = (∗∆ ∩ ∗N)\∆(i), i = 1, 2.

Conversely if ∗δ1
∗γ1

∗δ1 = ∗γ2 then there is a δ in ∗∆ ∩ ∗N ⊆ ∆(1) so that δδ1γ1δ2 = γ2. Finally if H

belongs to a(2) and γ belongs to ∗P then

exp
(〈H, sH(1)〉+ ρ(H)

)
Nγ(s,H(1)) Φ(mk−1),

with m in ∗M and k in K , is equal to∫
∆(2)∩γ−1∆(1)γ\T (2)

exp
(〈H(1)(γt expHmk−1),H(1) +Hρ〉

)
Φ(γt expHmk−1) dt.

Since∆(2) ∩ γ−1∆(1)γ contains ∗N ∩ Γ and

µ(∗N ∩ Γ\∗N) = 1,

the integral is the product of

exp
(〈∗H, s(∗H(1))〉+ ρ(∗H)

)
and∫
†∆(2)∩∗γ−1(†∆(1))∗γ\†T (2)

exp
(〈†H(†γ†t exp †Hmk−1), †H(1) +Hρ〉

)
Φ(†γ†t exp †Hmk−1) d†t.

Here H = ∗H + †H with ∗H in ∗a and †H in †a(2). This integral equals

exp
(〈†H, s(†H(1))〉+ ρ(†H))N∗γ(†s, †H(1)) Φ(m,k).

Thus Nγ(H(1), s) is the restriction of N∗γ(†H(1), s). Substituting in (4.i) we obtain the result.

Before proving the rest of the lemma we should comment on the formulation of part (ii). Suppose

P and γ0Pγ−1
0 = P ′ are two conjugate cuspidal subgroups. Then γ0Sγ−1

0 = S′ and we may suppose

that split components A and A′ for (P,S) and (P ′, S′) respectively have been so chosen that γ0Aγ−1
0 =

A′. Every function φ on AT\G defines a function φ′ = Dφ on A′T ′\G by

φ′(g) = ω
(
a′(γ0)

)
φ(γ−1

0 g).

Let us verify that ∫
Θ\M×K

|φ(mk)|2 dmdk =
∫

Θ′\M ′×K
|φ′(m′k)|2 dm′ dk
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Since we may suppose that M ′ = γ0Mγ−1
0 , the right side is equal to

ω2
(
a′(γ0)

) ∫
Θ\M×K

|φ(mγ−1
0 k)|2 µ(m) dmdk

which equals

ω2
(
a′(γ0)

) ∫
M×K

|φ(mk)|2 µ(m) dmdk

if

µ(m) =
d(γ0mγ−1

0 )
dm

The map n→ γ0nγ
−1
0 of N to N ′ is measure preserving since Γ∩N is mapped to Γ∩N ′ and Γ∩N\N

and Γ∩N ′\N ′ both have measure one. Since the map H → Adγ0(H) of a to a′ is an isometry the map

a → γ0aγ
−1
0 of A to A′ is measure preserving. If ψ(g) is a continuous function on G with compact

support then ∫
G

ψ(g) dg

is equal to ∫
N

dn

∫
a

ω2(a) da
∫
M

dm

∫
K

dk ψ(γ0namk)

which equals ∫
N ′

dn′
∫
A′

ω2(a′) da′
∫
M

dm

∫
K

dk ψ(n′a′γ0mγ−1
0 γ0k).

The latter integral is in turn equal to

ω−2
(
a′(γ0)

) ∫
N ′

dn′
∫
A′

ω2(a′) da′
∫
M

dm

∫
K

dk{ψ(n′a′m′k)µ−1(γ−1
0 m′γ0)}.

We conclude that

µ(m) ≡ ω−2
(
a′(γ0)

)
and the assertion is verified. In the same way if φ is a function on Θ\M and φ′ = Dφ is defined by

φ′(m′) = ω
(
a′(γ0)

)
φ(γ−1

0 mγ0)

then ∫
Θ\M

|φ(m)|2 dm =
∫

Θ′\M ′
|φ′(m′)|2 dm′.

The map D takes L0(Θ\M) to L0(Θ′\M ′). If V is an admissible subspace of L(Θ\M) and W is an

admissible subspace of the space of functions on K then D takes E(V,W ) to E(V ′,W ) if V ′ = DV . If

Φ belongs to E(V,W ) let

D(H) Φ = exp
(− 〈H ′(γ0),H〉

)
DΦ.
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Then

E(g,Φ,H) =
∑
∆\Γ

exp
(
〈H(γg),H〉+ ρ

(
H(γg)

))
Φ(γg)

or ∑
∆′\Γ

exp
(
〈H(γ−1

0 γg),H〉 + ρ
(
H(γ−1

0 γg)
))
Φ(γ−1

0 γg).

If g = n′a′m′k′ then

γ−1
0 g = (γ−1

0 n′γ0)(γ−1
0 a′γ0)(γ−1

0 m′γ0)γ−1
0 k

so that

H(γ−1
0 g) = H ′(g) +H(γ−1

0 ).

In particular H(γ−1
0 ) = −H ′(γ0). Consequently the sum equals∑

∆′\Γ
exp
(
〈H ′(γg),H〉+ ρ

(
H ′(γg)

))(
D(H)Φ

)
(g) = E

(
g,D(H)Φ,H

)
.

Thus the theory of Eisenstein series is the same for both cuspidal subgroups. This is the reason that only

the case that the cuspidal subgroups P∗
1 and P ∗

2 are equal is treated explicitly in the lemma. Finally we

remark that if φ belongs to D(V,W ) and φ′ is defined by φ′(γ0g) = φ(g) then φ′ belongs to D(V,W )

and ∑
∆\Γ

φ(γg) =
∑
∆′\Γ

φ′(γg).

Part (iii) and the improved assertion of Lemma 4.4 will be proved at the same time by means

of Fourier integrals. Suppose P is a percuspidal subgroup, V is an admissible subspace of L0(Θ\M),

and W is an admissible subspace of the space of functions on K . If φ(g) belongs to D(V,W ) then, for

each a in A, let Φ′(a) be that element of E(V,W )whose value at (m,k) is φ(amk−1). If q is the rank of

P and H belongs go ac let

Φ(H) =
∫

a

Φ′(expX) exp
(− 〈X,H〉 − ρ(X)

)
dX.

Φ(H), which is a meromorphic function on ac, will be called the Fourier transform ofφ. By the inversion

formula

φ(g) =
( 1
2π

)q ∫
Re(H)=Y

exp
(
〈H(g),H〉+ ρ

(
H(g)

))
Φ(H, g) |dH|

if Y is any point in a and Φ(H, g) is the value of Φ(H) at g. In the following φ will be chosen to be

infinitely differentiable so that this integral is absolutely convergent. If

α(Y ) > 〈α, ρ〉
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for every simple root of a then

φ̂(g) =
( 1
2π

)q ∫
Re(H)=Y

E
(
g,Φ(H),H

) |dH|.
Since we have still to complete the proof of Lemma 4.4 we take P (i), i = 1, 2, to be cuspidal

subgroups, V (i) to be an admissible subspace of L0(Θ(i)\M (i)) , and W (i) to be an admissible subspace

of the space of functions on K . Suppose φ belongs to D(V (1),W (1)) and Ψ belongs to E(V (2),W (2));

then it has to be shown that if the rank of P(2) is less than the rank of P (1) the integral

(4.j)
∫
T (1)\G

φ(g)
{∫

∆(1)\T (1)
Ē(tg,Ψ, H̄(2)) dt

}
dg

vanishes for all H(2) in A(2). As usual we write this as a sum over the double cosets∆(2)\Γ/∆(1) of∫
φ(g)

{∫
exp〈H(2)(γtg),H(2) +Hρ〉 Ψ̄(γtg) dt

}
dg.

The outer integral is over T (1)\G; the inner over∆(1) ∩ γ−1∆(2)γ\T (1). We shall show that each term

vanishes. A typical term equals

(4.k)
∫

∆(1)∩γ−1∆(2)γ\G
exp〈H(2)(γg),H(2) +Hρ〉φ(g) Ψ̄(γg) dg

which equals ∫
∆(2)∩γ∆(1)γ−1\G

exp〈H(2)(g),H(2) +Hρ〉φ(γ−1g) Ψ̄(g) dg

If

φ(g) =
( 1
2π

)q ∫
Re(H(1))=Y

exp〈H(1)(g),H(1) +Hρ〉Φ(H(1), g) |dH(1)|,

with Y in A(1), and ξ(H(1),H(2)) is obtained by integrating

exp〈H(1)(γ−1t expH(2)mk−1),H(1) +Hρ〉Φ(H(1), γ−1t expH(2)mk−1) Ψ̄(mk−1)

first over∆(2) ∩ γ−1∆(1)γ\T (2) with respect to dt and afterwards overΘ(2)\M (2)×K with respect to

dmdk, then (4.k) equals

(4.%)
∫

a(2)
exp〈H,H(2) −Hρ〉

{∫
ReH(1)=Y

ξ(H(1),H) |dH(1)|
}
dH

Since ξ(H(1),H) vanishes when rank P (1) is greater than rank P (2), so does (4.k). Suppose now that

P (1) and P (2) are associate, then V (1) and V (2) are associate, and that W (1) = W (2). Then ξ(H(1),H(2))

equals

exp
(〈H(2), sH(1)〉+ ρ(H(2))

)(
Nγ−1 (s,H(1)) Φ(H(1)),Ψ

)
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where s is some element of Ω(a(1), a(2)) determined by γ. Substitute in (4.%) to obtain∫
a(1)

exp
(− 〈H,−s−1H(2)〉){∫

ReH(1)=Y

exp〈H,H(1)〉(Nγ−1 (s,H(1)) Φ(H(1)),Ψ
) |dH(1)|

}
dH

The outer integral and the corresponding integral for

(4.m)∫
a(1)

exp
(− 〈H,−s−1H(2)〉){∫

ReH(1)=Y

exp〈H,H(1)〉 (N(s,H(1)) Φ(H(1)),Ψ
) |dH(1)|

}
dH,

which is obtained by summing over double cosets, are absolutely convergent. On the other hand (4.k)

equals( 1
2π

)q ∫
a(1)

exp
(− 〈H,−s−1H(2)〉

∫
Re(H(1))=Y

exp〈H,H(1)〉 (Φ(H(1)),Nγ(s−1, H̄(2))Ψ
)
.

The sum over double cosets equals

(4.n)
( 1
2π

)q ∫
a(1)

exp
(− 〈H,−s−1H(2)〉

∫
Re(H(1))=Y

exp〈H,H(1)〉 (Φ(H(1)),N(s−1, H̄(2))Ψ
)

Thus (4.m) and (4.n) are equal. From the Fourier inversion formula (4.n) equals

(
Φ(−s−1H(2)),N(s−1, H̄(2))Ψ

)
On the other hand the inner integral in (4.m) is the Fourier transform of a function analytic on A(1)

and uniformly integrable along vertical “lines.” Thus its product with exp(−〈H,H
(1)
0 〉) is absolutely

integrable if H(1)
0 is in A(1). Referring to (4.m) we see that this product is also integrable if H(1)

0 is in

−s−1(A(2)). From Hölders inequality the product is integrable if H
(1)
0 is in the convex hull of these

two sets and then the integral must give us the analytic continuation of

(
N(s,H(1)) Φ(H(1)),Ψ

)
to this region. Consequently

(
N∗(s−1, H̄(2)) Φ(−s−1H(2)),Ψ

)
=
(
N(s,−s−1H(2)) Φ(−s−1H(2)),Ψ

)
which proves (iii).

Finally we prove (i). We start from the observation made at the end of Lemma 4.1 that if C is a

compact subset of Γ\G or of G then

∑
∆\Γ

| exp〈H(1)(γg),H(1) +Hρ〉| |Φ(γg)| ≤ c‖Φ‖ exp〈ReH(1),H
(1)
0 〉
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for g in C . If ω ⊆ N (1) and

N (1) = (Γ ∩N (1))ω

and if ωg ⊆ C then

∑
∆(1)\Γ/∆(2)

∫
∆(2)∩γ−1∆(1)γ\T (2)

| exp〈H(1)(γtg),H(1) +Hρ〉| |Φ(γtg)| dt

is at most

c‖Φ‖ exp〈ReH(1),H
(1)
0 〉.

This remains true if for each s in Ω(a(1), a(2)) we sum only over those γ such that N(s,H(1)) is not

identically zero. Then

|N(s,H(1)) Φ(g)| ≤ c‖Φ‖ exp〈H(1),H
(1)
0 〉 exp (− 〈H(2)(g),Re

(
s(H(1))

)〉)
which proves the assertion since the linear functionals on E(V (2),W ) obtained from evaluating a

function at a point span the space of linear functionals on E(V (2),W ).

The relation of being associate breaks up the cuspidal subgroups into equivalence classes. A set

of representatives {P} for conjugacy classes under Γ in one of these equivalence classes will be called a

complete family of associate cuspidal subgroups. If P0 ∈ {P} and V0 is a simple admissible subspace

of L0(Θ0\M0) then for each P in {P} there is a simple admissible subspace associate to V0. The family

{V } so obtained will be called a complete family of associate admissible subspaces. Let W be a simple

admissible subspace of the space of functions on K . If P belongs to {P} and V , which is a subspace of

L(Θ\M), belongs to {V }, and if φ belongs to D(V,W ) then φ̂(g) belongs to L(Γ\G). Let the closed

space spanned by the functions φ̂ as P varies over {P} be denoted by L({P}, {V },W ). Whenever we

have {P}, {V }, and W as above we will denote by a(1), · · · , a(r) the distinct split components of the

elements of {P}, by P (i,1), · · · , P (i,mi) those elements of {P}with a(i) as split component, and by E(i)

the direct sum

⊕mi

k=1E(V
(i,k),W )

Moreover if H(i) belongs to a(i) and s belongs to Ω(a(i), a(j))we will denote the linear transformation

from E(i) to e(j) which takesΦ in E(V (i,k),W ) to that element of E(j) whose component in E(V (j,�),W )

is N(H(i), s)Φ by M(H(i), s). Of course N(H(i), s) depends on P (i,k) and P (j,�) and is not everywhere

defined. Finally if

Φ = ⊕mi

k=1Φ̄k
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belongs to E(i) we let

E(g,Φ,H(i)) =
mi∑
k=1

E(g,Φk,H(i)).

Lemma 4.6. (i) Suppose {P}i, {V }i, Wi, i = 1, 2, are respectively a complete family of associate

cuspidal subgroups, a complete family of associate admissible subspaces, and a simple admissible

subspace of the space of functions on K; then L({P}1, {V }1,W1) is orthogonal to L({P}2, {V }2,W )

unless {P}1 and {P}2 are representatives of the same equivalence class, the elements of {V }1
and {V }2 are associate, and W1 = W2. Moreover L(Γ\G) is the direct sum of all the spaces

L({P}, {V },W ) and, for a fixed {P} and {V }, ⊕WL({P}, {V },W ) is invariant under G.

(ii) If {P}, {V }, and W are given and if, for 1 ≤ i ≤ r and 1 ≤ k ≤ mi, φi,k and ψi,k, which

belongs to D(V (i,k),W ), are the Fourier transforms of Φi,k(H(i)) and Ψi,k(H(i)) respectively

let

Φi(H(i)) = ⊕mi

k=1Φi,k(H
(i))

and

Ψi(H(i)) = ⊕mi

k=1Ψi,k(H
(i))

Then

(4.o)
∫

Γ\G

r∑
i=1

r∑
j=1

mi∑
k=1

mj∑
�=1

φ̂i,k(g) ˆ̄ψj,�(g) dg

is equal to

(4.p)
( 1
2π

)q ∫
Re(H(i))=Y

(
M(s,H(i)), Φ(H(i)), Ψj(−sH̄(i))

) |dH(i)|

summed over s in Ω(a(i), a(j)) and 1 ≤ i, j ≤ r. Here q is the rank of elements of {P} and

Y (i) is a real point in A(i).

Suppose P (i), i = 1, 2 are cuspidal subgroups, suppose V (i) is an admissible subspace of

L0(Θ(i)\M (i)), and W (i) is an admissible subspace of the space of functions on K . If φ belongs to

D(V (1),W (1)) and ψ belongs to D(V (2),W (2)) let

φ(g) =
( 1
2π

)q ∫
Re(H(1))=Y (1)

exp〈H(1)(g),H(1) +Hρ〉Φ(H(1), g) |dH(1)|,

ψ(g) =
( 1
2π

)q ∫
ReH(2)=Y (2)

exp〈H(2)(g),H(2) +Hρ〉Ψ(H(2), g) |dH(2)|.
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Then ∫
Γ\G

φ̂(g) ˆ̄ψ(g)

is equal to

(4.q)
( 1
2π

)q ∫
ReH(1)=Y (1)

{∫
∆(2)\G

ψ̄(g)E(g,Φ(H(1)),H(1)) dg
}
|dH(1)|

if Y (1) belongs to U(1). The inner integral is of the same form as (4.j) and as we know vanishes unless

P (1) and P (2) are associate. If P (1) and P (2) are associate and V (i) and W (i) are simple admissible

spaces for i = 1, 2, then it is zero unless V (1) and V (2) are associate and W (1) = W (2). Finally if P (1)

and P (2) and V (1) and V (2) are associate and W (1) = W (2) = W the inner integral is readily seen to

equal ( 1
2π

)q ∑
s∈Ω(a(1),a(2))

(
N(H(1), s) Φ(H(1)), Ψ(−sH̄(1))

)
This proves part (ii) of the lemma and the first assertion of part (i). The second assertion follows readily

from the second corollary to Lemma 3.7.

To complete the proof of part (i) it is enough to show that

⊕WL({P}, {V },W )

is invariant underλ(f)whenf is continuous with compact support. IfW1 andW2 are simple admissible

subspaces of the space of functions on K define C(W1,W2) to be the set of all continuous functions on

G with compact support such that f(k−1g) belongs to W1 for each g in G and f(gk−1) belongs to W2

for each g in G. It is enough to show that for any W1 and W2 the space

⊗L({P}, {V },W )

is invariant under λ(f) for all f in C(W1,W2). Suppose φ(g) belongs to D(V,W ) for some V in {V }
and some W and

φ(g) =
( 1
2π

)q ∫
ReH=Y

exp
(
〈H(g),H〉+ ρ

(
H(g)

))
Φ(H, g) |dH|.

If f belongs to C(W1,W2) then

λ(f)φ(g) =
∫
G

φ(gh) f(h) dh

equals 0 unless W2 = W . If W2 = W it is readily seen that λ(f)φ belongs to D(V,W1); since

λ(f) φ̂ =
(
λ(f)φ

)∧
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the third assertion of part (i) is proved. Moreover

(4.r) λ(f)φ(g) =
( 1
2π

)q ∫
ReH=Y

exp
(
〈H(g),H〉+ ρ

(
H(g)

))
Φ′(H, g) dH

if Φ′(H) = π(f,H) Φ(H).

Let us now introduce some notation which will be useful later. Suppose {P}, {V }, and W are

given. Suppose that, for 1 ≤ i ≤ r, Φi(H(i)) is a function defined on some subset of a
(i)
c with values

in E(i). We shall use the notation Φ(H) for the r-tuple
(
Φ1(H(1)), · · · ,Φr(H(r))

)
of functions and

occasionally talk of Φ as though it were a function. If Φ1(H(1)), · · · ,Φr(H(r)) arise as in part (ii) of the

lemma, let us denote
r∑
i=1

mi∑
k=1

φ̂i,k

by φ̂. If R2 > 〈ρ, ρ〉 the map Φ(·) → φ̂ can be extended to the space of all functions Φ(H) =(
Φ1(H(1)), · · · ,Φr(H(r))

)
which are such that Φi(H(i)) is analytic on

{H(i) ∈ a(i)
c

∣∣ ‖Re(H(i))‖ < R}

and dominated on this set by a square-integrable function of Im(H(i)). The formula of part (ii) of the

lemma will still be valid. In particular the map can be extended to the set H of all functions Φ(H) such

that Φi(H(i)) is analytic on the above set and ‖p( Im(H(i))
)
Φ(H(i))‖ is bounded on the above set if p

is any polynomial. H is invariant under multiplication by polynomials.
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5. Miscellaneous lemmas.

In order to avoid interruptions later we collect together in this section a number of lemmas

necessary in the proof of the functional equations of the Eisenstein series.

Lemma 5.1. Let φ be a continuous function on Γ\G and suppose that there is a constant r such

that if S′ is a Siegel domain associated to a percuspidal subgroup P ′ there is a constant c′ such

that |φ(g)| ≤ c′ηr
(
a′(g)

)
if g belongs to S′. Suppose that there is an integer q such that if ∗P is

any cuspidal subgroup then the cuspidal component of

∗φ̂(g) =
∫

Γ∩∗N\∗N
φ(ng) dn

is zero unless the rank of ∗P equals q. Let {P1, · · · , Ps} be a set of representatives for the conjugacy

classes of cuspidal subgroups of rank q and for each i let Vi be an admissible subspace of L0(Θi\Mi);

let W be an admissible space of functions on K. Suppose there is an integer N such that if

{p(k)
i

∣∣ 1 ≤ k ≤ t} is a basis for the polynomials on ai of degree at most N then

(5.a)
∫

Γ∩Ni\Ni

φ(ng) dn =
si∑
j=1

exp〈Hi(g),H(j)
i 〉

t∑
k=1

p
(k)
i

(
Hi(g)

)
Φ(j,k)
i (g)

with Φ(j,k)
i in E(Vi,W ). Let {pi

∣∣ 1 ≤ i ≤ u} be a basis for the polynomials on h of degree at most

N ; then given any percuspidal subgroup P and any Siegel domain S associated to P there is a

constant c such that on S

(5.b) |φ(g)| ≤ c
{ s∑
i=1

si∑
j=1

exp〈H(g),ReH(j)
i 〉
}{ u∑

k=1

∣∣pk(H(g))∣∣}.
Supposef is an infinitely differentiably function onGwith compact support such thatf(kgk−1) =

f(g) for all g and k. Let φ1 = λ(f)φ. If ∗P is any cuspidal subgroup, ∗V an admissible subspace of

L0(∗Θ\∗M), ∗W an admissible space of functions on K , and ψ an element of D(∗V , ∗W )we have∫
∗T\G

ψ(g)∗φ̂1(g) dg =
∫

∗T\G
λ(f∗)ψ(g)∗φ̂(g) dg.

If ψ belongs to D(∗V , ∗W ) so does λ(f∗)ψ so that both integrals are zero if the rank of ∗P is not q. On

the other hand if Hi belongs to the complexification of the split component of Pi and Φ(k)
i , 1 ≤ k ≤ t,

belongs to E(Vi,W ) then the result of applying λ(f) to the function

exp〈Hi(g),Hi〉
{ t∑
k=1

p
(k)
k

(
Hi(g)

)
Φ(k)
i (g)

}



Chapter 5 77

is the function

exp〈Hi(g),Hi〉
{ t∑
k=1

p
(k)
i

(
Hi(g)

)( t∑
�=1

π(k,�)(f,Hi) Φ
(�)
i

)
(g)
}

where π(k,�)(f,Hi) is a linear transformation on E(V (i),W ). The matrix
(
π(k,�)(f,Hi)

)
defines a linear

transformation on

⊕tk=1E(V
(i),W )

which we will denote by π(f,Hi) even though π(f,Hi) usually has another meaning. Given the finite

set of ponts H
(1)
i , · · · ,H(si)

i we readily see that we can choose f so that π(f,H(j)
i ) is the identity for

1 ≤ i ≤ s, 1 ≤ j ≤ si. ∫
Γ∩Ni\Ni

φ(ng) dn =
∫

Γ∩Ni\Ni

φ1(ng) dn

for 1 ≤ i ≤ s, It follows from Lemma 3.7 that λ(f)φ = φ. Arguing the same way as in the proof

of Lemma 4.1 we see that if X is in the centre of the universal enveloping algebra then the result of

applying λ(X) to the function

exp〈Hi(g),Hi〉
{ t∑
k=1

p
(k)
i

(
Hi(g)

)
Φ(k)
i (g)

}
is the function

exp〈Hi(g),Hi〉
{ t∑
k=1

p
(k)
i

(
Hi(g)

)( t∑
�=1

π(k,�)(X,Hi)Φ
(�)
i

)
(g)
}

where π(k,�)(X,Hi) is a linear transformation on E(V (i),W ). It then follows readily that there are

points Z1, · · · , Zm in jc, irreducible representations σ1, · · · , σn of K , and an integer %0 such that φ

belongs to

H(Z1, · · · , Zm; σ1, · · · , σn; %0).

If q = 0 the inequality (5.b) merely asserts that φ(g) is bounded on any Siegel domain. That this

is so follows of course from Lemma 3.5 and the corollary to Lemma 3.4. The lemma will be proved for

a general value of q by induction . Suppose q is positive. If {α1,, · · · , αp, } is the set of simple roots

of h let ∗Pi be the cuspidal subgroups belonging to P determined by {αj,
∣∣ j �= i}. It follows form

Lemma 4.2 that

∫
Γ∩∗Ni\∗Ni

φ(ng) dn =
ji∑
j=1

exp〈∗Hi(g), ∗H(j)
i 〉

ki∑
k=1

q
(j)
i

(∗Hi(g))φ(j,k)
i (g)
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where φ
(j,k)
i is a function on ∗Ai∗Ti\G, the elements ∗H(j)

i , 1 ≤ j ≤ ji, are distinct, and the set of

homogeneous polynomials q
(1)
i , · · · , q(ki)

i is linearly independent. Let us consider φ
(j,k)
i as a function

on ∗Θi × {1}\∗Mi ×K and show that it satisfies the conditions of the lemma. Since the functions

exp〈∗Hi, ∗H(j)
i 〉q(k)

i (∗Hi), 1 ≤ j ≤ ji, 1 ≤ k ≤ ki,

are linearly independent, φ(j,k)
i (m,k) is a linear combination of functions of the form∫

Γ∩∗Ni\∗Ni

φ(namk−1) dn

with a in ∗Ai. Any condition of the lemma which is satisfied by the latter functions will also be satisifed

by each of the functions φ
(j,k)
i . Lemma 3.3 shows that the condition on the rate of growth on Siegel

domains is satisifed. The proof of Lemma 3.7 shows that if †P ×K is a cuspidal subgroup of ∗Mi ×K

then the cuspidal component of∫
∗Θi∩†N\†N

{∫
Γ∩∗Ni\∗Ni

φ(nan1mk−1) dn
}
dn1

is zero unless the rank of †P , or equivalently †P ×K , is q − 1. Finally we must find the analogue of

the form (5.a).

In order to free the indices i, j, and k for other use we set i = i0, j = j0, and k = k0. If P ′ is a

cuspidal subgroup of rank q to which ∗Pi0 belongs suppose for simplicity that P ′ = Pi for some i. If F

is the subset of {1, · · · , si} consisting of those j such that the projection of H(j)
i on the complexification

of ∗ai0 equals ∗H(j0)
i0

and if r(1), · · · , r(ti) is a basis for the polynomials on the orthogonal complement
†ai of ∗ai0 in ai of degree at most N −M , with M equal to the degree of q(k0)

i0
, then∫

∗Θi0∩†Ni\†Ni

φ
(j0,k0)
i0

(nm, k) dn

is equal to

(5.c)
∑
j∈F

exp〈†Hi(m), †H(j)
i 〉

ti∑
k=1

r(k)
(†Hi(m))Ψ(j,k)

i (mk−1).

Here
†Pi = ∗Ni0\Pi ∩ ∗Si0 , H

(j)
i = ∗H(j)

i + †H(j)
i ,

with ∗H(j)
i in the complexification of ai0 and †H(j)

i in the complexification of †ai. The functions Ψ(j,k)
i

are linear combinations of the functions Φ(j,k)
i . Considered as functions on ∗Mi0 ×K they belong to

E(Vi ×W,W ∗) as we saw when proving Lemma 3.5.
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Applying the induction assumption to each of the functions φ
(j,k)
i we see that if †Si is a Siegel

domain associated to a percuspidal subgroup of ∗Mi there is a constant ci such that if g = niaimiki

and mi belongs to †Si then

∣∣∣ ∫
Γ∩∗Ni\∗Ni

φ(ng) dn
∣∣∣ ≤ ci

{ s∑
i=1

si∑
j=1

exp〈H(g),ReH(j)
i 〉
}{ u∑

k=1

∣∣pk(H(g))∣∣}.
Suppose S is a Siegel domain associated to P . It is enough to establish the inequality (5.b) on

each

Si = {g ∈ S
∣∣ ξαi,

(
a(g)

) ≥ ξαj,

(
a(g)

)
, 1 ≤ j ≤ p}.

It is not difficult to see that there is a Siegel domain †Si associated to a percuspidal subgroup of ∗Mi

such that S is contained in ∗Ni∗Ai†SiK ; the simple calculations necessary for a complete verification

are carried out later in this section. Since λ(f)φ = φ we see from Lemma 3.4 that if b is any real number

there is a constant c′i such that∣∣∣φ(g)− ∫
Γ∩∗Ni\∗Ni

φ(ng) dn
∣∣∣ ≤ c′iη

b
(
a(g)

)
on Si. For b sufficiently small ηb

(
a(g)

)
is bounded on S by a constant times the expression in brackets

on the right side of (5.b). So the lemma is proved.

Corollary. If, for each i and j,

Re
(
α,k(H

(j)
i )
)
< 〈α,k, ρ〉, 1 ≤ k ≤ p

then φ is square integrable on Γ\G.

It has only to be verified that the right side of (5.b) is square integrable on any Siegel domain.

This is a routine calculation.

Lemma 5.2. Let {φn} be a sequence of functions on Γ\G and suppose that for each n there is a

constant r(n) such that if S′ is a Siegel domain associated to a percuspidal subgroup there is a

constant c′(n) such that

|φ(g)| ≤ c′(n) ηr(n)
(
a′(g)

)
if g belongs to S′. Suppose that there is an integer q such that if ∗P is any cuspidal subgroup then

the cuspidal component of ∫
Γ∩∗N\∗N

φn(ng) dn
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is zero unless the rank of ∗P is q. Let {P1, · · · , Ps} be a set of representatives for the conjugacy

classes of cuspidal subgroups of rank q and for each i let Vi be an admissible subspace of L0(Θi\Mi);

let W be an admissible space of functions on K. Suppose there is an integer N such that if

{p(k)
i

∣∣ 1 ≤ k ≤ t} is a basis for the polynomials on ai of degree at most N then

∫
Γ∩Ni\Ni

φn(ng) dn =
si∑
j=1

exp〈Hi(g),H(j)
n,i〉

t∑
k=1

p
(k)
i

(
Hi(g)

)
Φ(j,k)
n,i (g)

with H
(j)
n,i in the complexification of ai and Φ(j,k)

n,i in E(Vi,W ). Finally suppose that

lim
n→∞H

(j)
n,i = H

(j)
i

and

lim
n→∞Φ

(j,k)
n,i = Φ(j,k)

i

exist for all i, j, and k. Then there is a function φ on Γ\G such that

lim
n→∞φn(g) = φ(g)

uniformly on compact sets. Moreover if S is any Siegel domain associated to a percuspidal subgroup

there is a constant c such that |φn(g)| is less than or equal to

(5.d) c
{ s∑
i=1

si∑
j=1

t∑
k=1

‖Φ(j,k)
n,i ‖

}{ s∑
i=1

si∑
j=1

exp〈H(g),ReH(j)
n,i〉
}{ u∑

k=1

∣∣pk(H(g))∣∣}.
The polynomials pk are the same as in the previous lemma. If f is an infinitely differentiable

function on G with compact support such that

f(kgk−1) = f(g)

for all g and k then define π(f,Hi) as in the proof of the previous lemma. Choose f such that π(f,H(j)
i )

is the identity for 1 ≤ i ≤ s, 1 ≤ j ≤ si. If we take the direct sum

⊕si=1 ⊕si
j=1 ⊕

( t∑
k=1

E(V (i),W )
)

then we can define the operator

⊕si=1 ⊕si
j=1 ⊕π(f,H(j)

n,i) = πn
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on this space. For n sufficiently large the determinant of πn will be at least 1
2 . Thus for n sufficiently

large there is a polynomial pn of a certain fixed degree with no constant term and with uniformly

bounded coefficients such that pn(πn) is the identity. Because of Lemmas 3.7 and 5.1 we can ignore

any finite set of terms in the sequence; so we suppose that pn is defined for all n. The function

fn = pn(f) is defined in the group algebra and the argument used in the proof of Lemma 5.1 shows

that λ(fn)φn = φn. There is a fixed compact set which contains the support of all the functions fn and

if X belongs to g there is a constant µ such that

|λ(X) fn(g)| ≤ µ

for all n and all g.

In the statement of the lemma the limit as n approaches infinity of Φ(j,k)
n,i is to be taken in the

norm on E(Vi,W ) that has been introduced earlier. This, as we know, implies uniform convergence.

Thus if q equals zero the first assertion of the lemma is immediate. The second is also; so we suppose

that q is positive and proceed by induction. Let

ν(n) =
s∑
i=1

si∑
j=1

t∑
k=1

‖Φ(j,k)
n,i ‖

If lim
n→∞ ν(n) = 0 we have only to establish the inequality (5.d) because we can then take φ to be zero.

Since φn is zero when ν(n) is, the lemma will be valid for the given sequence if it is valid for the

sequence which results when all terms with ν(n) equal to zero are removed. We thus suppose that

ν(n) is different from zero for all n. If the lemma were false for a given sequence with lim
n→∞ ν(n) = 0

then from this sequence we could select a subsequence for which the lemma is false and for which

lim
n→∞ ν−1(n) Φ(j,k)

n,i

exists for all i, j, and k; replacing the elements of this subsequence by ν−1(n)φn we obtain a sequence

for which the lemma is false and for which lim
n→∞ ν(n) = 1. We now prove the lemma in the case that

lim
n→∞ ν(n) is not zero.

Let S(1), · · · ,S(v) be a set of Siegel domains, associated to the percuspidal subgroups

P (1), · · · , P (v) respectively, which cover Γ\G. If {φn} is any sequence satisfying the conditions of

the lemma it follows from Lemmas 3.7 and 5.1 that for 1 ≤ n <∞ there is a constant c1(n) such that

(5.e) |φn(g)| ≤ c1(n)
{ s∑
i=1

si∑
j=1

exp〈H(x)(g),ReH(j)
n,i〉
}{ u∑

k=1

∣∣pk(H(x)(g)
)∣∣}
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if g belongs to S(x). It may be supposed that c1(n) is the smallest number for which (5.e) is valid. Since

we can always take S to be one of S(1), · · · ,S(v) the inequality (5.d) will be proved, at least when

lim
n→∞ ν(n) is not zero, if it is shown that the sequence {c1(n)} is bounded. At the moment however

there are still two possibilities; either the sequence is bounded or it is not. In the second case replace

φn by c−1
1 (n)φn and, for the present at least, assume that {c1(n)} is bounded. It follows from Ascoli’s

lemma and the relation λ(fn)φn = φn that we can choose a subsequence {φ′
n} so that

lim
n→∞φ′

n(g) = φ(g)

exists for each g and the convergence is uniform on compact sets. Lemma 3.3 and the dominated

convergence theorem imply that if ∗P is a cuspidal subgroup of rank different from q then the cuspidal

component of ∫
Γ∩∗N\∗N

φ(ng) dn

is zero. Moreover∫
Γ∩Ni\Ni

φ(ng) dn =
si∑
j=1

exp〈Hi(g), limH
(j)
n,i〉

t∑
k=1

p
(k)
i

(
Hi(g)

)
limΦ(j,k)

i (g).

If {φn} did not converge to φ uniformly on all compact sets we could choose another subsequence

which converged to φ′ which is not equal to φ; but the cuspidal component of∫
Γ∩∗N\∗N

φ(ng)− φ′(ng) dn

would be zero for any cuspidal subgroup. According to Lemma 3.7 this is impossible. For the same

reasons, if

lim
n→∞Φ

(j,k)
n,i = 0

for all i, j, and k then φ is zero. In order to exclude the second possibility for (5.e) it has to be shown

that if (5.e) is satisfied with a bounded sequence {c1(n)} and

lim
n→∞Φ

(j,k)
n,i = 0

for all i, j, and k then

lim
n→∞ c1(n) = 0

Once the second possibility is excluded the lemma will be proved.
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We will suppose that lim
n→∞ c1(n) is not zero and derive a contradiction. Passing to a subsequence

if necessary it may be supposed that there is a definite Siegel domain, which we again call S, among

S(1), · · · ,S(v) such that

(5.f) sup
g∈S

|φn(g)|
{ s∑
i=1

si∑
j=1

exp〈H(g),ReH(j)
n,i〉
}−1{ u∑

k=1

∣∣pk(H(g))∣∣}−1

= c1(n)

is greater than or equal to ε > 0 for all n; S is of course associated to the percuspidal subgroup P . Let
∗Pi, 1 ≤ i ≤ p, be the cuspidal subgroup belonging to P determined by the set {αj,

∣∣ j �= i} and let

Si = {g ∈ S
∣∣ ξαi,

(
a(g)

) ≥ ξαj,
, 1 ≤ j ≤ p}.

Suppose it could be shown that there is a sequence {c′1(n)} of numbers converging to zero so that∣∣∣ ∫
Γ∩∗N	\∗N	

φn(ng) dn
∣∣∣

is less than or equal to

(5.g) c′1(n)
{ s∑
i=1

si∑
j=1

exp〈H(g),ReH(j)
n,i〉
}{ u∑

k=1

∣∣pk(H(g))∣∣}

if g belongs to S�. Then it would follow from Lemma 3.4 that there was a constant c′ independent of

n such that, for g in S, |φ(g)| is at most

(
c′1(n) + c′c1(n)η−1

(
a(g)

)){ s∑
i=1

si∑
j=1

exp〈H(g),ReH(j)
n,i〉
}{ u∑

k=1

∣∣pk(H(g))∣∣}.
There is a conditionally compact subset C of S such that c′η−1

(
a(g)

) ≤ 1
2

if g is not in C . If in the

left side of (5.d) g is allowed to vary only over the complement of C the results would be at most

c′1(n) +
1
2c1(n). Thus if n were so large that c′1(n) <

1
2ε

sup
g∈C

|φn(g)|
{ s∑
i=1

si∑
j=1

exp〈H(g),H(j)
n,i〉
}−1{ u∑

k=1

∣∣pk(H(g))∣∣}−1

≥ ε

This is however impossible since φn(g) converges to zero uniformly on compact sets.

The induction assumption will be used to establish (5.g). As in the proof of Lemma 5.1 let

∫
Γ∩∗Ni\∗Ni

φn(ng) dn =
ji(n)∑
j=1

exp〈∗Hi(g), ∗H(j)
n,i〉

ki∑
k=1

q
(k)
i

(∗Hi(g))φ(j,k)
n,i (g)
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where φ
(j,k)
i is a function on ∗Ai∗Ti\G, the elements

∗H(j)
n,i , 1 ≤ j ≤ ji(n),

are distinct, and the set of homogeneous polynomials q
(1)
i , · · · , q(ki)

i is linearly independent. We have

already seen in the proof of Lemma 5.1 that if φ(j,k)
n,i are considered as functions on ∗Θi ×{1}\∗Mi×K

then the sequences {φ(j,k)
n,i } satisfy all conditions of the lemma, with q replaced by q−1, except perhaps

the last. We again replace i by i0, j by j0, and k by k0 in order to free the indices i, j, and k. For each n

and each i define a partition Pi(n) of {1, · · · , si} by demanding that two integers j1 and j2 belong to

the same class of the partition if and only if H(j1)
n,i and H

(j2)
n,i have the same projection on ∗ai0 . Breaking

the sequence into a number of subsequences we can suppose that ji(n) = ji and Pi(n) = Pi are

independent of n. With this assumption we can verify the last condition of the lemma for the sequence

φ
(j0,k0)
n,i0

. If P is a cuspidal subgroup of rank q to which ∗Pi0 belongs, suppose for simplicity that P = Pi

for some i. Let M be the degree of q(k0)
i0

. If F is the subset of {1, · · · si} consisting of those j such that

the projection of H
(j)
n,i on ∗ai0 equals ∗H(j0)

n,i0
and if r(1), · · · , r(ti) is a basis for the polynomials on the

orthogonal complement †ai of ∗ai0 in ai of degree at most N −M then∫
∗Θi0∩†Ni\†Ni

φ
(j0,k0)
i0

(nm, k) dn

is equal to ∑
j∈F

exp〈†Hi(m), †H(j)
n,i〉

ti∑
k=1

r(k)
(†Hi(m))Ψ(j,k)

n,i (mk−1).

Here
†Pi = ∗Ni0\Pi ∩ ∗Si0

H
(j)
n,i =

∗H(j)
n,i +

†H(j)
n,i

with ∗H(j)
n,i in the complexification of ai0 and †H(j)

n,i in the complexification of †ai. It is clear that

lim
n→∞

†H(j)
n,i exists for each j. The functions Ψ(j,k)

n,i are linear combinations of the functions Φ(j,k)
n,i with

coefficients which do not depend on n; consequently

lim
n→∞Ψ

(j,k)
n,i = 0

for each i, j, and k. The inequality (5.g) follows immediately from the induction assumption.

In the next section it will be necessary to investigate the integral over Γ\G of various expressions

involving the terms of a sequence {φn} which satisfies the conditions of the lemma with q = 1. In
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order to do this we must be able to estimate the integral of |φ(g)|2 over certain subsets of G and Γ\G.

For example if C is a compact subset of G then∫
C

|φn(g)|2 dg = O
(
ν2(n)

)
if ν(n) has the same meaning as in the proof of the lemma. Suppose that S is a Siegel domain associated

to the percuspidal subgroup P . If αi,, · · · , αp, are the simple roots of h let ∗Pi be the cuspidal subgroup

of rank one determined by {αj,
∣∣ j �= i} and let

Si =
{
g ∈ S

∣∣ ξαi,

(
a(g)

) ≥ ξαj,

(
a(g)

)
, 1 ≤ j ≤ p

}
It follows from Lemmas 3.4 and 5.2 that if

∗φ̂n,i(g) =
∫

Γ∩∗Ni\∗Ni

φn(ng) dn

and r is any real number then

|φn(g)−∗ φ̂n,i(g)| = O
(
ν(n)

)
ηr
(
a(g)

)
for all g in Si. Since ηr

(
a(g)

)
is square integrable on Si for r ≤ 0∫

Si

|φn(g)− ∗φ̂n,i(g)|2 dg = O
(
ν2(n)

)
.

If 1 ≥ b > 0 let

Si(b) =
{
g ∈ Si

∣∣ ξαj,

(
a(g)

) ≥ ξbαi,

(
a(g)

)
for some j �= i

}
.

We shall show that

(5.h)
∫

Si(b)

|∗φ̂n,i(g)|2 dg = O
(
ν2(n)

)
and hence that

(5.i)
∫

Si(b)

|φn(g)|2 dg = O
(
ν2(n)

)
It will be better to prove a slightly stronger assertion than (5.h). Suppose that S = S(c, ω). If g is in

G let g = namk with n in ∗Ni, a in ∗Ai, m in ∗Mi, and k in K . If †Ai = A ∩ ∗Mi then †Ai is the split

component of the cuspidal subgroup †Pi = ∗Ni\P ∩ ∗Si of ∗Mi. If g belongs to S and j �= i then

ξαj,

(†ai(m)) = ξαj,

(
a(g)

) ≥ c.
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It follows readily from Lemma 2.6 that

ξ−1
αi,

(†ai(m)) =∏
j �=i

ξδj
αj,

(†ai(m))
with δj ≥ 0; consequently

ξαi,
(a) ≥ c ξ−1

αi,

(†ai(m)) ≥ c1

with some constant c1. If g belongs to Si(b) then, for some j �= i,

ξαj,

(†ai(m))∏
k �=i

ξbδk
αk,

(†ai(m)) ≥ ξbαi,
(a).

Consequently there is a constant b1 > 0 such that, for some other j,

ξαj,

(†ai(m)) ≥ ξb1αi,
(a)

Suppose ω1 and ω2 are compact subsets of ∗Ni and †Si respectively such that ω is contained in ω1ω2;

then we can choose n in ω1 and m in †Si(c, ω2). For each a in ∗Ai let

U(a) =
{
m ∈ †Si(c, ω2)

∣∣ η(†ai(m)) ≥ ηb1(a)
}
.

The integral of (5.h) is at most a constant, which does not depend on n, times

(5.j)
∫

∗A+
i

(c1,∞)

ω2(a)
{∫

U(a)×K
|∗φ̂n,i(amk)|2 dmdk

}
da.

To estimate (5.j) we can replace ∗Pi by any cuspidal subgroup conjugate to it. In particular we can

suppose that ∗Pi is one of the groups P1, · · · , Ps. If ∗Pi equals Pi0 the above integral equals

∫
∗A+

i0
(c1,∞)

ω2(a)
{∫

U(a)×K

∣∣∣ si0∑
j=1

exp〈H,H
(j)
n,i0
〉
t∑
k=1

P
(k)
i0
(H) Φ(j,k)

n,i0
(mk−1)

∣∣∣2 dmdk
}
da

if a = expH . Given any real number r there is a constant c(r) such that

|Φ(j,k)
n,i0

(m,k−1)| ≤ c(r) ‖Φ(j,k)
n,i0

‖ ηr(†ai(m))
if m belongs to †Si. Thus if r is less than or equal to zero the above integral is

O
(
ν2(n)

) ∫
∗Ai0 (c1,∞)

ω2(a)η2rb1(a)
si0∑
j=1

t∑
k=1

| exp〈H,H
(j)
n,i0
〉 p(k)
i0
(H)|2 da

which is O
(
ν2(n)

)
for r sufficiently small.
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For each i let P (1)
i , · · · , P (ni)

i be a set of of percuspidal subgroups to which Pi belongs which are

such that there are Siegel domains †S(j)
i , 1 ≤ j ≤ ni, associated to

†P (j)
i = Ni\P (j)

i ∩ Si

whose union covers Θi\Mi. It may be supposed that {P (1)
i

∣∣ 1 ≤ j ≤ ni} contains a complete set of

representatives for the conjugacy classes of percuspidal subgroups to which Pi belongs and hence that

{P (j)
i

∣∣ 1 ≤ i ≤ s, 1 ≤ j ≤ ni} contains a complete set of representatives for the conjugacy classes

of percuspidal subgroups. It should perhaps be recalled that we have seen in Section 2 that if two

percuspidal subgroups to which Pi belongs are conjugate then the conjugation can be effected by an

element of ∆i. Let t be a positive number and for each i and j let ω(j)
i be a compact subset of S(j)

i ; let

S
(j)
i be the set of all g in the Siegel domain S

(j)
i (t, ω

(j)
i ) such that

ξα
(
a
(j)
i (g)

) ≥ ξβ
(
a
(j)
i (g)

)
if β is any simple root of h and α is the unique simple root which does not vanish on ai. Let us now

verify that
⋃s
i=1

⋃n1
j=1 S

(j)
i covers Γ\G if t is sufficiently small and the sets ω

(j)
i are sufficiently large.

Since Γ\G is covered by a finite number of Siegel domains it is enough to show that if t and the sets

ω
(j)
i are suitably chosen the projection of the above set on Γ\G contains the projection on Γ\G of any

given Siegel domain S. Suppose S is associated to the percuspidal subgroup P and ∗Pk is the cuspidal

subgroup belonging to P determined by {α�,
∣∣ % �= k}. It is enough to show that the projection of the

above set contains the projection on Γ\G of

Sk =
{
g ∈ S

∣∣ ξαk,

(
a(g)

) ≥ ξα	,

(
a(g)

)
, 1 ≤ % ≤ p

}
for each k. Given k there is an i and a j and a γ in Γ such that γ∗Pkγ−1 = Pi and γPγ−1 = P

(j)
i . Let

S = S(c, ω). The projection of Sk on Γ\G is the same as the projection on Γ\G of γSk. The set Sk is

contained in

γωγ−1N
(j)
i A

(j)+
i (c,∞)γK

since ∆(j)
i \S(j)

i is compact there is a Siegel domain S
(j)
i (t, ω

(j)
i ) such that γSk is contained in

∆(j)
i S

(j)
i (t, ω

(j)
i ). The set γSk will then be contained in ∆(j)

i S
(j)
i because

ξα
(
a
(j)
i (γgγ

−1)
)
= ξαk,

(
a(g)

)
if α is the unique simple root which does not vanish on ai.
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If 1 ≥ b > 0 and u > 0 let S
(j)
i (b, u) be the set of all g in S

(j)
i such that

ξβ
(
a
(j)
i (g)

)
< ξbα

(
a
(j)
i (g)

)
,

for all simple roots β of h different from α, and such that ξα
(
ai(g)

)
> u. Let F be the projection on

Γ\G of
⋃s
i=1

⋃ni

j=1 S
(j)
i (b, u). We now know that

(5.k)
∫

Γ\G−F
|φn(g)|2 dg = O

(
γ2(n)

)
.

Let Fi be the projection on∆i\G of
⋃ni

j=1 S
(j)
i (b, u). It follows from Lemma 2.12 that if u is sufficiently

large and b is sufficiently small the projections on Γ\G of Fi and Fj are disjoint unless i = j and that

the projection of Fi into Γ\G is injective. Thus if ψ(g) is any function on Γ\G for which∫
Γ\G

ψ(g) dg

is defined the integral is equal to

(5.%)
s∑
i=1

∫
Fi

ψ(g) dg +
∫

Γ\G−F
ψ(g) dg.

We also know that

(5.m)
∫
Fi

|φn(g)− φ̂n,i(g)|2 dg = O
(
ν2(n)

)
if

φ̂n,i(g) =
∫

Γ∩Ni\Ni

φn(ng) dn.

There is one more lemma which should be established before we go on to the proof of the

functional equations.

Lemma 5.3. Let U be an open subset of the n-dimensional complex coordinate space. Suppose that

to each point z in U there is associated a continuous function E(g, z) on Γ\G. Suppose that for

each z in U there is a constant r such that if S is any Siegel domain, associated to a percuspidal

subgroup P , there is a constant c, which may also depend on z, such that

|E(g, z)| ≤ cηr
(
a(g)

)
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if g belongs to S. Suppose that there is an integer q such that if ∗P is any cuspidal subgroup then

the cuspidal component of ∫
Γ∩∗N\∗N

E(ng, z) dn

is zero for all z unless the rank of ∗P equals q. Let {P1, · · · , Ps} be a set of representatives for the

conjugacy classes of cuspidal subgroups of rank q and for each i let Vi be an admissible subspace of

L0(Θi\Mi); let W be an admissible space of functions on K. Suppose there is an integer N such

that if {p(k)
i

∣∣ 1 ≤ k ≤ t} is a basis for the polynomials on ai of degree at most N then

∫
Γ∩Ni\Ni

E(ng, z) dn =
si∑
j=1

exp〈Hi(g),H(j)
i (z)〉

t∑
k=1

p
(k)
i

(
Hi(g)

)
Φ(j,k)
i (g, z).

For each z and each i and j the point H
(j)
i (z) belongs to the complexification of ai; Φ

(j,k)
i (g, z)

is the value at g of an element Φ(j,k)
i (z) of E(Vi,W ). If H

(j)
i (z) and Φ(j,k)

i (z) are holomorphic

functions on U , with values in the complexification of ai and E(Vi,W ) respectively, for all i, j, and

k then E(g, z) is a continuous function on Γ\G× U which is holomorphic in z for each fixed g.

It follows immediately from Lemma 5.2 that E(g, z) is a continuous function on Γ\G× U . Let

z0 = (z0
1 , · · · , z0

n) be a point in U and let

B = {z = (z1, · · · , zn)
∣∣ |zi − z0

i | < ε}

be a polycylinder whose closure is contained in U . It is enough to show that E(g, z) is analytic in B

for each g. To do this we show that if Ci is the contour consisting of the circle of radius ε about z0i

transversed in the positive direction then

E(g, z) =
( 1
2πi

)n ∫
C1

dζ1 · · ·
∫
Cn

dζnE(g, ζ)
n∏
�=1

(ζi − zi)−1

when z is in B. Denote the right hand side by E1(g, z). It follows from Lemma 5.2 that if S is any

Siegel domain there are constants c and r such that |E(g, z)| ≤ cηr
(
a(g)

)
for all g in S and all z in the

closure of B. Consequently for all z in B the function E(g, z) −E1(g, z) satisfies the first condition of

Lemma 3.7. If ∗P is a cuspidal subgroup then∫
Γ∩∗N\∗N

E1(ng, z) dn

is equal to ( 1
2πi

)n ∫
C1

dζ1 · · ·
∫
Cn

dζn

{∫
Γ∩∗N\∗N

E(ng, ζ) dn
} n∏
�=1

(ζi − zi)−1.
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It follows from Fubini’s theorem that the cuspidal component of∫
Γ∩∗N\∗N

E1(ng, z) dn

is zero if the rank of ∗P is not q. However∫
Γ∩Ni\Ni

E1(ng, z) dn

is equal to the sum over j, 1 ≤ j ≤ si, and k, 1 ≤ k ≤ t of

( 1
2πi

)n ∫
C1

dζ1 · · ·
∫
Cn

dζn

{
exp〈Hi(g),H(j)

i (ζ)〉 p(k)
i

(
Hi(g)

)
Φ(j,k)
i (g, ζ)

} n∏
�=1

(ζ − zi)−1.

Since the expression in the brackets is a holomorphic function of ζ this equals

si∑
j=1

t∑
k=1

exp〈Hi(g),H(j)
i (ζ)〉 p(k)

i

(
Hi(g)

)
Φ(j,k)
i (g, z)

and the lemma follows from Lemma 3.7.
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6. Some functional equations.

We are now ready to prove the functional equations for the Eisenstein series associated to cusp

forms. Let {P} be a complete family of associate cuspidal subgroups; let {V } be a complete family of

associate admissible subspaces; and let W be a simple admissible subspace of the space of functions

on K . If a(1), · · · , a(r) are the distinct subspaces of h occurring among the split components of the

elements of {P} then for each transformation s inΩ(a(i), a(r))we have defined a holomorphic function

M(s,H(i)) on A(i) with values in the space of linear transformations from E(i) to E(j) and for each point

Φ in E(i) we have defined a continuous function E(g,Φ,H(i)) on Γ\G×A(i) which is holomorphic in

H(i) for each fixed g. In order to avoid some unpleasant verbosity later we introduce some conventions

now. As usual M(s,H(i)) is said to be holomorphic or meromorphic on some open set V containing

A(i) if there is a holomorphic or meromorphic function, which is still denoted by M(s,H(i)), on V

whose restriction to A(i) is M(s,H(i)). The function E(·,Φ,H(i)) is said to be holomorphic on V if

there is a continuous function on Γ\G × V which is holomorphic in H(i) for each fixed g and equals

E(g,Φ,H(i)) on Γ\G×A(i). Of course this function on Γ\G×V is still denoted by E(g,Φ,H(i)). The

function E(·,Φ,H(i)) is said to be meromorphic on V if it is holomorphic on an open dense subset

V ′ of V and if for each point H
(i)
0 in V there is a non-zero holomorphic function f(H(i)) defined in

a neighbourhood U of H
(i)
0 such that f(H(i))E(g,Φ,H(i)) is the restriction to Γ\G × (U ∩ V ′) of a

continuous function on Γ\G × (U ∩ V ) which is holomorphic on U ∩ V for each fixed g. If V ′ is the

complement of the intersection of V with a set of hyperplanes and if f(H(i)) can always be taken as a

product of linear functions we will say that the singularities of E(·,Φ,H(i)) in V lie along hyperplanes.

A similar convention applies to the functions M(s,H(i)).

Lemma 6.1. For each i and each j and each transformation s in Ω(a(i), a(j)) the function

M(s,H(i)) is meromorphic on a(i) and its singularities lie along hyperplanes. For each i and

each Φ in E(i) the function E(·,Φ,H(i)) is meromorphic on a(i) and its singularities lie along

hyperplanes. If s belongs to Ω(a(i), a(j)), t belongs to Ω(a(j), a(k)), and Φ belongs to E(i) then

M(ts,H(i)) =M(t, sH(i))M(s,H(i))

and

E
(
g,M(s,H(i))Φ, sH(i)

)
= E(g,Φ,H(i)).

There are a number of other properties of the functions E(·,Φ,H(i)) which it is important to

remark.
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Lemma 6.2. Fix i and fix H
(i)
0 in a(i). Suppose that for every j and every s in Ω(a(i), a(j)) the

function M(s,H(i)) is analytic at H
(i)
0 . Then for every Φ in E(i) the function E(·,Φ,H(i)) is

analytic at H
(i)
0 and if S is a Siegel domain, associated to a percuspidal subgroup P , there are

constants c and r such that, for g in S,

|E(g,Φ,H(i)
0 )| ≤ c ηr

(
a(r)

)
.

Moreover if ∗P is a cuspidal subgroup the cuspidal component of∫
Γ∩∗N\∗N

E(ng,Φ,H(i)
0 ) dn

is zero unless ∗P belongs to {P} but∫
Γ∩N(j,	)\N(j,	)

E(ng,Φ,H(i)
0 ) dn

is equal to

∑
s∈Ω(a(i),a(j))

exp
(
〈H(j,�)(g), sH(i)

0 〉+ ρ
(
H(j,�)(g)

))(
E(j,�)M(s,H(i))Φ

)
(g)

if E(j,�) is the projection of E(j) on E(V (j,�),W ).

It should be observed immediately that this lemma is true if H(i)
0 belongs to A(i). Let us begin

the proof of these two lemmas with some remarks of a general nature. We recall that if Φ(·) and Ψ(·)
belong to the space H introduced in Section 4 then∫

Γ\G
φ̂(g) ˆ̄ψ(g) dg

is equal to

(6.a)
r∑
i=1

r∑
j=1

∑
s∈Ω(a(i),a(j))

( 1
2π

)q ∫
ReH(i)=Y (i)

(
M(s,H(i)) Φi(H(i)),Ψj(−sH̄(i))

) |dH(i)|.

If, for 1 ≤ i ≤ r, fi(H) is a bounded analytic function on

Di = {H(i) ∈ a(i)
c

∣∣ ‖ReH(i)‖ < R}

and if Φ(H) is in H then

f(H) Φ(H) =
(
f1(H(1)) Φ1(H(1)), · · · , fr(H(r)) Φr(H(r))

)
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is in H. Suppose that, for all s in Ω(a(i), a(j)), fj(sH(i)) = fi(H(i)) and let f∗
i (H) = f̄i(−H̄). If (6.a) is

denoted by
(
Φ(·),Ψ(·)) it is readily verified that

(
f(·) Φ(·), Ψ(·)) = (Φ(·), f∗(·)Ψ(·))

In particular
(
f∗(·) f(·) Φ(·), Ψ(·)) is a positive definite hermitian symmetric form on H. Suppose k is

a positive number and, for each i and all H in Di, |fi(H)| < k then

(
k2 − f∗

i (H) fi(H)
) 1

2 = gi(H)

is defined, analytic, and bounded on Di and g∗i (H) = gi(H). If the square root is properly chosen then

gj(sH) = gi(H) for all s in Ω(a(i), a(j)). Since

k2 − f∗
i (H) fi(H) = g∗i (H) gi(H),

we see that (
f(·) Φ(·), f(·) Φ(·)) ≤ k2

(
Φ(·), Φ(·)).

Consequently f defines a bounded linear operator λ(f) on L({P}, {V },W ). If si(f) is the closure of

the range of fi(H) for H in Di then the spectrum of λ(f) is contained in
⋃r
i=1 si(f). It is clear that

λ∗(f) = λ(f∗) so that if f = f∗ then λ(f) is self-adjoint. If H belongs to Di, let H = H1 + iH2 with

H1 and H2 in a(i); then

〈H,H〉 = 〈H1,H1〉 − 〈H2,H2〉+ 2i〈H1,H2〉

so that Re〈H,H〉 < R2. If Reµ > R2 let fµi (H) = (µ− 〈H,H〉)−1; then λ(fµ) is a bounded operator

on L({P}, {V },W ). Since the map Φ(·)→ fµ(·) Φ(·) is a one-to-one map of H onto itself the range of

λ(fµ) is dense. Consequently if fi(H) = 〈H,H〉 the map

Φ(·)→ (f1(·) Φ1(·), · · · , fr(·) Φr(·)
)

defines a closed, self-adjoint, linear operator A on L({P}, {V },W ) and

λ(fµ) = (µ−A)−1 = R(µ,A)

R(µ,A) is an analytic function of µ off the infinite interval (−∞, R2].

Suppose Φi,k belongs to E(V (i,k),W ) and H(i) belongs to A(i); consider

∑
∆(i,k)\Γ

exp
(
〈H(i,k)(γg),H(i)〉+ ρ

(
H(i,k)(γg)

))
Φi,k(γg).



Chapter 6 94

Let S be a Siegel domain, associated to a percuspidal subgroup P , and let C be a fixed compact set. For

each i let α(i)
1, , · · · , α(i)

p, be the simple roots of h so numbered that α(i)
q+1,, · · · , α(i)

p, vanish on a(i); we will

also denote the restriction of α(i)
j, to a(i) by α

(i)
j , if 1 ≤ j ≤ q. The methods used to prove Lemma 2.11

can be used to show that there is a constant x such that if g belongs to S and h belongs to C then

α
(i)
,j

(
H(i,k)(γgh)

) ≤ x+ α
(i)
,j

(
H(g)

)
for 1 ≤ j ≤ q. Let F ′(h,Φi,k′ ,H(i)) equal

exp
(
〈H(i,k)(h),H(i)〉+ ρ

(
H(i,k)(h)

))
Φi,k(h)

if, for all j,

α
(i)
,j

(
H(i,k)(h)

) ≤ x+ α
(i)
,j

(
H(g)

)
and let it equal zero otherwise; then set

E′(h,Φi,k,H(i)) =
∑

∆(i,k)\Γ
F ′(γh < Φi,k,H(i)).

The functions E(h,Φi,k,H(i)) and E′(h,Φi,k,H(i)) are equal on gC . The Fourier transform of

F ′(h,Φiki,H
(i)
1 ) is

a
{ q∏
j=1

α
(i)
j, (H

(i)
1 −H(i))

}−1

exp
(〈X,H

(i)
1 −H(i)〉+ 〈H(g),H(i)

1 −H(i)〉)Φi,k
if X in h is such that α,j(X) = x, 1 ≤ j ≤ p. and a is the volume of

{H ∈ a(i)
∣∣ 0 ≤ α

(i)
,j (H) ≤ 1, 1 ≤ j ≤ q}.

If

Φi = ⊕mi

k=1Φi,k

and

E′(h,Φi,H(i)) =
mi∑
k=1

E′(g,Φi,k,H(i))

then Lemma 4.6 together with some simple approximation arguments shows that E′(·,Φi,H(i)) is an

analytic function on A(i) with values in L({P}, {V },W ) and that∫
Γ\G

E′(h,Φ1,H
(i)
1 ) Ē′(h,Ψj ,H

(j)
2 ) dh
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is equal to

(6.b)
∑

s∈Ω(a(i),a(j))

a2

(2π)q

∫
ReH(i)=Y (i)

(
M(s,H(i))Φi,Ψj

)
ξ(H(i)) |dH(i)|

with

ξ(H(i))=exp |〈X(g),H(i)
1 −H(i)〉+〈X(g), H̄(j)

1 −sH(j)〉|
{ q∏
k=1

α
(i)
k, (H

(i)
1 −H(i))α(j)

k, (H̄
(j)
2 +sH(i))

}−1

if Y (i) is suitably chosen and X(g) = X +H(g).

Suppose that for any choice of x and g and all Φi the function E′(g,Φi,H(i)) is analytic in a

region V containing A(i). If f is a continuous function on G choose C so that it contains the support of

f ; then

(6.c) λ(f)E(g,Φi,H(i)) =
∫
G

E′(gh,Φi,H(i)) f(h) dh

is a continuous function on Γ\G×V which is an analytic function of H(i) for each fixed g. In particular

if f(kgk−1) = f(g) for all g in G and all k in K then E
(
g, π(f,H(i))Φi,H(i)

)
is analytic on V for each

g. Of course

π(f,H(i))Φi =
mi∑
k=1

π(f,H(i))Φi,k.

But f can be so chosen that π(f,H(i)) is non-singular in the neighbourhood of any given point H(i)
0 .

Consequently E(g,Φi,H(i)) is, for each g and each Φi, analytic on V . In the course of proving the

lemmas for the Eisenstein series in more than one variable we will meet a slightly different situation.

There will be a function f0 such that f0(kgk−1) = f0(g) for all g and k, the determinant of the linear

transformation π(f0,H
(i)) on E(i) does not vanish identically, and λ(f0)E′(·,Φi,H(i)) is analytic on

V for all Φi, all g, and all x. Arguing as above we see that E
(·, π(f0,H

(i))Φi,H(i)
)

is analytic on V

and hence that E(·,Φi,H(i)) is meromorphic on V .

If S is a Siegel domain and C a compact subset of G let us choose x as above. Suppose that

given any compact subset U of V there are constants c and r such that

(6.d) ‖E′(·,Φi,H(i))‖ ≤ c ηr
(
a(g)

) ‖Φi‖
if H(i) belongs to U and g belongs to S. If we refer to the formula (6.c) and the proof of the corollary

to Lemma 3.7 we see that there are constants c′ and r′ such that

|E(g,Φi,H(i))| ≤ c′ηr
′(
a(g)

) ‖Φi‖
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if g is in S and H(i) is in U . If all the functions M(s,H(i)) are analytic on V we see by combining the

dominated convergence theorem and the estimates of Section 3 with the principle of permanence of

functional relations that Lemma 6.2 is valid for any point of V . On the other hand suppose only that

λ(f0)E′(·,Φi,H(i)) is analytic on V for all Φi but that for any S and any C and any compact subset U

of V there are constants c and r such that

‖λ(f0)E′(·,Φi,H(i))‖ ≤ c ηr
(
a(g)

) ‖Φi‖
if g is in S and H(i) is in U . If all the functions M(s,H(i)) are meromorphic on V we see just as

above that Lemma 6.2 is valid at those points where the determinant of π(f0,H(i)) is not zero. It is

a little more difficult to obtain Lemma 6.2 for a point H
(i)
0 at which the determinant of π(f0,H

(i))

vanishes. If the assumption of the lemma is satisfied we can apply Lemma 5.2 to define E(·,Φ,H(i)) in

a neighbourhood of H(i)
0 by continuity. That every assertion of the lemma except the first is valid for

each point in a neighbourhood of H(i)
0 follows imediately from the earlier lemma. Once we are assured

of this we can immediately deduce the first assertion from Lemma 5.3.

The prefatory remarks over we will now prove the lemmas for the case that the elements of {P}
have rank one. The case of rank greater than one will then be proved by induction. If the elements of

{P} have rank one then, as follows from Lemma 2.13, r is either 1 or 2 and if r is 2 then Ω(a(i), a(i)),

i = 1, 2, contains only the identity transformation. If z is a complex number let H(i)(z) be that element

of a
(i)
c such that

α(i)
(
H(i)(z)

)
= z〈α(i), α(i)〉 1

2

if α(i) is the one simple root of a(i). Let E be E(1) or E(1)⊕E(2) according as r is 1 or 2. If r is 1 and there

is an s in Ω(a(1), a(1)) different from the identity then sH = −H for all H in a(1) so that s is uniquely

determined; in this case let M(z) = M
(
s,H(1)(z)

)
. If there is no such s let M(z) be 0; as we shall see

this possibility cannot occur. If r is 2 and s belongs to Ω(a(1), a(2)) then S
(
H(1)(z)

)
= −H(2)(z) for all

z so that s is again uniquely determined. In this case let

M(z) =

 0 M
(
s−1,H(2)(z)

)
M
(
s,H(1)(z)

)
0


If r is 1 and Φ belongs to E we set

E(g,Φ, z) = E
(
g,Φ,H(1)(z)

)
and if r is 2 and Φ = Φ1 ⊕ Φ2 belongs to E we set

E(g,Φ, z) = E
(
g,Φ1,H

(1)(z)
)
+ E

(
g,Φ2,H

(2)(z)
)

Lemma 6.1 can be reformulated as follows.
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Lemma 6.3. The function M(z) is meromorphic on the complex plane and for each Φ in E the

function E(·,Φ, z) is meromorphic on the complex plane. Moreover M(z)M(−z) = I and, for all

Φ,

E
(
g,M(z)Φ,−z

)
= E(g,Φ, z).

There is no value in reformulating Lemma 6.2. As we observed in the introduction this lemma

will be proved by the method of [19]. The space H can be considered as a space of functions defined in

a region of the complex plane with values in E. IfΦ(·) is in H we denoteΦ1

(
H(1)(z)

)
orΦ1

(
H(1)(z)

)⊕
Φ2

(
H(2)(z)

)
if r is 2 by Φ(z). If

(φ̂, ψ̂) =
∫

Γ\G
φ̂(g) ˆ̄ψ(g) dg

then

(6.e) (φ̂, ψ̂) =
1
2πi

∫ c+i∞

c−i∞

(
Φ(z),Ψ(−z̄)

)
+
(
M(z) Φ(z),Ψ(z̄)

)
dz

if c is greater than but sufficiently close to

〈α(i), α(i)〉− 1
2 〈α(i), ρ〉 = 〈ρ, ρ〉.

If c1 > Reλ > c then

(
R(λ2, A)φ̂, ψ̂

)
=

1
2πi

∫ c+i∞

c−i∞
(λ2 − z2)−1

{
Φ(z),Ψ(−z̄)

)
+
(
M(z) Φ(z),Ψ(z̄)

)}
dz

and the latter integral is the sum of

(6.f) (2λ)−1
{(
Φ(λ),Ψ(−λ̄)

)
+
(
M(λ) Φ(λ),Ψ(λ̄)

)}
and

(6.g)
1
2πi

∫ c1+i∞

c1−i∞
(λ2 − z2)−1

{(
Φ(z),Ψ(−z̄)

)
+
(
M(z) Φ(z),Ψ(z̄)

)}
dz.

(
R(λ2, A)φ̂, ψ̂

)
is analytic if λ2 does not belong to (−∞, R2), that is, λ is not imaginary and not in the

interval [−〈ρ, ρ〉 1
2 , 〈ρ, ρ〉 1

2 ]. If Φ(z) = ez
2
Φ and Ψ(z) = ez

2
Ψ with constant Φ and Ψ then (6.g) is an

entire function of λ and (6.f) equals

(2λ)−1 e2λ2{
(Φ,Ψ) +

(
M(λ)Φ,Ψ

)}
Consequently M(λ) is analytic for Reλ > 0, λ �∈ (0, 〈ρ, ρ〉12 ].
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We next show that E(·,Φ, λ) is holomorphic for Reλ > 0, λ �∈ (0, 〈ρ, ρ〉12 ]. If x is given and Φi,k

belongs to E(V (i,k),W ) let F ′(g,Φi,k,H(i)) equal

exp
(
〈H(i,k)(g),H(i)〉+ ρ

(
H(i,k)(g)

))
Φi,k(g)

if

α(i)
(
H(i,k)(g)

) ≤ x〈α(i), α(i)〉

and let it equal zero otherwise. Let

E′(g,Φi,k,H(i)) =
∑

∆(i,k)\Γ
F ′(γg,Φi,k,H(i))

and if

Φ = ⊕ri=1

mi∑
k=1

Φi,k

belongs to E let

E′(g,Φ, z) =
r∑
i=1

mi∑
k=1

E′(g,Φi,k,H(i)(z)
)
.

It follows from (6.b) that ∫
Γ\G

E′(g,Φ, λ) Ē′(g,Ψ, µ) dg

is equal to

1
2πi

eax(λ+µ̄)
{∫ c+i∞

c−i∞
(Φ,Ψ){(λ− z)(µ̄+ z)}−1 + e−2axz

(
M(z)Φ,Ψ

){(λ− z)(µ̄− z)−1} dz
}

if c is as in (6.e). If x is sufficiently large one sees readily, making use of Lemma 4.5(i), that the above

integral equals

(6.h) eax(λ+µ̄)(λ+ µ̄)−1(Φ,Ψ) + eax(µ̄−λ)(µ̄− λ)−1
(
M(λ)Φ,Ψ

)
+ eax(λ−µ̄)(λ− µ̄)−1

(
Φ,M(µ)Ψ

)
In general we obtain (∂nE′

∂λn
(·,Φ, λ), ∂

nE′

∂µn
(·,Ψ, µ)

)
by differentiating (6.h) n times with respect to λ and µ̄. Thus

∞∑
n=0

1
n!
|λ− λ0|n

∥∥∥∂nE′

∂λn
(·,Φ, λ)

∥∥∥
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is seen to converge in the largest circle about λ0 which does not meet the imaginary axis or the real

axis. Since the above formulae persist in any subset of

{λ ∣∣ Reλ > 0, λ �∈ (0, 〈ρ, ρ〉 1
2 ]}

in which E′(·,Φ, λ) is defined we conclude that E′(·,Φ, λ) is an analytic function in this region. Since

the analogue of (6.d) is readily deduced from (6.h) we also see that Lemma 6.2 is valid if H(i)
0 = H(i)(z)

and z is in this region.

The next step in the proof is to show that there are a finite number of points z1, · · · , zn in the

interval (0, 〈ρ, ρ〉 1
2 ] such that M(z) and E(·,Φ, z) are analytic in the region Re z > 0 except perhaps at

z1, · · · , zn. It is enough to establish this for the function M(z) because we can then apply Lemmas 5.2

and 5.3 to obtain the assertion for E(·,Φ, z). Suppose that either there is a sequence {zn} converging

to a point z0 of the positive real axis and a sequence {Φn} in E with ‖Φn‖ = 1 such that

{‖M(zn)Φn‖} = {νn}

is unbounded or there are two sequences {zn} and {z′n} approaching z0 and an element Φ of E such

that

lim
n→∞M(zn)Φ �= lim

n→∞M(z′n)Φ.

In the first case select a subsequence such that lim
n→∞ νn =∞ and

lim
n→∞ ν−1

n M(zn)Φn = Φ0

exists; then {E(·, ν−1
n Φn, zn)} satisfies the conditions of Lemma 5.2. In the second case

{E(·,Φ, zn)− E(·,Φ, z′n)} does; let

lim
n→∞M(zn)Φ−M(z′n)Φ = Φ0

In either case let the limit function by φ0. If P is a cuspidal subgroup not in {P} the cuspidal component

of ∫
Γ∩N\N

φ0(ng) dn

is zero. However∫
Γ∩N(i,k)\N(i,k)

φ0(ng) dn = exp
(
− 〈H(i,k)(g),H(i)(z0)〉+ ρ

(
H(i,k)(g)

))
(E(i,k)Φ0)(g)
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if E(i,k) is the projection of E on E(V (i,k),W ). By the corollary to Lemma 5.1 the function φ0 belongs

to L(Γ\G). It is clear that it belongs to L({P}, {V },W ). For each z in (0, 〈ρ, ρ〉12 ] let L(z) be the set of

all functions ψ in L({P}, {V },W ) such that∫
Γ∩N(i,k)\N(i,k)

ψ(ng) dn = exp
(
− 〈H(i,k)(g),H(i)(z)〉+ ρ

(
H(i,k)(g)

))
E(i,k)Ψ(g)

for someΨ in E. SinceΨ = 0 implies ψ = 0 the space L(z) is finite-dimensional. If Φ(z) is in H then∫
Γ\G

φ̂(g) ψ̄(g) dg =
(
Φ(z),Ψ

)
from which we conclude that ψ is the domain of A and Aψ = z2ψ. In particular L(z1) and L(z2) are

orthogonal if z1 and z2 are different. It is clear that there is a constant c which is independent of z such

that ‖Ψ‖ ≤ c‖ψ‖ for any z in (0, 〈ρ, ρ〉12 ] and all ψ in L(z). If there was a sequence {zn} in (0, 〈ρ, ρ〉 1
2 ],

converging to a point in (0, 〈ρ, ρ〉12 ], such that L(zn) �= {0} for all n it is clear that we could construct a

sequence {ψn}with ψn in L(zn) and ‖ψn‖ = 1which satisifed the hypotheses of Lemma 5.2. It would

follow from the dominated convergence theorem, applied as in the corollary to Lemma 5.1 that lim
n→∞ψn

exists in L(Γ\G). This is impossible for an orthonormal sequence. Thus the set of points for which

L(z) �= {0} is discrete in (0, 〈ρ, ρ〉 1
2 ]. If z is not in this set then M(w) is bounded on the complement

of the real axis in a neighbourhood of z and lim
w→zM(w) exists. It follows from the reflection principle

that M(z) is analytic in the right half plane except at this set of points.

We have still to exclude the possibility that the above set of points has 0 as a limit point. If it

does let {zn} be a monotone decreasing sequence of points converging to 0 with L(zn) �= {0} for all

n. Let {ψn} be a sequence of functions such that ψn belongs to L(zn) and ‖ψn‖ = 1. Let Ψn be that

element of E such that∫
Γ∩N(i,k)\N(i,k)

ψn(ng) dn = exp
(
− 〈H(i,k)(g),H(i)(zn)〉+ ρ

(
H(i,k)(g)

))
(E(i,k)Ψn)(g)

for all i and k. If Ψ′
n = ‖Ψn‖−1Ψn it may be supposed that lim

n→∞Ψ
′
n exists. To obtain a contradiction

we make use of the formulae (5.k), (5.%), and (5.m). The first and second show us that∫
Γ\G

Ψm(g) ψ̄n(g) dg =
s∑
i=1

∫
Fi

ψm(g) ψ̄n(g) +O(‖Ψm‖)

The third shows us that∫
Fi

ψm(g) ψ̄n(g) dg =
∫
Fi

ψ̂m,i(g) ψ̄n(g) dg + O(‖Ψm‖).
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The integral on the right is equal to ∫
F ′

i

ψ̂m,i
ˆ̄ψn,i(g) dg

if F ′
i is the projection of Fi on Ti\G, for we can suppose that the inverse image in ∆i\G of F ′

i is Fi. If

we then apply the estimate obtained for (5.j) we see that∫
Γ\G

ψm(g) ψ̄n(g) dg

is equal to

s∑
i=1

∫
A+

i
(u,∞)

ω2(a)
{∫

Θi\Mi×K
ψ̂m,i(amk) ˆ̄ψn,i(amk) dmdk

}
da+O(‖Ψm‖).

The only integrals on the right which are different from zero are those for which Pi belongs to

{P}. If however Pi is conjugate to P (j,�) and we suppose, for simplicity, that {P1, · · · , Ps} contains

{P (k,m)
∣∣ 1 ≤ k ≤ r, 1 ≤ m ≤ mi} the corresponding integral equals

(zm + zn)−1 exp
(− a−1(zm + zn) logu

)
(E(j,�)Ψm, E(j,�)Ψn).

The number a has been introduced in the expression (6.b). Summing we obtain

δm,n = (zm + zn)−1 exp
(− a−1(zm + zn) log u

)
(Ψm,Ψn) +O(‖Ψm‖).

Set m = n to see that lim
m→∞ ‖Ψm‖ = 0 and

1 = (2zm)−1 exp(−2a−1zm log u) ‖Ψm‖2 +O(‖Ψm‖).

Hence ‖Ψm‖ = O
(
z

1
2
m

)
; consequently if m �= n

0 = 2(znzm)
1
2 (zn + zm)−1(Ψ′

m,Ψ′
n) +O

(
z

1
2
m

)
.

If we divide by z
1
2
m and recall that lim

m,n→∞(Ψ
′
m,Ψ′

n) = 1 we conclude that z
1
2
n (zm + zn)−1 is bounded

for all m and n. But that is clearly impossible.

Let

Φ = ⊕ri=1 ⊕mi

k=1 Φi,k

belong to E and let

M(z)Φ = ⊕ri=1 ⊕mi

k=1 Φi,k(z).
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If x is given and M(z) is defined let F ′′(g,Φi,k,H(i)(z)
)

equal F
(
g,Φi,k,H(i)(z)

)
if

α(i)
(
H(i,k)(g)

) ≤ x〈α(i), α(i)〉

and let it equal −F
(
g,Φi,k(z),−H(i)(z)

)
otherwise. Observe that the notation is deceptive. The

Fourier transform of F ′′(g,Φi,kH(i)(λ)
)

evaluated at H(i)(z) is equal to

(λ− z)−1 exp
(
ax(λ− z)

)
Φi,k − (λ+ z)−1 exp

(− ax(λ+ z)
)
Ψi,k(λ).

It follows from Lemma 4.1 that the series

∑
∆(i,k)\Γ

F ′′(γg,Φi,k,H(i)(z)
)

converges for Re z > 〈ρ, ρ〉 1
2 ; denote its sum by E′′(g,Φi,k,H(i)(z)

)
. If

E′′(g,Φ, z) =
r∑
i=1

mi∑
k=1

E′′(g,Φi,kH(i)(z)
)

then Lemma 4.6, together with a simple approximation argument, shows that E′′(g,Φ, z) is square-

integrable on Γ\G for Re z > 〈ρ, ρ〉12 . We need an explicit formula for

(
E′′(g,Φ, λ), E′′(g,Ψ, µ)

)
.

If we use formula (4.p) we see that this inner product is equal to the sum of eight integrals which we

list below.

(i)
1
2πi

∫
Re z=c

(λ− z)−1(µ̄+ z)−1 exp
(
ax(λ+ µ̄)

)
(Φ,Ψ) dz

(ii)
−1
2πi

∫
Re z=c

(λ− z)−1(µ̄+ z)−1 exp
(
ax(λ− µ̄)

)
(Φ,M(µ)Ψ) dz

(iii)
−1
2πi

∫
Re z=c

(λ+ z)−1(µ̄+ z)−1 exp
(
ax(µ̄− λ)

)(
M(λ)Φ,Ψ

)
dz

(iv)
1
2πi

∫
Re z=c

(λ+ z)−1(µ̄− z)−1 exp
(− ax(λ+ µ̄)

)(
M(λ)Φ,M(µ)Ψ

)
dz

(v)
1
2πi

∫
Re z=c

(λ− z)−1(µ̄− z)−1 exp
(
ax(λ+ µ̄− 2z))(M(z)Φ,Ψ

)
dz
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(vi)
−1
2πi

∫
Re z=c

(λ− z)−1(µ̄+ z)−1 exp
(
ax(λ− µ̄− 2z))(M(z)Φ,M(µ)Ψ

)
dz

(vii)
−1
2πi

∫
Re z=c

(λ+ z)−1(µ̄− z)−1 exp
(
ax(µ̄− λ− 2z))(M(z)M(λ)Φ,Ψ

)
dz

(viii)
1
2πi

∫
Re z=c

(λ+ z)−1(µ̄+ z)−1 exp
(− ax(λ+ µ̄+ 2z)

)(
Mz)M(λ)Φ,M(µ)Ψ

)
dz

If we then make use of Lemma 4.5(i) these integrals can be evaluated when x is sufficiently large by

using the residue theorem. The result when λ+ µ̄ �= 0 and λ− µ̄ �= 0 follows.

(i) (λ+ µ̄) exp
(
ax(λ+ µ̄)

)
(Φ,Ψ)

(ii) 0

(iii) 0

(iv) (λ+ µ̄)−1 exp
(− ax(λ+ µ̄)

)(
M(λ)Φ,M(µ)Ψ)

(v) (µ̄− λ)−1 exp
(
ax(µ̄− λ)

)(
M(λ)Φ,Ψ) + (λ− µ̄)−1 exp

(
ax(λ− µ̄)

)(
Φ,M(µ)Ψ

)

(vi) −(λ+ µ̄)−1 exp
(
ax(λ+ µ̄)

)(
M(λ)Φ,M(µ)Ψ

)

(vii) −(λ+ µ̄)−1 exp
(− ax(λ+ µ̄)

)(
M(λ)Φ,M(µ)Ψ)

(viii) 0

Adding up these eight terms we see that

(
E′′(g,Φ, λ), E′′(g,Ψ, µ)

)
is equal to the sum of

(λ+ µ̄)−1
{
exp
(
ax(λ+ µ̄)

)
(Φ,Ψ)− exp (− ax(λ+ µ̄)

)(
M(λ)Φ,M(µ)Ψ)

}
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and

(λ− µ̄)−1
{
exp
(
ax(λ− µ̄)

)(
Φ,M(µ)Ψ

)− exp (ax(µ̄− λ)
)(

M(λ)Φ,Ψ
)}

.

It is known that M(z) is analytic in the right half-plane except at a finite number of points; it

can be shown in a number of ways and, in particular, will follow from the discussion below that

this is also true of E′′(·,Φ, z) considered as a function with values in L(Γ\G). The formula for(
E′′(g,Φ, λ), E′′(g,Ψ, µ)

)
is valid in this larger region. If λ = σ + iτ and µ = λ the above formula

reduces to the sum of

(2σ)−1
{
exp(2axσ)(Φ,Ψ)− exp(2axσ)(M(λ)Φ,M(λ)Ψ

)}
and

(2iτ)−1
{
exp(2iaxτ)

(
(Φ,M(λ)Ψ

)− exp(−2iaxτ)(M(λ)Φ,Ψ
)}

.

The sum will be labelled (6.i). If we choose Φ so that ‖Φ‖ = 1 and ‖M(λ)Φ‖ = ‖M(λ)‖ and then take

Φ = Ψwe can conclude that

(2σ)−1{exp(2axσ)− exp(−2axσ)} ‖M(λ)‖2 + |τ |−1 ‖M(λ)‖ ≥ 0.

As a consequence

‖M(λ)‖ ≤ max{2 exp 4axσ, 4σ/|τ | exp 2axσ}.

We conclude first of all that ‖M(λ)‖ is bounded in the neighbourhood of any point different from zero

on the imaginary axis. Let us show next that ‖E′′(·,Φ, λ)‖ is bounded in the neighbourhood of any

such point.

To be more precise we will show that E′′(·,Φ, λ) is holomorphic in any region U in which both

M(λ) and E(·,Φ, λ) are holomorphic and in which E(·,Φ, λ) satisfies the analogue of Lemma 6.2 and

that if B is a bounded set of this region on which ‖M(λ)‖ is bounded then ‖E′′(·,Φ, λ)‖ is bounded

on B. As above if Φ belongs to E let

M(z)Φ = ⊕ri=1 ⊕mi

k=1 Φi,k(z).

If x is given and M(z) is defined let F ′′′(g,Φi,k,H(i)(z)
)

equal

F
(
g,Φi,k,H(i)(z)

)
+ F

(
g,Φi,k(z),−H(i)(z)

)
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if α(i)
(
H(i,k)(g)

)
> x〈α(i), α(i)〉 and let it equal zero otherwise. Let

E′′′(g,Φi,k,H(i)(z)
)
=

∑
∆(i,k)\Γ

F ′′′(g,Φi,k,H(i)(z)
)
.

The series converges whenever it is defined. As usual let

E′′′(g,Φ, z) =
r∑
i=1

mi∑
k=1

E′′′(g,Φi,k,H(i)(z)
)
,

then

E′′(g,Φ, z) = E(g,Φ, z) − E′′′(g,Φ, z).

Consequently the function E′′(·,Φ, z) can be defined, although it may not be square integrable, when-

ever M(z) and E(·,Φ, z) are both defined. In particular it can be defined on U . We will show that if z0

is any complex number and if ‖M(z)‖ is bounded on the intersection of B with some neighbourhood

of z0 then there is another neighbourhood of z0 such that ‖E′′(·,Φ, z)‖ is finite and bounded on the

intersection of this neighbourhood with B. This will establish the second part of the assertion. To

see that the first part will also follow we observe that the above statement implies that ‖E′(·,Φ, z)‖ is

bounded on any compact subset of U ; thus we have only to prove that∫
Γ\G

E′′(g,Φ, λ) ψ̄(g) dg

is holomorphic on U if ψ is a continuous function on Γ\G with compact support. However, this

follows from the fact that if C is a compact subset of G the set {E′′(g,Φ, ·) ∣∣ g ∈ C} of functions on U

is equicontinuous. We have to show that if {zn} is any sequence of points in B converging to z0 then

the sequence {‖E′′(g,Φ, zn)‖} is bounded. Let the sets F and Fi, 1 ≤ i ≤ s, be the same as in (5.k),

(5.%), and (5.m). We suppose again that Fi is the inverse image of its projection F ′
i on Ti\G. The set

{P1, · · · , Ps} can be so chosen that it contains the set {P}; then for each j and % there is a unique i such

that P (j,�) = Pi. Let F ′′′
1

(
g,Φj,�,H(j)(z)

)
equal F ′′′(g,Φj,�H(j)(z)

)
if g belongs to Fi and let it equal

zero otherwise; let F ′′′
2

(
g,Φj,�,H(j)(z)

)
equal

F ′′′(g,Φj,�,H(j)(z)
)− F ′′′

1

(
g,Φj,�,H(j)(z)

)
.

If the sets ω
(k)
i used to define the sets Fi have been appropriately chosen, as we assume, the functions

F ′′′
2

(
g,Φj,�,H(j)(zn)

)
satisfy, uniformly in n, the conditions of the corollary to Lemma 3.6. Thus if

E′′′
2

(
g,Φj,�,H(j)(z)

)
=

∑
∆(j,	)\Γ

F ′′′
2

(
g,Φj,�,H(j)(z)

)
,
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we know that the sequence {‖E′′′
2 (·,Φj,�,H(j)(zn)‖} is bounded. Let

E′′′
1

(
g,Φj,�,H(j)(z)

)
= E′′′(g,Φj,�,H(j)(z)

)− E′′′
2

(
g,Φj,�,H(j)(z)

)
.

The function E′′′
1

(
g,Φj,�H(j)(z)

)
is zero on Γ\G− F . Thus

∫
Γ\G−F

|E′′(g,Φ, zn)|2 dg =
∫

Γ\G−F

∣∣∣E(g, φ, zn)− r∑
j=1

mj∑
�=1

E′′′
2

(
g,Φj,�,H(j)(zn)

)∣∣∣2 dg
It follows from (5.j) that the latter integrals are uniformly bounded. Moreover the integrals∫

Fi

|E′′(g,Φ, zn)|2 dg

are uniformly bounded if and only if the integrals

∫
Fi

∣∣∣E(g,Φ, zn)− r∑
j=1

mj∑
�=1

E′′′
2

(
g,Φj,�,H(j)(zn)

)∣∣∣2 dt

are. But it follows from the definition of the sets Fi that on Fi the sum

r∑
j=1

mj∑
�=1

E′′′
1

(
g,Φj,�,H(j)(zn)

)
is zero if Pi does not belong to {P} and is F ′′′(g,Φj,�,H(j)(z)

)
if Pi = P (j,�). If the number u used in

the definition of the sets Fi is sufficiently large, as we suppose, then in all cases the sum equals∫
Γ∩Ni\Ni

E(ng,Φ, zn) dn.

We can complete are argument by appealing to the estimate (5.m).

It now follows from (6.i) that

(2σ)−1
{
exp(2axσ)(Φ,Ψ)− exp(−2axσ)(M(λ)Φ,M(λΨ

)}
is bounded in the neighbourhood of any point λ0 on the imaginary axis different from zero. Hence

lim
λ→λ0

M∗(λ)M(λ) = I

or

lim
λ→λ0

M(λ̄)M(λ) = I



Chapter 6 107

since M∗(λ) = M(λ̄). Moreover if the interval [a, b] does not contain zero there is an ε > 0 such that

‖M−1(λ)‖ is bounded for 0 < σ ≤ ε and a ≤ τ ≤ b; consequently

lim
σ↘0

‖M−1(σ − iτ) −M(σ + iτ)‖ = 0.

Define M(λ) for Reλ < 0 by M(λ) = M−1(−λ). Let C be the contour consisting of the lines joining

ia− ε, ia+ ε, ib+ ε, ib− ε and then ia− ε again. It is clear that, for 0 < |σ| < ε, a < τ < b,

M(λ) =
1
2πi

∫
C

(z − λ)−1M(z) dz + lim
δ→0

1
2π

∫ b

a

{M(−δ + it)−M(δ + it)}(it− λ)−1 dt.

The final integral equals ∫ b

a

{M−1(δ − it)−M(δ + it)} dt.

So the limit is zero. This shows that the function M(λ) defined in the left half-plane is the analytic

continuation of the function M(λ) defined the right half-plane. Thus M(λ) is meromorphic except

perhaps at a finite number of points 0,±z1, · · · ,±zn in the interval [−〈ρ, ρ〉1 , 〈ρ, ρ〉 1
2 ].

Let us verify that the same is true of E(·,Φ, λ) for all Φ in E. It follows from Lemma 5.2 that

lim
σ↘0

E(g,Φ, σ + iτ) = E(g,Φ, iτ)

converges for all τ different from zero and all g and that the convergence is uniform on compact subsets

of G for each τ . If we use this fact to define E(g,Φ, z) for non-zero imaginary values of z all the

assertions of Lemma 6.2, except perhaps the first, will be valid if H(i)
0 = H(i)(z)with z imaginary and

different from zero. We define E(g,Φ, λ)whenReλ ≤ 0 by setting it equal to E
(
g,M(λ)Φ,−λ

)
. With

this definition all the assertions of Lemma 6.2, except perhaps the last, are valid if H(i)
0 = H

(i)
0 (z)with

Re z < 0 and z different from −z1, · · · ,−zn. Every assertion, except perhaps the first and last, is valid

if H(i)
0 = H(i)(z)with z imaginary and different from zero. However∫

Γ∩N(i,k)\N(i,k)
E
(
ng,M(λ)Φ,−λ

)
dn

is equal to the sum of

exp
(
〈H(i,k)(g),H(i)(−λ)〉+ ρ

(
H(i,k)(g)

))(
E(i,k)M(λ)Φ

)
(g)

and

exp
(
〈H(i,k)(g),H(i)(λ)〉+ ρ

(
H(i,k)(g)

))(
E(i,k)M(−λ)M(λ)Φ

)
(g)
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which, since M(−λ)M(λ) = I , is equal to the sum of

exp
(
〈H(i,k)(g),H(i)(λ)〉+ ρ

(
H(i,k)(g)

))
(E(i,k)Φ)(g)

and

exp
(
〈H(i,k)(g),H(i)(−λ)〉+ ρ

(
H(i,k)(g)

))(
E(i,k)M(λ) Φ(g)

)
.

Consequently the last assertion is also valid. It follows from Lemma 3.7 that the two definitions of

E(g,Φ, λ) agree when λ is imaginary and then from Lemma 5.3 that E(·,Φ, λ) is analytic at the non-zero

points on the imaginary axis.

It remains to examine the behavior of M(λ) and E(·,Φ, λ) at the points 0,±z1, · · · ,±zn. Since

we readily see from Lemma 5.2 that the behavior of E(·,Φ, λ) is at least as good as that of M(λ) we

shall only study the latter. We shall show that M(λ) is analytic at zero and has at most a simple pole

at the points z1, · · · , zn. If Φ(z) and Ψ(z) belong to H the formula (6.e) expresses the inner product

(φ̂, ψ̂) as a contour integral. We shall replace the contour of (6.e) by the sum of n + 1 other contours

C,C1, · · · , Cn. Let ε > 0 be so small that the closed discs of radius ε about 0, z1, · · · , zn are disjoint.

Let Ci, 1 ≤ i ≤ n, be the circle of radius ε about zi traversed in the positive direction; let C be the path

running from −i∞ to iε along the imaginary axis, then in the positive direction on the circle of radius

ε and centre zero to iε, and then along the imaginary axis to i∞. Our estimates of ‖M(λ)‖ are good

enough that we can replace the right side of (6.e) by the sum of

1
2πi

∫
C

(
Φ(z),Ψ(−z̄)

)
+
(
M(z) Φ(z),Ψ(z̄)

)
dz

and
n∑
i=1

1
2πi

∫
Ci

(
M(z) Φ(z),Ψ(z̄)

)
dz

This sum will be labelled (6.k). Suppose that E(·) is, in the terminology of [21], the resolution of the

identity belonging to the linear transformation A. It is well knwon ([21], Theorem 5.10) that, if b is

greater than a and c is positive,

(6.%)
1
2
{(

E(b)φ̂, ψ̂
)− (E(b− 0)φ̂, ψ̂)}− 1

2
{(

E(a)φ̂, ψ̂
)− (E(a− 0)φ̂, ψ̂)}

is given by

(6.m) lim
δ↘0

1
2πi

∫
C(a,b,c,δ)

(
R(λ,A), φ, ψ

)
dλ
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where the contour C(a, b, c, δ) consists of two polygonal paths whose vertices are in order b+ iδ, b+ ic,

a + ic, a + iδ and a − iδ, a − ic, b − ic, b − iδ respectively. Since the spectrum of A is contained in

(−∞, 〈ρ, ρ〉) we know that E(〈ρ, ρ〉) = I . Choose a and b so that b > a > 0 and so that exactly one

of the numbers z2
1 , · · · , z2

n, say z2
i , belongs to the interval [a, b]. If we use the formula (6.k) to calculate

(6.m) we find that (6.%) is equal to

(6.n)
1
2πi

∫
Ci

(
M(z) Φ(z),Ψ(z̄)

)
dz.

Since this is true for any such a and b we conclude that (6.n) is equal to E(b) − E(a). If we assume,

as we may, that M(z) is not analytic at any of the points z1, · · · , zn we see that z2
1 , · · · , z2

n are isolated

points in the spectrum of A. Consequently, for any φ and ψ in L({P}, {V },W ),

(
R(λ2, A)φ,ψ

)
has only a simple pole at z‘, · · · , zn. Referring to the discussion following (6.f) and (6.g) we see that the

same is true of M(λ).

If we again use (6.k) to calculate (6.m) we find that
(
E(x)φ,ψ

)
is continuous except at z2

1 , · · · , z2
n

and, perhaps, zero and that, if ε is positive but sufficiently small,

(
E(0)φ̂, ψ̂

)− (E(−δ2)φ̂, ψ̂
)

is equal to

(6.o)
1
2πi

∫ iε

−iε

(
Φ(z),Ψ(−z̄)

)
dz +

1
2πi

∫
C(ε)

(
M(z) Φ(z),Ψ(z̄)

)
dz

if C(ε) is the semi-circle of radius ε and centre zero transversed in the positive direction from −iε to

iε. Hence (
E(0)φ̂, ψ̂

)− (E(0− 0)φ̂, ψ̂) = lim
ε↘0

1
2πi

∫
C(ε)

(
M(z) Φ(z),Ψ(z̄)

)
dz.

The right side must be a positive definite hermitian symmetric form on H. However it is defined ifΦ(z)

and Ψ(z) are merely defined and analytic in some neighbourhood of zero. A simple approximation

argument shows that it remains positive definite on this large space of functions. Consequently, if ω(z)

is a scalar-valued function, analytic in a neighbourhood of zero,

(6.p) lim
ε↘0

1
2πi

∫
C(ε)

(
ω̄(z̄)ω(z)M(z) Φ(z),Φ(z̄)

)
dz ≥ 0.
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If δ is positive we can take ω(z) to be either (δ + z)
1
2 or (δ − z)

1
2 ; then ω̄(z̄)ω(z) is δ + z or δ − z.

Substituting in the relation (6.p) we conclude that

lim
ε↘0

1
2πi

∫
C(ε)

(
zM(z) Φ(z),Φ(z̄)

)
dz = 0

Applying Schwarz’s inequality to (6.p) we can conclude more generally that

lim
ε↘0

1
2πi

∫
C(ε)

(
zM(z) Φ(z),Ψ(z̄)

)
dz = 0

Consequently

(6.q)
(
E(0)φ̂, ψ̂

)− (E(0− 0)φ̂, ψ̂) = lim
ε↘0

1
2πi

∫
C(ε)

(
M(z) Φ(0),Ψ(0)

)
dz.

There is a linear transformation M on E such that the right side of this equation equals

M
(
Φ(0),Ψ(0)

)
.

We shall use the equation we have just found to show that E(0) = E(0 − 0). It is enough to

show that, for all functions Φ(z) in H. E(0)φ̂ = E(0 − 0)φ̂. Suppose f is a continuous function on G

with compact support such that f(kgk−1) = f(g) for all g in G and all k in K . For each H(i) in a
(i)
c

we have defined, in Section 3, a linear transformation π(f,H(i)) on E(V (i,k),W ). For each complex

number z the direct sum of the linear transformations π
(
f,H(i)(z)

)
is a linear transformation π(f, z)

on E. It follows from (4.r) that if Ψ(z) belongs to H and

Ψ1(z) = π(f, z)Ψ(z)

then λ(f)ψ̂ = ψ̂1. As a consequence λ(f) commutes with A and with E(x) for all x. Choosing f so

that π(f, 0) is the identity we deduce from (6.q) that if φ′ = E(0)φ̂ − E(0 − 0)φ̂ then λ(f)φ′ = φ′.

Hence φ′ is continuous. Referring to Lemma 4.6(i) we see that if P is a cuspidal subgroup the cuspidal

component of ∫
Γ∩N\N

φ′(ng) dn

is zero unless P is conjugate to an element of {P}. However it follows from (6.q) and the remark

following the proof of Lemma 3.7 that∫
Γ∩N(i,k)\N(i,k)

φ′(ng) dn = exp ρ
(
H(i,k)(g)

)(
E(i,k)MΦ(0)

)
(g).

If P is a percuspidal subgroup to which P (i,k) belongs and S a Siegel domain associated to P then the

left, and hence the right, side must be square integrable on S. A simple calculation shows that this is

so only if E(i,k)M Φ(0) is zero. Since i and k are arbitrary the function φ′ is identically zero.
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Now let C be the semi-circle of radius 1 and centre zero traversed in the positive direction from

−i to i. Suppose 0 < |λ| < 1 and Reλ > 0; since (6.q) vanishes and M(z) is unitary for imaginary z,

the residue theorem implies

M(λ) =
1
2πi

∫ −i

i

(z − λ)−1M(z) dz +
1
2πi

∫
C

(z − λ)−1M(z) dz

Since the right side vanishes if λ is replaced by −λ̄ we have

(6.r) M(λ) =
σ

π

∫ 1

−1

(
σ2 + (y − τ)2

)−1
M(iy) dy +

1
2πi

∫
C

{(z − λ)−1 + (z + λ̄)−1}M(z) dz

if λ = σ + iτ . We shall use this equation to show that

(6.s) lim
σ↘0, τ→0

M(σ + iτ) =M(0)

exists. Since M(0) must equal lim
τ→0

M(iτ) which is unitary and, hence, invertible we shall conclude

that there is an ε > 0 such that M(λ) and M−1(λ) are uniformly bounded on

{λ ∣∣ 0 < |λ| < ε, Reλ ≥ 0}

Consequently M(λ) is bounded in a neighbourhood of zero and zero is a removable singularity.

Let

M ′(z) =
d

dz
M(z)

It is a familiar, and easily proved, fact that (6.s) will follows from (6.r) if it is shown that lim
y→0

M(iy) =

M(0) exists and that, if N > 0, there are positive constants c′ and r′ such that ‖M ′(iy)‖ ≤ c′|y|r′−1

for 0 < |y| ≤ N . We know that, for every Φ in E, ‖E′′(·,Φ, iy)‖ is bounded on {y ∣∣ 0 < |y| ≤ N}. If in

(6.i) we replace τ by y and take the limit as σ approaches zero we find that
(
E′′(·, φ, iy), E′′(·,Ψ, iy)

)
is equal to (

M−1(iy)M ′(iy)Φ,Ψ
)− (2iy)−1

{(
M(iy)Φ,Ψ

)− (M−1(iy)Φ,Ψ)
}
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if the number x is taken to be zero. Consequently the linear transformation*

B(y) = −M−1(iy)M ′(iy)− (2iy)−1
(
M(iy)−M−1(iy)

)
is positive definite for y different from zero and is bounded on {y ∣∣ 0 < |y| ≤ N}. If we show that there

is a δ > 0 and positive constants c and r such that

‖M(iy)−M−1(iy)‖ ≤ 2cyr

if 0 < y < δ it will follow that, for some c′ and r′,

‖M ′(iy)‖ ≤ c′yr
′−1

if 0 < |y| ≤ N . We shall conclude that

lim
y↘0

M(iy) =M(0)

and

lim
y↗0

M(iy) =M−1(0)

exist and that

lim
y↘0

M(iy) = lim
y↘0

M−1(iy)

so that M(0) =M−1(0). Since

M ′(−z) =M−1(z)M ′(z)M−1(z)

we need only establish the above estimate on the interval (0,N ]. Choose b so that ‖B(y)‖ ≤ b for

0 < y ≤ N . Suppose 0 < y and suppose eiθ is an eigenvalue for M(iy) of multiplicity m. It is known

* (Added 1999) There appears to be a sign missing in the first term. Fortunately this does not affect

the argument in any serious way. The argument is an elaboration of one for the ordinary differential

equation
dθ

dy
= ± sin θ

y
+ c(y),

where c(y) is bounded. If the sign is positive and y small, then for−π < θ < π either θ hovers about 0

or is driven to ±π. Thus eiθ either hovers about 1 or is driven to −1. If the sign is negative, the roles

of 1 and −1 are reversed. The sign can be changed simply by replacing θ by θ + π. In the text the

argument is made quantitative and extended to the vector-valued function M(iy), which is analogous

to eiθ. Multiplying M by−1 changes the sign. It also replaces B by−B, but that is of no consequence.
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that if y′ is sufficiently close to y then M(iy′) has exactly m eigenvalues, counted with multiplicities,

which are close to eiθ. If

8yb ≤ | sin θ|

it is possible to obtain more precise information about the position of these m eigenvalues. Choose an

orthonormal basis Φ1, · · · ,Φn for E consisting of eigenvectors of M(iy) and let eiθ1 , · · · , eiθn be the

corresponding eigenvalues. If

Φ =
n∑
j=1

αjΦj

with
n∑
j=1

|αj |2 = 1

is a unit vector then (
M(iy)Φ,Φ

)
=

n∑
j=1

eiθj |αj |2

and (
M ′(iy)Φ,Φ

)
=

n∑
j=1

y−1 sin θje
iθj |αj |2 +

(
M(iy)B(y)Φ,Φ

)
which is equal to

n∑
j=1

(y−1 sin θjeiθj + β)|αj |2

if

β =
(
M(iy)B(y)Φ,Φ

)
Certainly |β| ≤ b. It follows from the first formula that

(
M(iy)Φ,Φ

)
lies in the convex hull of the

eigenvalues of M(iy); a similar assertion is of course valid for any unitary transformation. For any

positive y′ (
M(iy′)Φ,Φ

)
=

n∑
j=1

eiθj |αj |2 + i

∫ y′

y

(
M ′(is)Φ,Φ

)
ds

Let t = y′ − y and suppose |t| is so small that ‖M ′(is)−M ′(iy)‖ ≤ b if |s− y| ≤ |t|; then

(
M(iy′)Φ,Φ

)
=

n∑
j=1

eiθj
(
1− ity−1 sin θj − β(t)

) |αj |2
with |β(t)| ≤ 2bt. Set

vj(t) = ∓ty−1 sin θj ± iβ(t)



Chapter 6 114

and set

uj(t) = eiθj
(
1∓ ivj(t)

)
The upper or lower sign is taken according as sin θj ≥ 0 or sin θj < 0. The number vj(t) equals

(∓ty−1 sin θj + 8bt) +
(− 8bt± iβ(t)

)
If t < 0 and 8yb ≤ | sin θj | the second term lies in the sector

{
z
∣∣ | arg z| ≤ π

4

}
and the first term is

positive.

Suppose eiθ is an eigenvalue of M(iy) of multiplicity m and 8yb ≤ | sin θ|; we shall show that if

y′ is less than but sufficiently close to y the m eigenvalues of M(iy′) which are close to eiθ then lie in

X(t) =
{
eiθ
(
1∓ i(∓ty−1 sin θ + 8tb+ z)

) ∣∣ | arg z| ≤ π

3
}

Again the upper or the lower sign is taken according as sin θ ≥ 0 or sin θ < 0. This will follow if it is

shown that for some ε with 0 ≤ ε < π
12

these eigenvalues lie in

Y (t) =
{
eiθ
(
1∓ i(∓ty−1 sin θ + 8tb+ z)

) ∣∣ − π

2
± π

4
∓ ε ≤ arg z ≤ π

2
± π

4
∓ ε
}

The set e−iθX(t) is the shaded sector of the diagram below, and e−iθY (t) is the shaded half-plane

θ 0≥sin

π
4

π
6− ε >

1

Choose ε so that the boundary of Y (0) contains no eigenvalues of M(iy) except eiθ. We establish

the assertion by showing that if Y (0) contains % eigenvalues of M(iy) then Y (t) contains % eigenvalues

of M(iy + it) when t is negative but sufficiently close to 0. Let eiθ1 , · · · , eiθ	 be the % eigenvalues of

M(iy)which lie in Y (0). If

Φ =
�∑
j=1

αjΦj

is a unit vector then (
M(iy + it)Φ,Φ

)
=

�∑
j=1

uj(t) |αj |2
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If 1 ≤ j ≤ % and eiθj �= eiθ then, for |t| sufficiently small, uj(t) lies in Y (t) simply because it is

close to eiθj . If eiθj = eiθ the calculations above show that uj(t) lies in Y (t). Since the set is convex(
M(iy + it)Φ,Φ

)
does also. If the assertion were false we could choose Φ to be a linear combination

of eigenvectors of M(iY + it) belonging to eigenvalues lying in the complement of Y (t), and thereby

force
(
M(iy + it)Φ,Φ

)
to lie in the complement. This is a contradiction.

A glance at the diagram allows us to infer that if eiθ
′

is an eigenvalue of M(iy′) lying close to eiθ

then

(6.t)± (θ − θ′) ≥ ± sin(θ − θ′) ≥ (y − y′)(y−1| sin θ| − 8b)

provided of course that θ′ is chosen near θ. We readily deduce that if −1 < a < 1 there is an ε > 0

such that the number of eigenvalues which lie on the arc

V (y) = {eiθ ∣∣ | sin θ| < 8yb, cos θ < 0}

and the number of eigenvalues which lie on the arc {eiθ ∣∣ cos θ < a} are non-decreasing functions

on (0, ε). Indeed we can find ε and a such that these functions are equal and constant on (0, ε). For

example at a point y at which one of the eigenvalues θ = θ(y) enters or leaves V (y)we have

| sin θ| = 8yb

Hence (6.t) holds. Moreover if y′ is close to y but less than it then

−8y′b+ | sin θ′| = (8yb− | sin θ|)− (8y′b− | sin θ′|) = (y − y′)
{
8b∓ θ − θ′

y − y′
cos θ′′

}
with θ′′ close to θ. Since cos θ′′ < 0 the right hand side is greater than or equal to 8b(y− y′). It follows

that

8y′b− | sin θ′| < 0

so that V (y) has more elements than V (y′).

We next observe that the eigenvalues of M(iy) which do not lie on V (y) must all approach 1.

Suppose they did not. From all the eigenvalues eiθ of M(iy) which lie outside of V (y) choose one

eiθ(y), with 0 ≤ | − θ(y)| ≤ π, for which cos θ is a minimum and set a(y) = cos θ(y); then a(y) ≥ a.

If liminf
y→0

a(y) �= 1 then there is an a′ < 1 such that a(y) ≤ a′ for all sufficiently small y. Consequently

there is a constant c′ such that

|y−1 sin θ(y)| − 8b ≥ c′y−1
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for all sufficiently small y. It then follows from (6.t) that, for y′ less than but sufficiently close to y,

|θ(y)| − |θ(y′)| ≥ c′y−1(y − y′).

Hence, for all y′ ≤ y,

|θ(y)| − |θ(y′)| ≥ 1
2
c′ log y/y′

which is a patent impossibility. Choose δ > 0 so that | sin θ(δ)| ≤ 1
2

, cos θ(δ) ≥ 1
2

, and 32bδ < 1.

Let r = 1/5 and choose c so that cδr = 1. We shall show that if 0 < y ≤ δ then | sin θ(y)| ≤ cyr.

If δ < ε < 1, c ≥ 8b, as we may suppose, we can combine this with our earlier assertion to see that

‖M(iy)−M−1(iy)‖ ≤ 2cyr on the interval (0, δ]. If the assertion is false for some number y′ let y be

the least upper bound of the numbers for which it is false. It is true for y and | sin θ(y)| = cyr. If y′ is

less than, but sufficiently close to, y then

| sin θ(y)| − | sin θ(y′)| ≥ 1
2
(|θ(y)| − |θ(y′)|) ≥ 1

2
(y − y′)(cyr−1 − 8b).

Since

cyr−1 =
1
2
δ−ryr−1 ≥ 1

2
δ−1 > 16b,

we see that

| sin θ(y′)| ≤ cyr − 1
4
cyr−1(y − y′)

However, for y′ sufficiently close to y,

yr − 1
4
yr−1(y − y′) ≤ (y′)r,

so that

| sin θ(y′)| ≤ c(y′)r.

This is a contradiction.

We turn now to the proof of Lemmas 6.1 and 6.2 for families of cuspidal subgroups of rank

greater than one. Let a(i) be one of a(1), · · · , a(r). If α(i)
�, is a simple root of a(i) let

a
(i)
� = {H ∈ a(i)

∣∣α(i)
� (H) = 0}.

If we fix i and % then, as was remarked before stating Lemma 2.13, there is a unique j such that a(j)

contains a
(i)
� and such that Ω(a(i), a(j)) contains an element s such that α(i)

m, ◦ s−1 is a positive root of
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a(j) if and only if m �= %. We first show that if Φ belongs to E(i) then E(g,Φ,H) is meromorphic on the

convex hull of A(i) and s−1A(j) and, on this set

E
(
g,M(s,H)Φ, sH

)
= E(g,Φ,H).

For each k there is a unique cuspidal subgroup ∗P (i,k) belonging to P (i,k) which has the split component

a
(i)
� . We define ∗P (j,k) in the same manner. There is no harm in supposing that the elements of {P}

have been so chosen that if ∗P (i,k1) and ∗P (i,k2) or ∗P (j,k2) are conjugate they are equal. Choose ∗P in

{∗P (i,k)
∣∣ 1 ≤ k ≤ mi} = {∗P (j,k)

∣∣ 1 ≤ k ≤ mj}

and suppose ∗P = ∗P (i,k) for 1 ≤ k ≤ m′
i and ∗P = ∗P (j,k) for 1 ≤ k ≤ m′

j . Let

†E(i) = ⊕m′
i

k=1E(V
(i,k) ×W,W ∗)

and let
†E(j) = ⊕m

′
j

k=1E(V
(i,k) ×W,W ∗).

According to the remarks preceding Lemma 3.5 we can identify

⊕mi

k=1E(V
(i,k),W )

or

⊕m
′
j

k=1E(V
(j,k),W )

with the space of functions in †E(i) or †E(j) respectively which are invariant under right translations

by elements of ∗K0. If H belongs to a
(i)
c let H = ∗H + †H with ∗H in the complexification of a

(i)
� and

†H orthogonal to a
(i)
� . The restriction of M(s,H) to

⊕m′
i

k=1E(V
(i,k),W )

depends only on †H and agrees with the restriction to this space of a linear transformation on †E(i)

which, using a notation suggested by that of Lemma 4.5(ii), we call M(†s, †H). If Φ belongs to

⊕mi

k=1E(V
(i,k),W )

then M(s,H)Φ belongs to

⊕m
′
j

k=1E(V
(j,k),W ).
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It is enough to show that for each ∗P and each Φ in

⊕m′
i

k=1E(V
(i,k),W )

the function E(g,Φ,H) is meromorphic on the convex hull of A(i) and s−1A(j) and

E
(
g,M(†s, †H)Φ, sH) = E(g,Φ,H).

If

Φ = ⊕m′
i

k=1Φk

then

E(g,Φ,H) =
m′

i∑
k=1

E(g,Φk,H)

and if H belongs to A(i) then

(6.u) E(g,Φk,H) =
∑
∗∆\Γ

∑
∆(i,k)\∗∆

exp
(
〈H(i,k)(δγg),H〉+ ρ

(
H(i,k)(δγg)

))
Φk(δγg).

If g is in G let g = namk−1 with n in ∗N , a in ∗A, m in ∗M , and k in K ; then

∑
∆(i,k)\∗∆

exp
(
〈H(i,k)(δg),H〉+ ρ

(
H(i,k)(δg)

))
Φk(δg)

is equal to

exp
(
〈∗H(g), ∗H〉+ ρ

(∗H(g))) ∑
†∆(i,k)\∗Θ

exp
(
〈†H(i,k)(θm), †H〉+ ρ

(†H(θm)))Φk(θm, k)

if
†P (i,k) = ∗N\P (i,k) ∩ ∗S

and
†∆(i,k) = ∗Θ ∩ †P (i,k)

The sum on the right is, essentially, the Eisenstein series E
(
(m,k),Φk, †H

)
associated to the function

Φk, considered as an element of E(V (i,k) ×W,W ∗), and the cuspidal subgroup †P (i,k) ×K . It is not

quite this Eisenstein series because the Killing form on ∗m is not the restriction to ∗m of the Killing form

on g. We ignore this difficulty. It is a function on ∗Θ × {1}\∗M × K which is invariant under right
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translations by elements of ∗K0 and can thus be considered a function on ∗T\G which we write as

E(g,Φk, †H). The right side of (6.u) equals

∑
∗∆\Γ

exp
(
〈∗H(γg), ∗H〉+ ρ

(∗H(γg)))E(γg,Φk, †H).
Consequently

(6.v) E(g,Φ,H) =
∑
∗∆\Γ

exp
(
〈∗H(γg), ∗H〉+ ρ

(∗H(γg)))E(γg,Φ, †H)
if, for all g,

E(g,Φ, †H) =
m′

i∑
k=1

E(g,Φk, †H)

A similar result is valid if i is replaced by j. The cuspidal subgroups

†P (i,k) ×K, 1 ≤ k ≤ m′
i

have a common split component †a(i) of dimension one. Since Lemmas 6.1 and 6.2 are valid for families

of cuspidal subgroups of rank one E(·,Φ,†H) is meromorphic on †a(i) and

E(·,Φ, †H) = E
(·,M(†s, †H)Φ, †H)

Let †S be a Siegel domain associated to a percuspidal subgroup †P of ∗M . If U is a bounded subset

of †a(i) let p(†H) be a polynomial such that p(†H)M(†s, †H) is analytic on U . It follows readily from

Lemmas 5.2 and 6.2 that there is a constant c such that, for all m in S, all k in K , and all †H in U ,

∣∣p(†H)E((m,k),Φ, †H)∣∣
is at most

c
{
exp
(〈†H(m),Re †H〉)+ exp (〈†H(m), †s(Re †H)〉)} exp ρ(†H(i)(m)

)
.

†H(m) belongs, of course, to †h the split component of †P and its projection on †a(i) is †H(i)(m). The

remarks following the proof of Lemma 4.1 imply that (6.v) converges absolutely if H is in the convex

hull of A(i) and s−1A(j) and M(†s, ·) is analytic at †H , that E(·,Φ,H) is meromorphic on this set,

and that every assertion of Lemma 6.2 except perhaps the last is true if H(i)
0 belongs to this set. Since

sH = ∗H + †s(†H) the relation

E(g,Φ,H) = E
(
g,M(s,H)Φ,H

)
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is immediate. It is however the last assertion of Lemma 6.2 which is of importance to us.

LetΦ belong to E(i) and let P (h,�) belong to {P}. Fix a split compoment, which we still call a(h),

of P (h,�) and let X belong to a(h), m to M (h,�), and k to K . If H belongs to A(i) then∫
Γ∩N(h,	)\N(h,	)

E(n expXmk,Φ,H) dn

is equal to ∑
t∈Ω(a(i),a(j))

exp
(〈X, tH〉+ ρ(X)

)(
E(h,�)M(t,H)Φ

)
(mk)

if E(h,�) is the projection of E(h) on E(V (h,�),W ). If t1, · · · , tn are the elements of Ω(a(i), a(j)) there

are elements X1, · · · ,Xn of a(h) such that det
(
exp
(〈Xx, tyH〉+ ρ(Xx)

))
does not vanish identically.

The inverse,
(
axy(H)

)
, of the matrix

(
exp
(〈Xx, tyH〉 + ρ(Xx)

))
is a meromorphic function on a(i)

and
(
E(h,�)M(tx,H)Φ

)
(m,k) is equal to

n∑
y=1

axy(H)
∫

Γ∩N(h,	)\N(h,	)
E(n expXymk,Φ,H) dn

which is meromorphic on the convex hull of A(i) and s−1A(j). Since m and k are arbitrary this is also

true of E(h,�)M(t,H) and hence of M(t,H) for any t. Moreover∫
Γ∩N(h,	)\N(h,	)

E(ng,Φ,H) dn

is equal to ∑
t∈Ω(a(i),a(h))

exp
(
〈H(h,�)(g), tH〉+ ρ

(
H(h,�)(g)

))(
E(h,�)M(t,H)Φ

)
(g)

at those points of the convex hull where both sides are defined. A similar result is of course valid if i

is replaced by j. Use this together with the functional equation we have discovered to see that the left

side of this equation also equals

∑
t∈Ω(a(j),a(h))

exp
(
〈H(h,�)(g), tsH〉+ ρ

(
H(h,�)(g)

))(
E(h,�)M(t, sH)M(s,H)Φ

)
(g).

This is so for every % only if

M(t, sH)M(s,H) =M(ts,H).

If i and j are arbitrary and s is any element of Ω(a(i), a(j)) then, according the the first corollary

to Lemma 2.13, s can be written as a product of reflections, say s = sn · · · s1. Let us show by induction
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on n that M(s,H(i)) is meromorphic on a(i) and that its singularities lie along hyperplanes. If n = 1

then the discussion above, together with the remarks following the proof of Lemma 4.5(ii), shows that

M(s,H(i)) depends, apart from an exponential factor, on only one variable and is a meromorphic

function on a(i). On the set A(i)

M(s,H(i)) =M(sn · · · s2, s1H
(i))M(s1,H

(i))

The induction assumption implies that M(s,H(i)) is meromorphic on all of a(i) and that its singularities

lie along hyperplanes. It can also be shown by induction that if t belongs to Ω(a(j), a(k)) then

M(ts,H(i)) =M(t, sH(i))M(s,H(i)).

Indeed

M(ts,H(i)) =M(tsn · · · s1,H
(i)) =M(tsn · · · s2, s1H

(i))M(s1,H
(i)).

Apply the induction assumption to the first factor to see that M(ts,H(i)) equals

M(t, sH(i))M(sn · · · s2, s1H
(i))M(s1,H

(i)) =M(t, sH(i))M(s,H(i)).

There is one more property of the functions M(s,H(i)) which will be needed to complete the proof

of Lemma 6.1. If, as above, s is in Ω(a(i), a(j)), choose sn, · · · , s1 so that s = sn · · · s1 and so that

if tk = sk−1 · · · s1, 2 ≤ k ≤ n, and sk lies in Ω(a(ik), a(jk)) and belongs to the simple root αk, then

tk
(
(a(i))+

)
is contained in

{H ∈ a(ik)
∣∣αk,(H) > 0}.

Then

(6.w) M(s,H(i)) =M(sn, tnH(i)) · · ·M(s2, t1H
(i))M(s1,H

(i)).

But there are only a finite number of singular hyperplanes of M(sk,H) which intersect the closure of

{H ∈ a(ik)
c

∣∣ Reαk,(H) > 0}.

Consequently there are only a finite number of singular hyperplanes of M(s,H(i))which intersect the

closure of the tube over (a(i))+.

For each i, 1 ≤ i ≤ r, there are a finite number of points Z
(i)
1 , · · · , Z(i)

ni in the orthogonal

complement of a
(i)
c in jc such that for any X in Z, the centre of the universal enveloping algebra of g,
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for any H(i) in a(i), and for 1 ≤ k ≤ mi, the eigenvalues of π(X,H(i)), the linear transformation on

E(V (i,k),W ) defined in Section 4, belong to the set

{PX(H(i) + Z
(i)
1 ), · · · , PX(H(i) + Z(i)

ni
)}.

There is certainly a polynomial p in Z such that

p(H(i) + Z
(i)
k ) = 0, 1 ≤ k ≤ ni,

if, for some s, H(i) in a
(i)
c belongs to a singular hyperplane of M(s, ·) which intersects the closure of

the tube over (a(i))+, but such that p(H(i) + Z
(i)
k ) does not vanish identically on a

(i)
c for any choice of

i and k. Thus there is an X in Z such that for all i, all j, and all s in Ω(a(i), a(j)) the function

M(s,H(i))π(X,H(i))

is analytic on the closure of the tube over (a(i))+ but not identically zero. Let f be an infinitely

differentable function G such that f(kgk−1) = f(g) for all g and all k and such that the determinant

of the linear transformation π(f,H(i)) on E(i) vanishes identically for no i. Set f0 = λ′(X)f ; then

π(f0,H
(i)) = π(X,H(i))π(f,H(i)) and its determinant does not vanish identically. If S is a Siegel

domain associated to a percuspidal subgroup then for each g in S define E′(h,Φi,H(i)) as in the

beginning of this section. According to (4.r) and (6.b) the inner product of λ(f0)E′(·,Φi,H(i)
1 ) and

λ(f0)E′(·,Ψj ,H(j)
2 ) is equal to

∑
s∈Ω(a(i),a(j))

a2

(2π)q

∫
ReH(i)=Y (i)

(
M(s,H(i))π(f0,H

(i))Φ, π(f0,−sH̄(i))Ψj
)
ξ(s,H(i)) |dH(i)|

with

ξ(s,H(i)) = exp〈X(g),H(i)
1 + H̄

(j)
2 −H(i) + sH(i)〉

{ q∏
k=1

α
(i)
k, (H

(i)
1 −H(i))α(j)

k, (H̄
(j)
2 + sH(i))

}
If the relation (6.w) is combined with the estimates obtained for the function M(z) of Lemma 6.3 when

Re z ≥ 0 it is seen that in this integral Y (i) can be replaced by 0. Consequently the expression is an

analytic function of (H(i)
1 ,H

(j)
2 ) on the Cartesian product of the tubes over (a(i))+ and (a(j))+. Ap-

plying an argument similar to that used in the case of a single variable we see that λ(f0)E′(·,Φi,H(i))

is an analytic function on the tube over (a(i))+ with values in L(Γ\G). The estimate of (6.d) is a

manifest consequence of the above expression for the inner product. We conclude that E(·, φi,H(i)) is

meromorphic on the tube over (a(i))+ and that Lemma 6.2 is true if H(i)
0 is in this set. If H(i) lies on the
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boundary of this set and if, for every h and all t inΩ(a(i), a(j)), M(t, ·) is analytic at H(i) then, applying

Lemma 5.2, we define E(·,Φ,H(i)) by continuity. Suppose W is a Weyl chamber of a(i). Choose the

unique j and the unique s in Ω(a(i), a(j)) such that sW = (a(j))+ and if H(i) is in the closure of the

tube over W set

E(·,Φi,H(i)) = E
(·,M(s,H(i))Φi, sH(i))

when the right side is defined. Then∫
Γ∩N(h,	)\N(h,	)

E(ng,Φi,H(i)) dn

is equal to

∑
t∈Ω(a(j),a(h))

exp
(
〈H(h,�)(g), tsH(i)〉+ ρ

(
H(h,�)(g)

))(
E(h,�)M(t, sH(i))M(s,H(i))Φi

)
(g).

Since the cuspidal component of ∫
Γ∩N\N

E(ng,Φi,H(i)) dn

is zero if P is not conjugate to an element of {P} and since E(·,Φi,H(i)) has the proper rate of growth

on Siegel domains it follows from Lemma 5.2 that E(·,Φi, ·) can be defined at H(i) in the closure of W

if, for all h and all t in Ω(a(i), a(h)), M(t, ·) is analytic at H(i). However a given point H(i) at which

all functions M(t, ·) are analytic may lie in the closure of more than one Weyl chamber so that it is not

clear that we have defined E(·,Φ,H(i)) unambiguously; but to see that we have, it is sufficient to refer

to Lemma 3.7. Lemma 5.3 implies that E(·,Φi,H(i)) is meromorphic on a
(i)
c and that the first assertion

of Lemma 6.2 is valid. It remains to verify the functional equations. Appealing again to Lemma 3.7 we

see that it is enough to show that for all j, all s in Ω(a(i), a(j)), and for 1 ≤ h ≤ r, 1 ≤ % ≤ mh,∫
Γ∩N(h,	)\N(h,	)

E(ng,Φi,H(i)) dn =
∫

Γ∩N(h,	)\N(h,	)
E
(
ng,M(s,H(i))Φi, sH(i)

)
dn.

The left side has just been calculated; the right side is

∑
t∈Ω(a(j),a(h))

exp
(
〈H(h,�)(g), tsH(i)〉+ ρ

(
H(h,�)(g)

))(
E(h,�)M(t, sH(i))M(s,H(i))Φi

)
(g).

Since

M(t, sH(i))M(s,H(i)) =M(ts,H(i))

they are equal.



Chapter 7 124

7. The main theorem.

As was stressed in the introduction the central problem of this paper is to obtain a spectral

decomposition for L(Γ\G) with respect to the action of G. Referring to Lemma 4.6 we see that it is

enough to obtain a spectral decomposition for each of the spaces L({P}, {V },W ) with respect to the

action of C(W,W ). If q is the rank of the elements of {P} it will be seen that L({P}, {V },W ) is the

direct sum of q + 1 invariant and mutually orthogonal subspaces

Lm({P}, {V },W ), 0 ≤ m ≤ q,

and that, in a sense which will become clear later, the spectrum C(W,W ) in Lm({P}, {V },W ) is

of dimension m. The spectral decomposition of Lq({P}, {V },W ) will be effected by means of the

Eisenstein series discussed in Section 6, the Eisenstein series associated to cusp forms. The spectral

decomposition of Lm({P}, {V },W ), m < q, is effected by means of the Eisenstein series in m-variables

which are residues of the Eisenstein series in q variables associated to cusp forms. More precisely the

series in m-variables are residues of the series in m + 1 variables. In any case they are by definition

meromorphic functions and it will be proved that they must satisfy functional equations similar to

those of Lemma 6.1. It will also be shown that there are relations between the functions defined by

Eisenstein series and certain other functions that arise in the process of taking residues but cannot

be defined directly. It will be apparent, a posteriori, that the Eisenstein series described above are

precisely those of Lemma 4.1.

It will be easy to define the space Lq({P}, {V },W ); the other spaces Lm({P}, {V },W ), m < q

will be defined by induction. Although the spaces Lm({P}, {V },W ) can be shown, a posteriori, to

be unique it is, unfortunately, necessary to define them by means of objects which are definitely not

unique. Since the induction on m must be supplemented by an induction similar to that of the last

section this lack of uniqueness will cause us trouble if we do not take the precaution of providing at

each step the necessary material for the supplementary induction. To do this it is best to let {P} denote

a full class of associate cuspidal subgroups rather than a set of representatives for the conjugacy classes

in an equivalence class. Then L({P}, {V },W ) is just the closure of the space of functions spanned by

the functions

φ̂(g) =
∑
∆\Γ

φ(γg)

where for some P in {P}, φ belongs to D(V,W ). Suppose ∗P is a cuspidal subgroup belonging to some

element P of {P}. The space D(V ⊗W,W ∗) of functions on †T ×{1}\∗M ×K has been defined; it can
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be regarded as a space of functions on ∗AT × {1}\∗P ×K . The subspace D(V ⊗W,W ∗) consisting of

those functions φ such that φ(p1, k1) = φ(p2, k2)when p1 and p2 belong to ∗P , k1 and k2 belong to K ,

and p1k
−1
1 = p2k

−1
2 can be regarded as a space of functions on ∗AT\G. It will be called ∗D(V,W ). Then

∗L({P}, {V },W ) will be the closure, in L(∗Θ × {1}\∗M × K), of the space of functions on ∗A∗T\G
spanned by functions of the form

φ̂(g) =
∑

∆\∗∆

φ(γg)

where, for some P in ∗{P}, the set of elements in {P} to which ∗P belongs, φ belongs to ∗D(V,W ). If

a(1), · · · , a(r) are as before the distinct split components of the elements of {P} we let ∗{P}(i) be the

set of elements in ∗{P} with the split component a(i). {P}(i) is defined in a similar fashion. Suppose

P belongs to ∗{P}(i) and †a(i) is the orthogonal complement of ∗a in a(i). Let ∗H(V,W ) be the set of all

functions Φ(·)with values in C(V,W )which are defined and analytic on

{H ∈ †a(i)
c

∣∣ ‖ReH‖ < R}

and are such that, if p is any polynomial, ‖p(ImH) Φ(H)‖ is bounded on this set. R is the number

introduced at the end of Section 4 and ‖ReH‖ is the norm of ReH in a(i). If we are to use these

new spaces effectively we have to realize that all of the facts proved earlier have analogues for these

new types of spaces. Since the proof generally consists merely of regarding functions on ∗N∗A\G as

functions on ∗M ×K we will use the analogues without comment. In particular the analogue of the

operator A on L({P}, {V },W ) is defined on ∗L({P}, {V },W ); it will also be called A.

Since the entire discussion concerns one family {P}, one family {V }, and one space W we fix the

three of them immediatley and start by introducing some simple notions. Let a = a(i) with 1 ≤ i ≤ r.

If s is a complex affine subspace of ac defined by equations of the form α(H) = µ where α is a positive

root of a and µ is a complex number then s = X(s) + s̃ where s̃ is a complex subspace of ac defined

by real linear equations which contains zero and X(s) is orthogonal to s̃. Let S(s) be the symmetric

algebra over the orthogonal complement of s̃. Suppose ∗a is a distinguished subspace of a and suppose

s̃ contains ∗s. If †a is the orthogonal complement of ∗a in a there is a unique isomorphism Z → D(Z)

of S(s)with a subalgebra of the algebra of holomorphic differential operators on†ac such that

D(Y ) f(H) =
df

dt
(H + tY )

∣∣
t=0
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if Y belongs to the orthogonal complement of s̃. If E is a finite dimensional unitary space and if Φ(·) is

a function with values in E which is defined and analytic in a neighbourhood of the point H in†ac let

dΦ(H) be that element of L
(
S(s),E

)
, the space of linear transformations from S(s) to E, defined by

dΦ(H)(Z) = D(Z) Φ(H)

L
(
S(s),E

)
can be identified with the space of formal power series over the orthogonal complement of

s̃ with coefficients in E and we obtain dΦ(H) by expanding the function

ΦH(Y ) = Φ(H + Y )

about the origin. If f(·) is a function with values in the space of linear transformations form E to E′

which is defined and analytic in a neighbourhood of H we can regard df(H) as a power series; if F

belongs to L
(
S(s),E

)
the product df(H)F is defined and belongs to L

(
S(s),E′). There is a unique

conjugate linear isomorphism Z → Z∗ of S(s) with itself such that Y ∗ = −Ȳ if Y belongs to the

orthogonal complement of s̃ and there is a unique function (T,F ) on

S(s)⊗ E× L
(
S(s),E

)
which is linear in the first variable and conjugate linear in the second and such that

(Z ⊗ Φ, F ) = (Φ, F (Z∗)
)

if Z is in S(s), Φ is in E, and F is in L
(
S(s),E

)
. It is easily seen that if Λ is any linear function on

S(s) ⊗ E there is an F in L
(
S(s),E

)
such that Λ(T ) = (T,F ) for all T in S(s) ⊗ E. If we define the

order of F , denoted O(F ), to be the degree of the term of lowest degree which actually occurs in the

power series expansion of F and if we say that a linear transformation N from L
(
S(s),E

)
to some

other vector space is of finite degree n if NF = 0 when O(F ) is greater than n and if NF �= 0 for

some F of order n then a linear function Λ on L
(
S(s),E

)
is of finite degree if and only if there is a T

in S(s)⊗ E such that Λ(F ) is the complex conjugate of (T,F ) for all F . In particular if t is a subspace

of a(j) defined by linear equations of the form α(H) = µ where α is a positive root of a(j) and µ is

a complex number, if E′ is another unitary space, and if N is a linear transformation from L
(
S(s),E

)
to S(t) ⊗ E′ which is of finite degree, there is a unique linear transformation N∗ from L

(
S(t),E′) to

S(s)⊗E such that (NF,F ′) is the complex conjugate of (N∗F ′, F ) for all F and F ′ and N∗ is of finite

degree.
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There is a unique isomorphism Z → pZ of S(s)with a subalgebra of the algebra of polynomials

on †ac such that pY (H) = 〈H,Y 〉 if Y belongs to the orthogonal complement of s̃. If P belongs to

{P}(i), V is the corresponding element of {V }, and ∗P is the cuspidal subgroup with split component

∗a belonging to P and if ∗A is a split component of ∗P there is a unique map of S(s)⊗E(V,W ) into the

space of functions on ∗AT\G such that the image of Z⊗Φ is pZ
(†(H(g))Φ(g) if †H(g) is the projection

of H(g) on †a. We denote the image of T by T (·). If ψ(g) belongs to ∗D(V,W ) then we can represent

ψ(g) as a Fourier transform

ψ(g) =
1

(2πi)p

∫
ReH=0

exp
(
〈†H(g),H〉+ ρ

(†H(g)))Ψ(g,H) |dH|
whereΨ(·) is a holomorphic function on †ac with values in E(V,W ) and ψ(g,H) is the value ofΨ(H)

at g, and p is the dimension of †a. We shall need the formula

(7.a)
(
T, dΨ(−H̄)

)
=
∫
†T\∗M×K

exp
(
〈†H(m),H〉 + ρ

(†H(m)))T (m) ψ̄(m) dmdk

for H in †ac and T in S(s) ⊗ E(V,W ). We need only verify it for T = Z ⊗ Φ. If Y belongs to †a then

the function ψ(expY mk) on M ×K belongs to E(V,W ); call it Ψ′(Y ). Then

Ψ(H) =
∫
†a

exp
(− 〈Y,H〉 − ρ(Y )

)
Ψ′(Y ) |dY |.

Consequently

D(Z∗)Ψ(H) =
∫
†a

exp
(− 〈Y,H〉 − ρ(Y )

)
pZ∗(−Y )Ψ′(Y ) |dY |.

Since the complex conjugate of pZ∗(−Y ) is pZ(Y ),

(
Φ,D(Z∗)Ψ(−H̄)

)
is equal to∫

†a

ω2(a) da
∫

Θ\M
dm

∫
K

dk
{
exp
(〈Y,H〉+ ρ(Y )

)
pZ(Y ) Φ(mk) ψ̄(expYmk)

}
or ∫

†T\∗M×K
exp
(
〈†H(m),H〉+ ρ

(†H(m)))(Z ⊗ Φ)(mk) ψ̄(mk) dmdk.

Suppose that t is contained in S and is also defined by equations of the form α(H) = µ where α

is a positive root and µ is a complex number. There are a number of simple relations between S(s) and
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S(t) which we state now although they are not needed till later. Let S0(t) be the symmetric algebra

over the orthogonal complement of t in s; then S(t) is isomorphic in a natural manner to S0(t)⊗ S(s).

If F belongs to L
(
S(t),E

)
and X0 belongs to S0(t) let X0 ∨ F be that element of L

(
S(s),E

)
such that

(X0 ∨ F )(X) = F (X0 ⊗X).

It is clear that S(t)⊗ E is isomorphic to S0(t)⊗
(
S(s)⊗ E

)
and that if T belongs to S(s)⊗ E then

(T,X0 ∨ F ) = (X∗
0 ⊗ T,F ).

If F (·) is a function defined in a neighbourhood of a point H in †a with values in L
(
S(s),E

)
such that

F (·)(X) is analytic at H for all X in S(s)we let dF (H) be that element of L
(
S(t),E

)
such that

dF (H)(X0 ⊗X) = D(X0)
(
F (H)(X)

)
.

It is clear that

d(dΦ)(H) = dΦ(H).

There is one more definition to make before we can begin to prove anything. Let s be a subspace

of a(i) as above and suppose that if ∗P is any cuspidal subgroup belonging to an element of {P}whose

split component ∗a is contained in s̃ and P is any element of ∗{P}(i) there is given a function E(g, F,H)

on
∗A∗T\G× L

(
S(s),E(V,W )

)× †s.
Here †s is the projection of s on the orthogonal complement of ∗a. The space s together with this

collection of functions will be called an Eisenstein system belonging to s if the functions E(·, ·, ·) do not

all vanish identically and the following conditions are satisifed.

(i) Suppose ∗P and a P in ∗{P}(i) are given. For each g in G and each F in L
(
S(s),E(V,W )

)
the function E(g, F,H) on †s is meromorphic. Moreover if H0 is any point of †s there is a polynomial

p(H) which is a product of linear polynomials α(H) − µ, where α is a positive root of †a and µ is

a complex number, and which does not vanish identically on †s and a neighbourhood U of H0 such

that p(H)E(g, F,H) is, for all F in L
(
S(s),E(V,W )

)
, a continuous function on ∗AT\G × U which

is analytic on U for each fixed g and such that if S0 is a Siegel domain associated to a percuspidal

subgroup P0 of ∗M and F belongs to L
(
S(s),E(V,w)

)
there are constants c and b such that

|p(H)E(mk,F,H)| ≤ c ηb
(
a0(m)

)
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for all m in S0, k in K , and all H in U . The function E(g, F,H) is for each g and H a linear function

of F and there is an integer n such that E(g, F,H) vanishes for all g and H if the order of F is greater

than n.

(ii) If ∗a is a distinguished subspace of a(i) which is contained in s̃ and if a(j) contains ∗a

let †Ω(j)(s) be the set of distinct linear transformations from s into a
(j)
c obtained by restricting the

elements of †Ω(a(i), a(j)) to s. If s belongs to †Ω(j)(s) let

ss = {−(sH)
∣∣H ∈ s};

ss is a complex affine subspace of a(j). Suppose the cuspidal subgroup ∗P with split component ∗a,

the group P in ∗{P}(i), and the group P ′ in ∗{P}(j) are given. Then for every s in †Ω(j)(s) there is

a function N(s,H) on †s with values in the space of linear transformations from L
(
S(s),E(V,W )

)
to S(ss) ⊗ E(V ′,W ) such that for all F in L

(
S(s),E(V,W )

)
and all F ′ in L

(
S(ss),E(V ′,W )

)
the

function
(
N(s,H)F,F ′) is meromorphic on †s. If H0 is a point of †s there is a polynomial p(H) and a

neighbourhood U as before such that p(N)
(
N(s,H)F,F ′) is analytic on U for all F and F ′. Moreover

there is an integer n such that
(
N(s,H)F,F ′) vanishes identically if the order of F or of F ′ is greater

than n. Finally, if
†P ′ = ∗N\P ′ ∩ ∗S

then

(7.b)
∫

∗Θ∩†N ′\†N ′
E(nmk,F,H) dn =

∑
s∈†Ω(j)(s)

exp
(
〈†H ′(m), sH〉+ρ

(†H ′(m)
))

N(s,H)F (mk)

provided both sides are defined. However, if P ′′ is a cuspidal subgroup to which ∗P belongs and P ′′

does not belong to {P} then the cuspidal component of∫
∗Θ∩†N ′′\†N ′′

E(nmk,F,H) dn

is zero.

(iii) Suppose ∗P1, with split component ∗a1, is a cuspidal subgroup belonging to some element of

{P} and ∗P , with split component ∗a, is a cuspidal subgroup belonging to ∗P1 and suppose s̃ contains
∗a1. If P belongs to ∗{P}(i)1 and hence to ∗{P}(i) and F belongs to L

(
S(s),E(V,W )

)
then E1(·, F, ·)

and E(·, F, ·) are functions on ∗A1
∗T1\G × †s1 and ∗A∗T\G × †s respectively. If H belongs to †s let
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H = H∗ + †H where ∗H belong to the complexification of the orthogonal complement of ∗a in ∗a1 and
†H belongs to †s1; if H belongs to

⋃
∗a1⊆a(j)

⋃
s∈†Ω1(a(i),a(j))

s−1(†U (j))

then

(7.c) E(g, F,H) =
∑

∗∆1\∗∆

exp
(
〈∗H1(γg), ∗H〉+ ρ0

(∗H1(γg)
))

E1(γg, F, †H)

if E1(·, F, ·) is analytic at †H . Here ρ0

(∗H(g)) is the value of ρ at the projection of ∗H1(g) on the

orthogonal complement of ∗a. The convergence of (7.c) is implied by the remarks following the proof

of Lemma 4.1. Moreover if P ′ belongs to ∗{P}(j)1 and s belongs to †Ω(j)
1 (s) then

N(s,H) = N1(s, †H).

(iv) Suppose ∗P1 and ∗P2 are cuspidal subgroups with the split component ∗a which both belong

to elements of {P} and suppose s̃ contains ∗a. Suppose P1 belongs to ∗{P}(i)1 and P2 belongs to ∗{P}(i)2

and suppose there is a γ in Γ such that γ∗P1 = ∗P2γ and γP1 = P2γ. If H belongs to †s let D(H) be

the map from E(V1,W ) to E(V2,W ) and D be the map from functions on ∗A1
∗T1\G to the functions

on ∗A2
∗T2\G which were defined in Section 4; then if F belongs to L

(
S(s),E(V,W )

)
(7.d) DE1(g, F,H) = E2

(
g, dD(H)F,H

)
.

Moreover if P ′
1 and P ′

2 belong to ∗{P}(j)1 and ∗{P}(j)2 respectively and there is a δ in Γwith

δP ′
1 = P ′

2δ

and

δ∗P1 = ∗P2δ

so that the map D(H) from E(V ′
1 ,W ) to E(V ′

2 ,W ) is defined for all H in †s and if s belongs to †Ω(j)(s)

then

(7.e)
(
N1(s,H)F,F ′) = (N2(s,H)

(
dD(H)F

)
, dD(−sH̄)F ′

)
for all F and F ′.
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(v) If k is in K then

λ(k)E(g, F,H) = E
(
g, λ(k)F,H

)
and if f belongs to C(W,W ) then

λ(f)E(g, F,H) = E
(
g, d
(
π(f,H)

)
F,H

)
.

Suppose that s = a(i). Then S(s) is just the space of constants so that, for all P in {P}(i), the map

F → F (1) defines an isomorphism of L
(
S(s),E(V,W )

)
with E(V,W ). If ∗P is a cuspidal subgroup

with split component ∗a which belongs to some element of {P}, if ∗a is contained in a(i), if P belongs

to ∗{P}(i), and if F belongs to L
(
S(s),E(V,W )

)
we let

E(g, F,H) =
∑

∆\∗∆

exp
(
〈H(γg),H〉+ ρ0

(
H(γg)

))
Φ(γg)

if H belongs to †A(i). Here Φ = F (1) and ρ
(
H(g)

)
is the value of ρ at the projection of H(g) on the

orthogonal complement of ∗a. This collection of functions certainly defines an Eisenstein system and,

as remarked before, all the other Eisenstein systems of interest to us will be obtained from systems of

this type by taking residues. Let us see explicitly how this is done.

Suppose that s is a subspace of a = a(i) defined by equations of the same form as before and

suppose that φ(·) is a function meromorphic on all of s whose singularities lie along hyperplanes of

the form α(H) = µ where α is a real linear function a and µ is a complex number. Suppose we have a

hyperplane t, not necessarily a singular hyperplane of φ(·), of this form and suppose we choose a real

unit normal H0 to t. Then we can define a meromorphic function Rest φ(·) on t by

Rest φ(H) =
δ

2πi

∫ 1

0

φ(H + δe2πiΘH0) d(e2πiΘ)

if δ is so small that φ(H + zH0) has no singularities for 0 < |z| < 2δ. It is easily verified that the

singularities ofRest φ(·) lie on the intersections with t of the singular hyperplanes of φ(·) different from

t. Now suppose we have an Eisenstein system {E(·, ·, ·)} belonging to s and suppose t is a hyperplane

of s defined by an equation of the form α(H) = µ where α is a positive root of a. We now define an

Eisenstein system belonging to t. Suppose that ∗P is a cuspidal subgroup belonging to some element

of {P} and suppose that the split component ∗a of ∗P is contained in t̃. Then ∗a is also contained in s̃

so that if P belongs to ∗{P}(i) there is a function E(·, ·, ·) defined on

∗A∗T\G× L
(
S(s),E(V,W )

)× †s.
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If g is in G and Φ(·) is a function on ac with values in E(V,W ) which is defined and analytic in a

neighbourhood of H in †a(i) then Res†t
E
(
g, dΦ(·), ·) is defined in a neighbourhood of H in t. Let

dΦ(H + zH0) =
∞∑
x=0

zx

x!
d
(
D(Hx

0 ) Φ(H)
)

and let

E(g, F,H + zH0) =
∞∑

y=−∞
zy Ey(g, F,H)

if F belongs to L
(
S(s),E(V,W )

)
. Of course only a finite number of terms with negative y actually

occur. Then

Res†t
E
(
g, dΦ(H),H

)
=

∑
x+y=−1

1
x!

Ey

(
g, d
(
D(Hx

0 ) Φ(H)
)
,H
)
.

If F belongs to L
(
S(t), E(V,W )

)
we set

Rest E(g, F,H) =
∑

x+y=−1

1
x!

Ey(g,Hx
0 ∨ F,H)

We must verify that the collection of functions of Rest E(·, ·, ·) is an Eisenstein system belonging to t.

Condition (i) is easily verified. If ∗P and P are as above and if P ′ belongs to ∗{P}(j) then∫
∗Θ∩†N ′\†N ′

Rest E(nmk,F,H) =
∑

x+y=−1

1
x!

∫
∗Θ∩†N ′\†N ′

Ey(nmk,Hk
0 ∨ F,H) dn.

Suppose that, for s in †Ω(j)(s),

N(s,H + zH0) =
∞∑

v=−∞
zvNv(s,H),

then ∫
∗Θ∩†N ′\†N ′

Ey(nmk,Hx
0 ∨ F,H) dn

is equal to the sum over s in †Ω(j)(s) of

exp
(
〈†H ′(m), sH〉+ ρ

(†H ′(m)
)) ∑

u+v=y

1
u!
〈†H ′(m), sH0〉u

(
Nv(s,H)(Hx

0 ∨ F )
)
(mk).

If for t in †Ω(j)(t)we takeRest N(t,H) be that linear transformation from L
(
S(t),E(V,W )

)
to S(tt)⊗

E(V ′,W )
)
, where

tt = {−(tH)
∣∣H ∈ t},
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which sends F in L
(
S(t),E(V,W )

)
to

∑
s

∑
x+y+v=−1

1
x!u!

(sH0)u ⊗Nv(s,H)(Hx
0 ∨ F ),

where the outer sum is over those s in †Ω(j)(s)whose restriction to t equals t, then∫
∗Θ∩†N ′\†N ′

Rest E(nmk,F,H) dn

is equal to ∑
t∈†Ω(j)(t)

exp
(
〈†H ′(m), tH〉+ ρ

(†H ′(m)
))(

Rest N(t,H)F
)
(mk).

It is now an easy matter to complete the verification of condition (ii). It should be remarked that if Φ(·)
is a function with values in E(V,W ) which is defined and analytic in a neighbourhood of H in †a(i)

and if Ψ(·) is a function with values in E(V ′,W ) which is defined and analytic in an open set of †a(j)

containing

{−sH̄
∣∣ s ∈ †Ω(j)(s)}

then

Res†t

{ ∑
s∈†Ω(j)(s)

(
N(s,H) dΦ(H), dΨ(−sH̄)

)}

is equal to ∑
t∈†Ω(k)(t)

Rest
(
N(t,H) dΦ(H), dΨ(−sH̄)

)
.

The conditions of (iii), (iv), and (v) are also verified easily.

There is a lemma which should be proved before we leave the subject of residues. It appears

rather complicated because it is stated in such a form that it is directly applicable in the proof of

Theorem 7.1, which is the only place it is used; however, it is essentially a simple consequence of the

usual residue theorem. If s is a subspace of a = a(i), for some i with 1 ≤ i ≤ r, defined by the

equations of the usual form and if {E(·, ·, ·)} is an Eisenstein system belonging to s then a hyperplane

t of s will be called a singular hyperplane of the Eisenstein system if there is a cuspidal subgroup ∗P

whose split component ∗a is contained in t and a cuspidal subgroup P contained in ∗{P}(i) such that

the projection of t on †s is either a singular hyperplane of E(·, F,H) for some F in L
(
S(s),E(V,W )

)
or

a singular hyperplane of
(
N(s,H)F,F ′) for some F in L

(
S(s),E(V,W ))

)
, some P ′ in ∗{P}(j), some
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s in †Ω(j)(s), and some F ′ in L
(
S(ss),E(V ′,W )

)
. Only a finite number of singular hyperplanes of the

Eisenstein system meet each compact subset of s. Let

ŝ = X(s) + (s̃ ∩ a)

If Z is a point in ŝ and a is a positive number or infinity let

U(s, Z, a) = {Z + iH
∣∣H ∈ s̃ ∩ a, ‖H‖ < a}

and if ∗a is a distinguished subspace of a which is contained in s̃ let U(†s, Z, a) be the projection of

U(s, Z, a) on †s. Let a be a positive number and let Z1 and Z2 be two distinct points in ŝ. If 0 ≤ x ≤ 1
let

Z(x) = xZ1 + (1− x)Z2

and suppose that there is a number x0 with 0 < x0 < 1 such that no singular hyperplane of the

Eisenstein system meets the closure of U
(
s, Z(x), a

)
if x �= x0 and such that any singular hyperplane

which meets the closure of U
(
s, Z(x0), a

)
is defined by an equation of the form 〈H,Z2 − Z1〉 = µ

where µ is a complex number. If ∗P , P , P ′ and s are given we want to consider

(7.f)
1

(2πi)m

∫
U(†s,Z2,a)

E
(
g, dΦ(H),H) dH − 1

(2πi)m

∫
U(†s,Z1,a)

E
(
g, dΦ(H),H

)
dH

as well as the sum over s in Ω(j)(s) of

(7.g)
1

(2πi)m

{∫
U(†s,Z2,a)

(
N(s,H) dΦ(H), dΨ(−sH̄)

)
dH −

∫
U(†s,Z1,a)

(
N(s,H), dΦ(H), dΨ(−sH̄)

)
dH

}
.

Φ(H) is a function with values in E(V,W ) which is defined and analytic in a neighbourhood of the

closure of
⋃

0≤x≤1 U(†s, Z, a) in †a(i) andΨ(H) is a function with values in E(V ′,W )which is defined

and analytic in a neighbourhood of

⋃
s∈†Ω(j)(s)

⋃
0≤x≤1

U(†ss,−sZ̄, a)

in †a(j). The dimension of †s is m.

Choose coordinates z = (z1, · · · , zm) on †s such that H(z) belongs to ŝ if and only if z is real,

such that

〈H(z),H(w)〉 =
m∑
k=1

zkwk,
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such that †Z1, the projection of Z1 on †s, is equal to H(0, · · · , 0), and such that †Z2 = H(0, · · · , 0, c)
with some positive number c. Set w = (0, · · · , c). If a′ = (a2 − ‖ ImX(s)‖2) 1

2 the above differences

are equal to

(7.h)
( 1
2π

)m ∫
|y|<a′

φ(w + iy) dy1 · · · dym −
( 1
2π

)m ∫
|y|<a′

φ(iy) dy1 · · · dym

with φ(z) equal to E
(
g, dΦ

(
H(z)

))
or to

∑
s∈†Ω(j)(s)

(
N(s,H(z)

)
dΦ
(
H(z)

)
, dΨ
(− sH(z̄)

))
.

Choose b > a′ so that no singular hyperplane of φ(·) intersects

{
(iy1, · · · , x+ iym)

∣∣ m∑
k=1

|yi|2 < b2, 0 ≤ x ≤ c, x �= x0c
}
,

and so that any singular hyperplane which intersects

{
(iy1, · · · , iym−1, x0c+ iym)

∣∣ m∑
k=1

|yk|2 < b2
}

is defined by an equation of the form zm = µ. Choose, in the m − 1 dimensional coordinate space, a

finite set of half-open rectangles J(�), 1 ≤ % ≤ n, defined by

α
(�)
k < yk < β

(�)
k , 1 ≤ k ≤ m− 1

and for each % a positive number γ� such that

n⋃
�=1

{(y1, · · · , ym−1, ym)
∣∣ (y1, · · · , ym−1) ∈ J �, |ym| < γ�}

contains the closed ball of radius a′ and is contained in the open ball of radius b. The expression (7.h)

differs from

(7.i)
n∑
�=1

1
(2π)m−1

∫ β	
1

α	
1

dy1 · · ·
∫ β	

m−1

α	
m−1

dym−1
1
2πi

{∫ c+iγk

c−iγk

−
∫ iγk

−iγk

φ(iy1, · · · , iym−1, zm) dzm

}

by the sum of two integrals. Each of these integals is of the form

(7.k)
1

(2πi)m

∫
Y

φ(z) dz1 ∧ · · · ∧ dzm
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where U is an open subset of a real oriented subspace of the coordinate space which is of dimension m

and is contained in {
z = (zm, · · · , zm)

∣∣ ‖ Im z‖ > a′
}
.

If zm = µj , 1 ≤ j ≤ p are the singular hyperplanes of φ(z) which meet

{(iy1, · · · , iym−1, x0c+ iym)
∣∣ m∑
i=1

|yi|2 < b}

and φj(z1, · · · , zm−1) is the residue of φ(z1, · · · , zm−1, zm) at µj the sum (7.i) differs from

p∑
j=1

n∑
�=1

1
(2π)m−1

∫
J	

φj(iy1, · · · , iym−1) dy1, · · · dym−1

by an integral of the form (7.k). The latter sum differs from

p∑
j=1

1
(2π)m−1

∫
|y|<a′

j

φj(iy1, · · · , iym−1) dy1 · · · dym−1

with a′j =
(
(a′)2 − (Imµj)2

) 1
2 by a sum of the form

p∑
j=1

1
(2πi)m−1

∫
Uj

φj(z) dz1 ∧ · · · ∧ dzm−1

where Uj is an open subset of a real oriented subspace of dimension m− 1 of the hyperplane zm = µj

which is contained in

{z = (z1, · · · , zm−1, zm)
∣∣ ‖ Im z‖ > a′}.

Let t1, · · · , tn be the singular hyperplanes of the Eisenstein system which meet the closure ofU
(
s, Z(x0), a

)
.

If none of the t̃�, 1 ≤ % ≤ n contain ∗a then the expression (7.f) is equal to a sum of integrals of the form

(7.%)
1

(2πi)m′

∫
U ′

E′(g, dΦ(H),H) dH
where U ′ is an open subset of some real subspace of dimension m′ of the space †t, the projection on
†a(i) of t, which is s itself or a singular hyperplane of the Eisenstein system such that t̃ contains ∗a, and

is contained in {H ∣∣ ‖ ImH‖ > a} and E′(·, ·, ·) is E(·, ·, ·) or Rest E(·, ·, ·). If ∗a is contained in one,

and hence all, of the t̃� then the expression (7.f) differs from

m∑
�=1

1
(2πi)m−1

∫
U(†t	,W	,a)

Rest	
E
(
g, dΦ(H),H

)
dH,



Chapter 7 137

where W� is a point in X(t�) + (t� ∩ a(i)) such that ReW� is in the convex hull of ReZ1 and ReZ2, by

a sum of integrals of the form (7.%). A similar assertion is valid for the expression (7.g). The last sum is

replaced by

n∑
�=1

∑
t∈†Ω(j)(t	)

1
(2πi)m−1

∫
U(†t	,W	,a)

(
Rest N(t,H) dΦ(H), dΨ(−tH̄)

)
dH

and the integrals (7.%) are replaced by

(7.m)
1

(2πi)m′

∫
U ′

(
N ′(t,H) dΦ(H), dΨ(−tH̄)

)
dh

with t in †Ω(j)(t′) and N ′(t,H) equal to N(t,H) if t′ = s and to Rest′ N(t,H) if t′ is a singular

hyperplane. The lemma we need is a refinement of these observations. In stating it we keep to our

previous notation.

Lemma 7.1. Suppose that for every positive number a there is given a non-empty open convex

subset V (a) of

X(s) = (s̃ ∩ a(1))

such that no singular hyperplane intersects the closure of U(s,W, a) if W belongs to V (a) and such

that V (a1) contains V (a2) if a1 is less that a2. Let Z be a given point in X(s) + (s̃ ∩ a(i)) and if

W belongs to X(s) + (s̃ ∩ a(i)) let

W (x) = (1− x)Z + xW.

Then there is a subset T of the set S of singular hyperplanes, and for each t in T a distinguished

unit normal, and for each a > 0 a non-empty open convex subset W (a) of V (a), and, for each t, a

non-empty open convex subset V (t, a) of X(t)+ (̃t∩a(i)) such that, for any ∗P , P , and P ′ such that

s̃ contains ∗a, any W in V (a), any choice of W (t) in V (t, a), and any ε > 0 such that no element

of T meets the closure of U
(
s,W (x), a

)
if 0 < x ≤ ε, the difference between

1
(2πi)m

∫
U(†s,W,a)

E
(
g, dΦ(H),H

)
dH

and, if 0 < x ≤ ε,

1
(2πi)m

∫
U
(†s,W (x),a

)E(g, dΦ(H),H) dH +
∑ 1

(2πi)m−1

∫
U
(†t,W (t),a

)Rest E(g, dΦ(H),H) dH
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is a sum of integrals of the form (7.%). In the above expression the second sum is over those t in

T such that t̃ contains ∗a. Moreover the difference between

∑
s∈†Ω(j)(s)

1
(2πi)m

∫
U(†s,W,a)

(
N(s,H) dΦ(H), dΨ(−sH̄)

)
dH

and the sum of

∑
s∈†Ω(j)(s)

1
(2πi)m

∫
U
(†s,W (x),a)

(
N(s,H) dΦ(H), dΨ(−sH̄)

)
dH

and ∑ ∑
t∈†Ω(j)(t)

1
(2πi)m−1

∫
U
(†t,W (t),a)

) (Rest N(t,H) dΦ(H), dΨ(−tH̄)
)
dH

is a sum of integrals of the form (7.m). The sets U ′ appearing in the integrals of the form (7.%)

and (7.m) can be taken to be such that {ReH ∣∣H ∈ U ′} lies in the convex hull of ReZ and

{ReH ∣∣H ∈ V (a)}. The sets V (t, a) can be chosen so that {ReH ∣∣H ∈ V (t, a)} lies in the interior

of the convex hull of ReZ and {ReH ∣∣H ∈ V (a)}, and so that V (t, a1) contains V (t, a2) if a1 is

less that a2, and no singular hyperplane of the Eisenstein system belonging to t meets the closure

of U(t,W, a) if W lies in V (t, a). If no singular hyperplane meets the closure of U(s, Z, a) the

conclusions are valid when x = 0.

We have not troubled to be explicit about the conditions on the functions Φ(·) and Ψ(·). They

will become clear. Replacing V (a) by V
(
N(a)

)
where N(a) is the integer such that

N(a)− 1 < a ≤ N(a)

we can suppose that

V (a) = V
(
N(a)

)
Let P (a) be the set of hyperplanes of ŝ which are the projections on ŝ of those elements of S which

meet {H ∣∣ ‖ ImH‖ ≤ a}. If N is a positive integer the set of points W in V (N) such that the interior of

the segment joining Z and W does not contain a point belonging to two distinct hyperplanes in P (N)

is a non-empty open subset of V (N). Let W (N) be a non-empty convex open subset of this set and let

W (a) =W
(
N(a)

)
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if a > 0. If the sets are chosen inductively it can be arranged that W (N1) contains W (N2) if N1 is less

than N2. Let T (a) be the set of singular hyperplanes whose projection on ŝ separates Z and W (a) and

let

T =
⋃
a>0

T (a)

If t belongs to T and t intersects

{H ∣∣ ‖ ImH‖ ≤ a},

so that t belongs to T (a) let V (t, a) be the inverse image in t̂ of the intersection of the projection of t on

ŝ with the convex hull of Z and W (a); let the distinguished normal to t be the one which points in the

direction of W (a). If t does not intersect {H ∣∣ ‖ ImH‖ ≤ a} let b be the smallest number such that t

intersects {H ∣∣ ‖ ImH‖ ≤ b} and set

V (t, a) = V (t, b).

In proving the lemma it may be assumed that W (t) is the inverse image in t̂ of the intersection

of the projection of t on ŝ with the line joining Z and W . Choosing a polygonal path Z0, Z1, · · · , Zn
from W (x) to W which lies in the convex hull of Z and W (a), which meets no element of P (a) except

the projections of the elements of T (a) and these only once and in the same point as the lines joining Z

and W , and which is such that no point Zj , 1 ≤ j ≤ n lies on any element of P (a) and such that any

line segment of the path crosses at most one element of P (a) and crosses that in a normal direction,

and observing that the difference between the integrals over U(†s,W, a) and U
(†s,W (x), a

)
is equal

to the sum of the differences between the integrals over U(†s, Zj , a) and U(†s, Zj−1, a), 1 ≤ j ≤ n, we

see that the lemma is a consequence of the discussion preceding it. To conform to the definition of an

Eisenstein system we have to remove those t for which all functions Rest E(·, ·, ·) vanish.

Unfortunately this lemma on residues is not sufficient for our needs; it must be supplemented

by another which we state informally but, for an obvious reason, do not prove. If s is as above and ε

and a are positive numbers let

C(s, ε, a) =
{
X(s) +H

∣∣H ∈ s̃, ‖ReH‖ < ε,
∥∥ Im (X(s) +H

)∥∥ < a
}
.

If U is an open set of the sphere of radius ε in s̃ ∩ a(i) then

{xX(s) + (1− x)Z
∣∣ 0 < x < 1, Z ∈ U}

will be called a cone of radius ε and centre X(s). Suppose that, just as in the lemma, we are given

an Eisenstein system belonging to s. Suppose that for every a > 0 there are two non-empty convex
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cones Vi
(
s, ε(a), a

)
, i = 1, 2 of radius ε(a) and centre X(s) such that no singular hyperplane meets the

closure of U(s,W, a) if W belongs to Vi
(
s, ε(a), a

)
and such that

Vi
(
s, ε(a1), a1

) ⊇ Vi
(
s, ε(a2), a2

)
if a1 ≤ a2. Suppose that, for all a, every singular hyperplane which meets the closure of C

(
s, ε(a), a

)
meets the closure of U

(
s,X(s), a

)
. Then there is a subset T of the set of singular hyperplanes such that

ReX(s) = X(t) for all t in T , and for each t in T a distinguished unit normal to t, and, for each a > 0,

two non-empty convex cones Wi

(
s, ε(a), a

)
of radius ε(a) and centre X(t) such that

Wi

(
s, ε(a), a

) ⊆ Vi
(
s, ε(a), a

)
and, for each t in T , an open convex cone V

(
t, ε(a), a

)
of radius ε(a) and centre X(t) such that if, for

some a > 0, Wi belongs to Wi

(
s, ε(a), a

)
and W (t), t ∈ T , belongs to V

(
t, ε(a), a

)
then the difference

between the sum over s in †Ω(j)(s) of

1
(2πi)m

{∫
U(†s,W1,a)

(
N(s,H) dΦ(H), dΨ(−sH̄)

)
dH −

∫
U(†s,W2,a)

(
N(s,H) dΦ(H), dΨ(−sH̄)

)
dH

}
and ∑ ∑

t∈†Ω(j)(t)

1
(2πi)m−1

∫
U
(†t,W (t),a

) (Rest N(t,H) dΦ(H), dΨ(−tH̄)
)
dH

is the sum of integrals of the form (7.m). It is clear that one again has some control over the location

of the sets U ′ which occur. Moreover if t is in T any singular hyperplane of the associated Eisenstein

system which meets the closure of C
(
t, ε(a), a

)
meets the closure of U

(
t,X(t), a

)
and we can assume

that if W lies in V
(
t, ε(a), a

)
then no such hyperplane meets the closure of U(t,W, a).

Suppose that for each i, 1 ≤ i ≤ r, we are given a collection S(i) of distinct affine subspaces of

dimension m which are defined by equations of the usual form. Let

S =
r⋃
i=1

S(i)

and suppose that for each s in S we are given an Eisenstein system belonging to s. In order to appreciate

Theorem 7.7 we have to have some understanding of the relations which the functions in this collection

of Eisenstein systems may satisfy and of the conditions under which the relations must be satisfied.

The next four lemmas provide us with the necessary understanding. In other words Theorem 7.7 can

be regarded, if one is thinking only of the Eisenstein series, as asserting that all Eisenstein series satisfy
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certain conditions and we are about to show that all Eisenstein series satisfying these conditions satisfy

functional equations.

If s is a subspace of a(i) and t is a subspace of a(j) defined by equations on the usual form and

if ∗a is a distinguished subspace of both a(i) and a(j) which is contained in s̃ and t̃ we let †Ω(s, t) be

the set of distinct linear transformations in †Ω(j)(s) such that ss = t. Two linear transformations of

Ω(a(i), a(j))which have the same effect on every element of s have the same effect on every element of

the space s′ spanned by s and zero and on

s̄′ = {H ∣∣ H̄ ∈ s′}

Thus †Ω(s, t) can also be regarded as a set of linear transformations from s′ to t̄′ or from s̄′ to t′. Such

a convention is necessary in order to make some of the expressions belong meaningful. Suppose that

for every element s of the collection S there is an element so of Ω(s, s) which fixes each element of s̃.

Certainly so is unique. If ∗a is a distinguished subspace of h let

∗S(i) = {s ∈ S(i)
∣∣ ∗a ⊆ s̃}

and let
∗S =

r⋃
i=1

∗S(i).

Two elements s and t of ∗S are said to be equivalent if †Ω(s, t) is not empty.

Lemma 7.2 Suppose that for each i, 1 ≤ i ≤ r, S(i) is a collection of distinct affine subspaces

of dimension m, of a(i), defined by equations of the form α(H) = µ where α is a positive root of

a(i) and µ is a complex number, such that only a finite number of the elements of S(i) meet each

compact subset of a(i). Suppose that if s belongs to S(i) and a is the orthogonal complement of

the distinguished subspace of largest dimension which is contained in ŝ then ReX(s) belongs to +a

and lies in a fixed compact subset of a(i) and suppose that for each s in S the set Ω(s, s) contains

an element which leaves each point of s̃ fixed. Finally suppose that if s is in S there is given an

Eisenstein system belonging to s and that if ∗P is a cuspidal subgroup, with split component ∗a, if P

belongs to ∗{P}(i), P ′ belongs to ∗{P}(j), s belongs to ∗S(i), and s belongs to †Ω(j)(s) then N(s,H)

vanishes identically unless s belongs to †Ω(s, t) for some t in ∗S(j). Then S is finite and for each s

in S the point X(s) is real. Moreover, for any choice of ∗a, every equivalence class in ∗S contains

an element s such that s̃ is the complexification of a distinguished subspace of h.

There is another lemma which must be proved first.
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Lemma 7.3. Suppose that φ is a function in L({P}, {V },W ) and suppose that there is an integer

N such that if P belongs to {P} and {py
∣∣ 1 ≤ y ≤ x} is a basis for the polynomials on a, the split

component of P , of degree at most N then there are distinct points H1, · · · ,Hu in ac and functions

Φx,y, 1 ≤ x ≤ u, 1 ≤ y ≤ v in E(V,W ) such that

(7.n)
∫

Γ∩N\N
φ(ng) dn =

u∑
x=1

exp
(
〈H(g),Hx〉+ ρ

(
H(g)

)){ v∑
y=1

Py
(
H(g)

)
Φx,y(g)

}
.

If
v∑
y=1

py
(
H(g)

)
Φx,y

does not vanish identically then Hx is real.

If we agree that an empty sum is zero then we can suppose that

v∑
y=1

py
(
H(g)

)
Φx,y(g)

is never identically zero. The lemma will be proved by induction on the rank of the elements in {P}.

If that rank is zero there is nothing to prove; so suppose it is a positive number q and the lemma is true

for families of cuspidal subgroups of rank q − 1. If P belongs to {P} and P ′ = γPγ−1, γ in Γ, then∫
Γ∩N ′\N ′

φ(n′γg) dn′ =
∫

Γ∩N\N
φ(ng) dn,

so that the right side of (7.n) is equal to

u′∑
x=1

exp
(
〈H ′(γg),H ′

x〉+ ρ
(
H ′(γg)

)) v∑
y=1

py
(
H(g)

)
Φ′
x,y(g).

Since H ′(γg) = H(g) + H ′(γ), the sets {H1, · · · ,Hu} and {H′
1, · · · ,H ′

u} are the same. Thus for

1 ≤ i ≤ r the set ⋃
P∈{P}(i)

{Hi, · · · ,Hu} = Fi

is finite.

If P belongs to {P}(i) let Xy be that element of S({0}) such that pXy
= py and let

Tx =
v∑
y=1

Xy ⊗ Φx,y.
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If ψ belongs to D(V,W ) it follows from the relation (7.a) that

(φ, ψ̂) =
u∑
x=1

(
Tx, dΨ(−H̄x)

)
.

If

f(·) = (f1(·), · · · , fr(·)
)

is such that λ(f) can be defined as in Section 6 then

(
λ(f)φ, ψ̂

)
=
(
φ, λ(f∗) ψ̂

)
is equal to

u∑
x=1

(
Tx, d(f∗

i Ψ)(−H̄x)
)
.

In particular, if for each i, fi vanishes to a sufficiently high order at each point of Fi then λ(f)φ = 0. If

H belongs to Fi and H′ belongs to Fj and there is no s in Ω(a(i), a(j)) such that sH = H′ then we can

choose an f(·) so that fi(H) �= fj(H ′). Consequently we can find f (1), · · · , f (w) such that

φ =
w∑
x=1

λ(f (x))φ

and λ(f (x))φ satisfies the same conditions as φ except that if H belongs to F
(x)
i , the analogue of Fi,

and H′ belongs to F
(x)
j then H′ = sH for some s in Ω(a(i), a(j)). Since it is enough to prove the lemma

for each λ(f (x))φ, we assume that φ already satisifes this extra condition. Let c(f) be the value of fi at

one and hence every point in Fi. Since λ(f) is normal λ(f)φ = c(f)φ and λ(f∗)φ = c̄(f)φ = c(f∗)φ.

Thus, if H belongs to Fi, fi(H) = fi(−H̄) and there is an s in Ω(a(i), a(i)) such that sH = H̄ and

〈H,H〉 is real.

To prove the lemma we need only show that for some P in {P} one of H1, · · · ,Hu is real. It

is not difficult to see that for each P in {P} the points −ReHx, 1 ≤ x ≤ u, belong to +a. We forego

describing the proof in detail because in all applications we shall make of the lemma it will be apparent

that this is so. Let

µ = max
1≤k≤q

{〈α,k, α,k〉− 1
2α,k(ReHx)}

and if {H1, · · · ,Hu} is not empty let

µ(P ) = max
1≤x≤u

µx.
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If φ does not vanish identically choose P0 so that

µ0 = µ(P0) ≥ µ(P )

for all P in {P}; the number µ0 is negative. Let

‖α,�0‖µ(P0) = α,�0(ReHx0)

and let ∗P be the cuspidal subgroup belonging to P0 with split component

∗a = {H ∈ a0

∣∣α�,(H) = 0, % �= %0}.

It follows without difficulty from Lemma 4.2 that if {qy
∣∣ 1 ≤ y ≤ v′} is a basis for the polynomials

on ∗a of degree at most N then there are distinct points ∗Hx, 1 ≤ x ≤ u′, in ∗ac and functions φxy in
∗A∗T\G such that ∫

Γ∩∗N\∗N
φ(ng) dn

is equal to
u′∑
x=1

exp
(
〈∗H(g), ∗Hx〉+ ρ

(∗H(g))){ v′∑
y=1

qy
(∗H(g))φx,y(g)}.

It follows from formula (3.d) that if P is an element of ∗{P} and g = amk with a in ∗A, m in ∗M , and k

in K then
u∑
x=1

exp
(
〈H(g),Hx〉+ ρ

(
H(g)

)){ v∑
y=1

Py
(
H(g)

)
Φx,y(g)

}
is equal to

u′∑
x=1

exp
(
〈∗H(g), ∗Hx〉+ ρ

(∗H(g))){ v′∑
y=1

qy
(∗H(g)) ∫

∗Θ∩†N\†N
φxy(nmk) dn

}
.

Applying this relation to P0 we see that if the indices are chosen appropriately we can suppose that the

projection of Hx0 on ∗ac is ∗H1. Let ∫
∗Θ∩†N\†N

φ1y(nmk) dn

equal
u′′∑
x=1

exp
(
〈†H(m), †Hx〉+ ρ

(†H(m))){ v′′∑
z=1

rz
(†H(m))Φx,y,z(g)}
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where {rz
∣∣ 1 ≤ z ≤ v′′} is a basis for the polynomials of degree at most N on †a, the orthogonal

complement of ∗a in a, and Φx,y,z belongs to E(V,W ). We suppose that for each x there is a y such that

v′′∑
z=1

rz
(†(H(m))Φx,y,z

does not vanish identically. If we show that −Re(†Hx) belongs to +(†a) for 1 ≤ x ≤ u′′ it will follow

from the corollary to Lemma 5.1 that φ1,y is square integrable. It is then obvious that it belongs to
∗L({P}, {V },W ). The induction assumption implies that †Hx is real for 1 ≤ x ≤ u′′. In particular we

can choose x1 so that

Hx0 =
∗H1 + †Hx1 .

Since

〈Hx0 ,Hx0〉 = 〈∗H1,
∗H1〉+ 〈†Hx1 ,

†Hx1〉

is real the number 〈∗H1,
∗H1〉 is real and ∗H1 is either real or purely imaginary. It is not purely imaginary

since α,�0(ReHx0) = α,�0(Re
∗H1). Consequently Hx0 is real. To show that −Re(†Hx) belongs to

+(†a)we have to show that α,�(Re †Hx) < 0 if % �= %0. Certainly

α,�
(
Re(∗H1 + †Hx)

) ≤ 〈α,�, α,�〉 1
2µ0

and

α,�0
(
Re(∗H1 + †Hx)

)
= −α,�0(Re

∗H1) = 〈α,�0 , α,�0〉
1
2 µ0.

Thus

α,�(†Hx) ≤ 〈α,�, α,�〉 1
2 {µ0 − 〈α,�, α,�〉− 1

2 〈α,�0 , α,�0〉−
1
2 〈α,�, α,�0〉µ0} < 0

if % �= %0.

Suppose that, for each P in {P}(i) and 1 ≤ x ≤ u, Tx has the same meaning as above. It has

been observed that
u∑
x=1

(
Tx, dfiΨ(−H̄x)

)
=

u∑
x=1

f̄i(−H̄x)
(
Tx, dΨ(−H̄x)

)
if f(·) = (f1(·), · · · , fr(·)

)
, if, for each i, fi(·) is a bounded analytic function on Di, and if fj(sH) =

fi(H) if s belongs to Ω(a(i), a(j)). It is clear that the equality must also be valid for any function f(·)
such that fi(·) is analytic in a neighbourhood of

r⋃
j=1

⋃
s∈Ω(a(j),a(i))

{−sH̄
∣∣H ∈ Fj}.
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Indeed for any such function

(
Tx, dfiΨ(−H̄x)

)
= f̄i(−H̄x)

(
Tx, dΨ(−H̄x)

)
.

We turn to the proof of Lemma 7.2. Let C be an equivalence class in ∗S and choose s in C so that

s̃ contains a distinguished subspace of the largest possible dimension. Replace, if necessary, ∗a by this

larger space and suppose that this distinguished subspace is ∗a itself. Of course the equivalence class

to which s belongs may become smaller but this is irrelevant. Suppose s lies in ∗S(i) and let †s be the

projection of s on the orthogonal complement of ∗a. A point H in †s which does not lie on a singular

hyperplane of any of the functions E(·, ·, ·) which are defined on †s and which is such that if s1 and s2

are in †Ω(j)(s) for some j then s1H = s2H only if s1 = s2 will be called a general point of †s. There

is at least one cuspidal subgroup ∗P with ∗a as split component and one element of ∗{P}(i) such that

for some F in L
(
S(s),E(V,W )

)
the function E(g, F,H) on ∗A∗T\G × ∗s does not vanish identically.

Suppose that the general point H lies in U
(†s,X(s),∞). If P ′ belongs to ∗{P}(j) then∫

∗Θ∩†N ′\†N ′
E(nmk,F,H)

is equal to ∑
s∈†Ω(j)(s)

exp
(
〈H ′(g), sH〉+ ρ

(
H ′(g)

))
N(s,H)F (g).

N(s,H) is zero unless s belongs to †Ω(s, t) for some t in ∗S(j). Moreover t belongs to C and ∗S(j) the

largest distinguished subspace which t contains is ∗a. Thus if N(s,H)F is not zero then

−Re(sH) = Re(Xss
)

belongs to +(†a(j)) if †a(j) is the orthogonal complement of ∗a in a(j). Lemma 7.3 implies that sH is

real for all such s. If s̃ were not the complexification of ∗a we could choose an H which was not real

so that E(g, F,H) did not vanish identically and obtain a contradiction. Consequently †s = {X(s)}
and X(s) is real. If s and t are equivalent then X(t) is real if and only if X(s) is; so it has only to be

shown that S is finite. This of course follows immediately from the assumptions of the lemma and the

fact that

X(s) = ReX(s)

for all s in S.
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Suppose ∗P with the split component ∗a is a cuspidal subgroup belonging to one of the elements

of {P}. Let P (i,k), 1 ≤ k ≤ mi, be a complete set of representatives for the elements of ∗{P}(i) and let

E(i) = ⊕mi

k=1E(V
(i,k),W ).

If S is as above and s belongs to ∗S(i), t belongs to ∗S(j), and s belongs to Ω(s, t) let M(s,H) be

that linear transformation from L
(
S(s),E(i)

)
to S(t) ⊗ E(j) such that if F belongs to

L
(
S(s), E(V(i,k),W )

)
then the component of M(s,H)F in S(t) ⊗ E(V (j,�),W ) is N(s,H)F . Of

course N(s,H) depends on P (i,k) and P (j,�). If C is an equivalence class in ∗S choose s in C so that

s̃ = ac where, if s belongs to ∗S(i), a is a distinguished subspace of a(i). Let

Ω(s, C) =
⋃
t∈C

†Ω(s, t)

and let Ω0(s, C) be the set of elements in Ω(s, C)which leave each point of s̃ fixed. Let so be the linear

transformation in Ω(s, s) which induces the identity on s̃. If t1 and t2 belong to C then every element

of Ω(t1, t2) can be written as a product tsos−1 with s in Ω(s, t1) and t in Ω(s, t2). If H is in †s we form

the two matrices
M(H) =

(
M(tsos−1, ssoH)

)
; s, t ∈ Ω(s, C)

M =
(
M(tsos−1, ssoH)

)
; s, t ∈ Ω0(s, C)

The first matrix is a meromorphic function of H ; the second is a constnat. If s belongs toΩ(s, C) there is

a unique js such that ss belongs to ∗S(js). The matrix M(H) can be regarded as a linear transformation

from ∑
s∈Ω(s,C)

L
(
S(ss),E(js)

)
to ∑

s∈Ω(s,C)

S(ss)⊗ E(js).

It has a finite dimensional range and the dimension of its range is its rank. A similar remark applies

to M . We shall see that the functional equations for all the Eisenstein series are a consequence of the

following lemma.
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Lemma 7.4. Suppose that, for 1 ≤ i ≤ r, S(i) is the collection of Lemma 7.2 and suppose that for

any ∗P , any s in ∗S(i), any t in ∗S(j), any P in ∗{P}(i), any P ′ in ∗{P}(j), and any s in †Ω(s, t)
the functions N(s,H) and N∗(s−1,−sH̄) are equal. If ∗P with the split component ∗a is given, if

C is an equivalence class in ∗S, if s belongs to C and s̃ is the complexification of a distinguished

subspace of h, then, if M(·) is defined at H, the rank of M(H) is the same as the rank of M .

If M(·) is defined at H and if sH = tH for some s and t in Ω(s, C) implies sH′ = tH ′ for all H′

in †s then H is said to be a general point of †s. Since the rank of M(H) is never less than the rank of

M it is enough to show that at a general point the rank of M(H) is no greater than the rank of M . If t

belongs to ∗S(j) and

F = ⊕m�=1F�

belongs to

L
(
S(t),E(j)

)
= ⊕mi

�=1L
(
S(t),E(V (j,�),W )

)
,

let

E(g, F,H) =
mi∑
�=1

E(g, F�,H).

If F = ⊕Fs belongs to

⊕s∈Ω(s,C)L
(
S(ss),E(js)

)
and H belongs to †s, let

E(g, F,H) =
∑
s

E(g, Fs, ssoH).

Suppose that H is a general point and for some such F the function E(·, F,H), which is defined, is

zero. If m belongs to ∗M and k belongs to K then∫
∗Θ∩†N(j,	)\†N(j,	)

E(nmk,F,H) dn

is equal to

(7.o)
∑
t

exp
(
〈H(j,�)(m), tH〉+ ρ

(
H(j,�)(m)

)){ ∑
s∈Ω(s,C)

Φ(j,�)
t,s (mk)

}

where the outer sum is over those t in Ω(s, C) such that jt = j and Φ(j,�)
t,s is the function on ∗AT (j,�)\G

associated to the projection of M(tsos−1, ssoH)Fs on

S(st)⊗ E(V (j,�),W ).
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Since H is a general point it follows that

∑
s∈Ω(s,C)

Φ(j,�)
t,s

is zero; consequently ∑
s∈Ω(s,C)

M(tsos−1, ssoH)Fs = 0

for all t in Ω(s, C).

If the dimension of ∗a is m, the dimension of the elements of S, there is nothing to prove. We

treat the case that the dimension of ∗a is m − 1 first. Let H be a general point of †s and suppose that

ImH �= 0 and

ReH = X(s) +H ′

with α(H′) small and positive if α is the unique simple root of †a. As usual s̃ = ac and †a is the

orthogonal complement of ∗a in a. Let us show that if

F = ⊕s∈Ω(s,C)Fs

is such that ∑
s∈Ω(s,C)

M(tsos−1, ssoH)Fs

is zero for t in Ω0(s, C) then it is zero for all t. Lemma 7.3 implies that E(·, F,H) can not belong to
∗L({P}, {V },W ) and be different from zero; so we show that E(·, F,H) belongs to ∗L({P}, {V },W ).

In the expression (7.o) the sum can be replaced by a sum over the elements t of the complement of

Ω0(s, C) in Ω(s, C) such that jt = j. The corollary to Lemma 5.1 can be applied if it is shown that,

for all such t, −Re(tH) belongs to +(†a(j)) provided α(H ′) is sufficiently small. Since −Re(tH) is

close to X(st) this is perfectly obvious if ∗a is the largest distinguished subspace contained in s̃t. If it

is not then st is the complexification of a distinguished subspace a′ of a(j). If α′ is the unique simple

root of the orthogonal complement of ∗a in a′ then it follows from Lemma 2.13 that α′(tH ′) is negative.

Lemma 2.5 implies that −tH belongs to +(†a(j)).

Since the set of points satisfying the condition of the previous paragraph is open it is enough to

prove that the rank of M(H) is not greater than the rank of M when H is in this set. Every element

G = ⊕t∈Ω(s,C)Gt
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in the range of M(H) is of the form

Gt =
∑

s∈Ω(s,C)

M(tsos−1, ssoH)Fs

with Fs in L
(
S(ss),E(js)

)
. The map

G→ ⊕t∈Ω0(s,C) ⊕Gt

is an injection of the range of M(H) into

⊕t∈Ω0(s,C) ⊕ S(st)⊗ E(jt).

It is sufficient to show that the image is contained in the range of M . If not there would be a set

{F ′
t

∣∣ t ∈ Ω0(s, C)}

such that ∑
t∈Ω0(s,C)

∑
s∈Ω0(s,C)

(
M(tsos−1, ssoH)Fs, F ′

t

)
= 0

for all sets {Fs
∣∣ s ∈ Ω0(s, C)} and

∑
t∈Ω0(s,C)

∑
s∈Ω(s,C)

(
M(tsos−1, ssoH)Fs, F ′

t ) �= 0

for some set {Fs
∣∣ s ∈ Ω(s, C)}. However, the first relation is independent of H so that, replacing H

by −soH̄ and using the relation

M(tsos−1,−sH̄) =M∗(ss0t
−1, ts0H),

we deduce that ∑
t∈Ω0(s,C)

M(ssot−1, tsoH)F ′
t = 0

for all s in Ω0(s, C) and hence for all s and all H . But the complex conjugate of the expression on the

left of the second relation is

∑
s∈Ω(s,C)

{ ∑
t∈Ω0(s,C)

(
M(ssot−1, tso(−soH̄)

)
F ′
t , Fs

)}

and must be zero.
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The general case will be treated by induction. Suppose that the dimension of ∗a is n with n less

than m − 1 and that the assertion of the lemma is valid if the dimension of ∗a is greater than n. Let

Ω′(s, C) be the set of all s in Ω(s, C) such that s̃ contains a distinguished subspace which is larger than

∗a and let

M ′(H) =
(
M(tsos−1, ssoH)

)
; s, t ∈ Ω′(s, C)

We first show that the rank of M(H) is no larger than the rank of M′(H). It is enough to show this

when H is a general point in U
(†s,X(s),∞) which is not real. The argument is then very much like

the one just presented. Indeed if

F = ⊕s∈Ω(s,C)Fs

and ∑
s∈Ω(s,C)

M(tsos−1, ssoH)Fs = 0

for all t in Ω′(s, C) then E(·, F,H) is zero because −Re(sH) = ReX(ss) lies in +(†a(j)) if as belongs

to ∗S(j) and s does not belong to Ω′(s, C). Consequently this equality is valid for all t. As before the

restriction of the map

⊕s∈Ω(s,C)Gs → ⊕s∈Ω′(s,C)Gs

to the range of M(H) can be shown to be an injection into the range of M′(H). It remains to show that

the rank of M ′(H) is no larger than the rank of M .

Suppose ∗P1 is a cuspidal subgroup with split component ∗a1 belonging to an element of {P}.

Suppose also that ∗P belongs to ∗P1 and that ∗a is properly contained in ∗a1. For each i, 1 ≤ i ≤ r,
∗{P}(i)1 is a subset of ∗{P}(i). Let P

(i,k)
1 , 1 ≤ k ≤ mi, be a complete set of representatives for the

conjugacy classes in ∗{P}(i)1 . It may as well be supposed that P (i,k)
1 is conjugate to P (i,k), 1 ≤ k ≤ m′

i.

The elements of C which belong to ∗S1 break up into a number of equivalence classes C1, · · · , Cu. In

each Cx, 1 ≤ x ≤ u, choose an sx such that s̃x is a distinguished subspace of h. For each x fix sx in

Ω(s, sx) and let Ω(s, Cx) be the set of all s in Ω(s, C) such that ssos−1
x belongs to Ω(sx, Cx) and let

Ω0(s, Cx) be the set of all s such that ssos−1
x belongs to Ω(sx, Cx). The induction assumption will be

used to show that if Fs, s ∈ Ω(s, Cx), belongs to

⊕m
′
js

�=1L
(
S(ss),E(V (js,�),W )

)
if H is a general point of †s, and if ∑

s∈Ω(s,Cx)

M(tsos−1, ssoH)Fs = 0
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for all t in Ω0(s, Cx) then this relation is valid for all t in Ω(s, C). It is sufficient to establish this when

sxs
oH belongs to the intersection of †s and

⋃
∗a1⊆a(j)

⋃
s∈†Ω1(a(i),a(j))

s−1(†A(j))

where i is such that sx ∈ ∗S(i)
1 . If

Fs = ⊕m
′
js

�=1F
�
s , t = ssos−1

x ,

and D(H) is the linear transformation from E(V (js,�),W ) to E(V (js,�)
1 ,W ) defined in Section 4, let

G�t = dD(H)F �s and let

Gt = ⊕m
′
js

�−1G
�
t.

The relation (7.e) and the last part of condition (iii) for an Eisenstein system imply that

∑
s∈Ω(sx,Cs)

M1(tsoxs
−1, ssoxHx)Gs = 0

for all t in Ω0(sx, Cx) if Hx is the projection of

soxsxH = sxs
oH

on the orthogonal complement of ∗a1. According to the induction assumption the relation must then

be valid for all t in Ω(sx, Cx). Consequently

∑
s∈Ω(sx,Cx)

E1(g,Gs, ssoxHx) = 0.

The relations (7.c) and (7.d) imply that

∑
s∈Ω(s,Cx)

E(g, Fx, ssoH) =
∑

s∈Ω(sx,Cx)

E(g,Gs, ssxH) = 0.

We obtain the assertion by appealing to the remarks made when we started the proof.

Suppose that for each s in Ω(s, Cx)we are given Fs in

⊕m
′
js

k=1L
(
S(ss),E(V (js,�),W )

)
.

It will also be necessary to know that we can find for each s in Ω0(s, Cx) an element F ′
s of

m′
js∑

k=1

L
(
S(ss),E(V (js,�),W )

)
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such that ∑
s∈Ω(s,Cx)

M(tsos−1, ssoH)Fs =
∑

s∈Ω0(s,Cx)

M(tsos−1, ssoH)F ′
s

for all t in Ω(s, C). If Gs is defined for s in Ω(sx, Cx) as before the induction assumption guarantees

the existence of a set

{G′
s

∣∣ s ∈ Ω0(sx, Cx)}

such that ∑
s∈Ω(sx,Cx)

M1(tsoxs
−1, ssoxHx)Gs =

∑
s∈Ω0(sx,Cx)

M1(tsoxs
−1, ssoxHx)G

′
s

for all t in Ω(sx, Cx). We need only choose a set

{F ′
s

∣∣ s ∈ Ω0(s, Cx)}

which is related to {G′
s} the way {Fs} is related to {Gs}.

Let

M ′
0(H) =

(
M(tsos−1, ssoH)

)
, s ∈ Ω(s, C), t ∈ Ω′(s, C).

Choosing ∗a1 so that its complexification is s̃ we see that the ranks of M ′
0(H) and M are the same. It

will now be shown that the range of M′(H) is contained in the range of M ′
0(H) and this will complete

the proof of the lemma. Suppose that t in ∗S(j) belongs to C , that F belongs to L
(
S(t),E(V (j,�),W )

)
for some %, 1 ≤ % ≤ mj , and that there is an r in Ω′(s, C)with sr = t. Let us show that

∑
t∈Ω′(s,C)

M(tsor−1, rsoH)F

belongs to the range of M ′
0(H). Choose ∗a1 so that t̃ contains ∗a1 and choose ∗P1 so that ∗P1 belongs to

P (j,�). If t belongs to Cx then we can choose for each s in Ω0(s, Cx) an element Fx of

⊕m
′
js

k=1L
(
S(ss),E(V (js,k),W )

)
so that ∑

s∈Ω0(s,Cx)

M(tsos−1, ssoH)Fs =M(tsor−1, rsoH)F

for all t. We may as well assume then that t̃ is the complexification of a distinguished subspace of h.

Since the lemma is true for n = m − 1 the set of t in C such that t̃ is the complexification of a

distinguished subspace satisfies the hypothesis of the second corollary to Lemma 2.13. The assertion
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will be proved by induction on the length of r. Suppose that t′ is another element of C such that t̃′ is the

complexification of a distinguished subspace and suppose that r = ptor′ where r′ belongs to Ω(s, t′)

and has length one less than that of r, to belongs to Ω(t′, t′) and leaves every element of t̃′ fixed, and p

is a reflection in Ω(t′, t). Choose ∗a1 so that ∗a1 is of dimension m − 1, is contained in t̃ and t̃′, and is

such that p leaves each element of ∗a1 fixed and let ∗P1 belong to P (j,�). There is an x such that t and

t′ both belong to Cx. Let sx = t′ and sx = r′. It has been shown that for each s in Ω0(s, Cx) we can

choose Fs in

⊕m
′
js

k=1L
(
S(ss),E(V (js,k),W )

)
such that ∑

s∈Ω0(s,Cx)

M(tsos−1, ssoH)Fs =M(tsor′−1
, r′soH)F

for all t. Since the length of each s in Ω0(s, Cx) is the same as that of r′, the proof may be completed by

applying the induction assumption.

Corollary 1. Suppose the collections S(i), 1 ≤ i ≤ r, and the associated Eisenstein systems satisfy

the conditions of Lemmas 7.2 and 7.3. Suppose moreover that if ∗P is a cuspidal subgroup belonging

to an element of {P}, if a(i), 1 ≤ i ≤ r′, are the elements of {a(i)
∣∣ 1 ≤ i ≤ r} which contain ∗a, the

split component of ∗P , and if, for 1 ≤ i ≤ r′, pi is a polynomial on †a(i), the orthogonal complement

of ∗a in a(i), and pj(sH) = pi(H) for all H in †a(i) and all s in †Ω(a(i), a(j)) then for any s in
∗S(i), any P in ∗{P}(i), any F in L

(
S(s),E(V,W )

)
, any t in ∗S(j), any P ′ in ∗{P}(j), any F ′ in

L
(
S(t),E(V,W ),

)
, and any s in Ω(s, t)

(
N(s,H) dpi(H)F,F ′) ≡ (N(s,H)F, dp∗j (−sH̄)F ′)

Then for any ∗P , p1(·), · · · , pr′(·), s, P , F , t, P ′, and s as above

E
(
g, dpi(H)F,H

) ≡ pi(H)E(g, F,H)

and

N(s,H)
(
dpi(H)F

) ≡ pi(H)N(s,H)F.

Of course the equalities above are not valid for literally all H in†s; rather the two sides are equal

as meromorphic functions. It is enough to prove the equalities when H is a general point of †s. Since

the two equalities are then equivalent, it is only necessary to prove one of them. Suppose first of all that
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s̃ is the complexification of ∗a. It was seen in the proof of Lemma 7.2 that if H = X(s) then E(·, F,H)

belongs to ∗L({P}, {V },W ). If ψ belongs to ∗D(V ′,W ) then∫
∗Θ\∗M×K

E(mk,F,H) ˆ̄ψ(mk) dmdk

is equal to ∑
t∈∗S(j)

∑
s∈†Ω(s,t)

(
N(s,H)F, dΨ(−sH̄)

)
According to the remarks following the proof of Lemma 7.3,(

N(s,H)F, d
(
p∗jΨ(−sH̄)

))
= pi(H)

(
N(s,H)F, dΨ(−sH̄)

)
for all s. Thus for all F ′ in L

(
S(t), E(V,W )

)
(
N(s,H) dpi(H)F,F ′) = (N(s,H)F, dp∗j (−sH̄)F ′) = pi(H)

(
N(s,H)F,F ′)

This proves the second equality in this case. Next suppose that s̃ is the complexification of a distin-

guished subspace of a(i). It follows from the relation (7.e) that the first equality is valid on an open set

and hence on all of †s.

In the general case we prove the second equality. Because of the relation (7.e) it is enough to

show that if C is an equivalence class in ∗S and if an s in C such that s̃ is the complexification of a

distinguished subspace of h is chosen, then for all s and t in Ω(s, C) and all F in E(js)

M(tsos−1, ssoH)
(
dpjs(ss0H)F

)
= pjs(ss0H)M(tsos−1, ssoH)F.

It follows from Lemma 7.4 that if for a given s and F this relation is valid for all t in Ω0(s, C) then it

is true for all t in Ω(s, C). It has just been proved that it is valid for s in Ω0(s, C) and t in Ω(s, C) and

it remains to prove that it is valid for s in Ω(s, C) and t in Ω0(s, C). Take such an s and t and let F

belong to E(js) and F ′ to E(jt); then(
M(tos−1, ssoH)

(
dpjs(ss

oH)F
)
, F ′
)
=
(
M(tsos−1, ssoH)F, dp∗jt(−tH̄)F ′)

which is the complex conjugate of(
M(ssot−1,−tH̄)

(
dp∗jt(−tH̄)F ′), F) = p∗jt(−tH̄)

(
M(ssot−1,−tH̄)F ′, F

)
.

Since the complex conjugate of the right hand side is

pjs(ss
oH)
(
M(tsos−1, ssoH)F,F ′),

we are done.

The next corollary can be obtained by an argument essentially the same as the one just given.

Since it is of no great importance the proof will be omitted.
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Corollary 2. If the collections S(i), 1 ≤ i ≤ r, and the associated Eisenstein systems satisfy the

hypotheses of Lemmas 7.2 and 7.4, they are uniquely determined if for every cuspidal subgroup ∗P

of rank m belonging to some element of {P} the sets ∗S(i), 1 ≤ i ≤ r are given and if for every s

in ∗S(i), every P in ∗{P}(i), and every F in L
(
S(s),E(V,W )

)
the function E

(·,X(s), F ) is given.

It is now necessary to find some conditions on the collections S(i), 1 ≤ i ≤ r, and the associated

Eisenstein systems which imply the hypotheses of Lemmas 7.2 and 7.4 and the first corollary but

which are, at least in our context, easier to verify. It must be expected that they will be rather

technical. For convenience, if ∗P and †s(i), 1 ≤ i ≤ r′, are as in the first corollary we will denote

the collection of r′-tuples p(·) = (p1(·), · · · , pr(·)
)

satisfying the conditions of that corollary by †I.

The collection of r′-tuples f(·) = {f1(·), · · · , fr′(·)} where fi(·) is a bounded analytic function on

{H ∈ †a(i)
∣∣ ‖ReH‖ < R} and fi(H) = fj(sH) if s belongs to †Ω(a(i), a(j)) will be denoted by †I0.

The number R has been introduced in Section 4.

Lemma 7.5. Suppose that S(i), 1 ≤ i ≤ r, is a collection of distinct affine subspaces of a(i)

which are of dimension m and which are defined by equations of the form α(H) = µ where α is

a positive root of a(i) and µ is a complex number and suppose that there is an Eisenstein system

associated to each element of S =
⋃r
i=1 S

(i). Suppose that if s belongs to S(i) and a is the orthogonal

complement in a(i) of the distinguished subspace of largest dimension which is contained in s̃ then

ReX(s) belongs to +a and X(s) lies in Di. Suppose also that only a finite number of elements

of S(i) meet any compact subset of a
(i)
c . Finally suppose that if ∗P is a cuspidal subgroup with

split component ∗a belonging to an element of {P} and if a(i), 1 ≤ i ≤ r′, are the elements of

{a(i)
∣∣ 1 ≤ i ≤ r} which contain ∗a then there is an orthogonal projection Q, which commutes with

λ(f) if f(·) belongs to †I0, of ∗L({P}, {V },W ) onto a subspace and for every positive number a

and each i a polynomial ri on †a(i) which does not vanish identically on †s if s belongs to ∗S(i)

such that if P belongs to ∗{P}(i), P ′ belongs to ∗{P}(j), Φ′(·) belongs to ∗H(V,W ),

Φ(·) = ri(·) Φ′(·)

and Ψ(·) belongs to ∗H(V ′,W ) then the difference (7.p) between(
R(λ,A)Qφ̂, ψ̂

)
and ∑

s∈∗S(i)

∑
s∈†Ω(j)

1
(2πi)m

∫
U
(†s,X(s),a

) (N(s,H) d((λ− 〈H,H〉)−1Φ(H)
)
, dΨ(−sH̄)

)
dH
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and the difference (7.q) between (
Qφ̂,R(λ̄, A)ψ̂

)
and∑

s∈∗S(i)

∑
s∈†Ω(j)(s)

1
(2πi)m

∫
U
(†s,X(s),a)

) (N(s,H) dΦ(H), d((λ− 〈−sH̄,−sH̄〉)−1Ψ(−sH̄)
))

dH

are analytic for Reλ < R2 − a2. Then for every s in S the set Ω(s, s) contains an element which

leaves each point of s̃ fixed. Moreover if ∗P is a cuspidal subgroup with split component ∗a, P

belongs to ∗{P}(i), P ′ belongs to ∗{P}(j), s belongs to ∗S(i), and s belongs to †Ω(j)(s) then N(s,H)

vanishes identically unless ss = t for some t in ∗S(j) and then

N(s,H) = N∗(s−1,−sH̄)

Finally, if F belongs to L
(
S(s),E(V,W )

)
, F ′ belongs to L

(
S(t),E(V ′,W )

)
, and p(·) belong to †I

then (
N(s,H) dpi(H)F,F ′) ≡ (N(s,H)F, dp∗j (−sH̄)F ′).

There is one simple assertion which is central to the proof of this lemma. We first establish it. Let

a be a positive number, let ∗P be a cuspidal subgroup belonging to some element of {P}, let s belong to
∗S(i), let P belong to ∗{P}(i), let P ′ belong to ∗{P}(j) and suppose that for each s in †Ω(j)(s) there is a

given function M(s,H) on †s with values in the space of linear transformations from L
(
S(s),E(V,W )

)
to S(ss) ⊗ E(V ′,W ) such that

(
M(s,H)F,F ′) is meromorphic on †s for all F and F ′ and vanishes

identically if the order of F or of F ′ is sufficiently large. Suppose that if

Φ(·) = ri(·) Φ′(·)

with Φ′(·) in ∗H(V,W ) and Ψ(·) belongs to ∗H(V ′,W ) then

(
M(s,H) dΦ(H), dΨ(−sH̄)

)
is analytic on the closure of U

(†s,X(s), a) for all s and∑
s∈†Ω(j)(s)

1
(2πi)m

∫
U
(†s,X(s),a

) (M(s,H) d
(
(λ− 〈H,H〉)−1Φ(H)

)
, dΨ(−sH̄)

)
dH

is analytic for Reλ < R2 − a2; then if

Re〈X(s),X(s)〉 > R2 − a2,
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each of the functions M(s, ·) is identically zero. Suppose not and suppose that M(s,H)F vanishes

identically for all s if the order of F is greater than n but that for some s and some F = F0 of order n

the function M(s,H)F0 does not vanish identically. There are polynomials hk, 1 ≤ k ≤ % on †a(i) and

functions Φi, 1 ≤ k ≤ %, in E(V,W ) such that the order of

F0 − d
(∑

k

hk(H) Φk
)

is greater than n. Let

Φ′(·) = f(·)
{ �∑
k=1

hk(·) Φk
}

with some scalar valued function f(·); then(
M(s,H) d

(
(λ−〈H,H〉)−1Φ(H), dΨ(−sH̄)

)
=(λ−〈H,H〉)−1 f(H) ri(H)

(
M(s,H)F0, dΨ(−sH̄)

)
.

Let

g(H) =
∑

s∈†Ω(j)(s)

ri(H)
(
M(s,H)F0, dΨ(−sH̄)

)
.

Then ∫
U
(†s,X(s),a

)(λ− 〈H,H〉)−1f(H) g(H) dH

is analytic for Reλ > R2 − a2. Let B be the unit sphere in s̃ ∩ †a(i) and let dB be the volume element

on B. Set

ξ(r) =
∫
B

f
(
X(s) + ir

1
2H
)
g
(
HX(s) + ir

1
2H
)
dB.

If 〈ReX(s),ReX(s)〉 = µ and 〈ImX(s), ImX(s)〉 = ν then

ζ(λ) =
∫ a2−ν

0

(λ+ r)−1 ξ(r) rn/2−1 dr

is analytic for

Reλ > R2 − a2 − µ+ ν

and the right side is negative. On the other hand if 0 < ε < a2 − ν,

lim
δ↘0

1
2πi

{ζ(−ε+ iδ) − ζ(−ε− iδ)} = ξ(ε) εn/2−1,

so that

ξ(r) = 0
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for 0 < r < µ+a2−R2−ν and hence for all r. Since f(H) can be taken to be the product of exp〈H,H〉
and any polynomial we conclude that g(H) vanishes identically. A simple approximation argument

which has been used implicitly before allows us to conclude that

M(s,H)F0 = 0

for all s and this is a contradiction.

Let ∗P be a cuspidal subgroup belonging to some element of {P}, let P belong to ∗{P}(i), let

P ′ belong to ∗{P}(j), and let s belong to ∗S(i). Let q(·) be a polynomial on a(i) which vanishes to

such a high order on every element t of ∗S(j) different from s itself that if t belongs to †Ω(j)(t) then

N(t,H) ◦ dq(H) vanishes identically on †t and to such a high order on every space tt, with t in ∗S(j)

and t in †Ω(j)(t), different from s itself that d∗q(−tH̄)N(t,H) vanishes identically on †t but which

does not vanish identically on s itself. Of course d∗q(H) is defined by the condition that

(
d∗q(H)T,F

)
=
(
T, dq(H)F

)
for all T in S(tt)⊗ E(V,W ) and all F in L

(
S(tt),E(V,W )

)
. In (7.p) replace Φ(·) by q(·) Φ(·) and let

Ψ(·) = rj(·)Ψ′(·)

and in (7.q) replace j by i, λ by λ̄, Φ(·) by

Ψ(·) = rj(·)Ψ′(·)

and Ψ(·) by q(·) Φ(·); then subtract the complex conjugate of (7.q) from (7.p). Since the complex

conjugate of
(
Qψ̂,R(λ,A) φ̂

)
is (

R(λ,A)Qφ̂, ψ̂),

the result is

∑
s∈†Ω(j)(s)

1
(2πi)m

∫
U
(†s,X(s),a

) (M(s,H) d
(
(λ− 〈H,H〉)−1Φ(H)

)
,Ψ(−sH̄)

)
dH

where M(s,H) equals

d∗rj(−sH̄)N(s,H) dq(H)

if ss does not belong to ∗S(j) and equals

d∗rj(−sH̄){N(s,H)−N∗(s−1,−sH̄)} dq(H)
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if ss does belong to ∗S(j). Since a can be taken as large as necessary we conclude that

N(s,H) ≡ 0

if ss does not belong to ∗S(j) and that

N(s,H) ≡ N∗(s−1,−sH̄)

if ss does belong to ∗S(j). If f(·) belong to †I0 then

(
R(λ,A)Qλ(f) φ̂, ψ̂

)
=
(
R(λ,A)Qφ̂, λ(f∗) ψ̂

)
.

Thus we can also conclude that if

M(s,H) =
{
N(s,H) df(H)− d∗

(
f∗(−sH̄)

)
N(s,H)

}
dq(H)

then ∑
s∈†Ω(j)(s)

1
(2πi)m

∫
U
(†s,X(s),a

) (M(s,H) d
(
(λ− 〈H,H〉)−1Φ(H)

)
,Ψ(−sH̄)

)
dH

is analytic for Reλ > R2 − a2. Consequently

N(s,H) df(H) = d∗
(
f∗(−sH̄)

)
N(s,H)

for f(·) in †I0 and hence, by a simple approximation argument, for f(·) in †I. The first assertion of the

lemma has still to be proved.

Suppose s belongs to ∗S(i). Let ∗P be a cuspidal subgroup belonging to some element of {P}
such that E(·, ·, ·) is not identically zero for some P in ∗{P}(i). Suppose that E(·, F, ·) ≡ 0 if O(F ) > n

but E(·, F, ·) �≡ 0 for some F in O(F ) = n. Let h(·) be a polynomial on a
(i)
c such that

h
(
H −X(s)

)
= pX(H)

where X lies in S(s) and is homogeneous of degree n, and such that

E
(·, dh(H)F, ·) �≡ 0

for some F in L
(
S(s),E(V,W )

)
. We first show that if we take P ′ = P then for some s in †Ω(s, s) the

function

d∗
(
h∗(−sH̄)

)
N(s,H) dh(H) �≡ 0
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Suppose the contrary. Fix some positive number a with

〈ReX(s),ReX(s)〉 > R2 − a2.

Choose q(·) as above; let Φ′(·) belong to ∗H(V,W ); and set

Φ(·) = ri(·) q(·)h(·) Φ′(·)

ReplacingΨ(·) byΦ(·) in (7.q) we obtain
(
R(λ,A)Qφ̂,Qφ̂

)
, which must be analytic forReλ > R2−a2.

It follows from Theorem 5.10 of [21] that Qφ̂ belongs to the range of E(R2 − a2). However, if this is

so then for any P ′ in ∗{P}(j) and any Ψ(·) in ∗H(V ′,W ) the function
(
R(λ,A)Qφ̂, ψ̂

)
is analytic for

Reλ > R2 − a2; consequently

∑
s∈†Ω(i)(s)

1
(2πi)m

∫
U
(†s,X(s),a

) (N(s,H) d((λ− 〈H,H〉)−1Φ(H)
)
, dΨ(−sH̄)

)
dH

is analytic for Reλ > R2 − a2. Thus

N(s,H) dh(H) ≡ 0

for all s which is impossible. In particular there is some s in Ω(s, s). For such an s,

sX(s) = −X̄(s)

consequently 〈X(s),X(s)〉 is real. Choose Φ in E(V,W ) so that

d∗
(
h∗(−sH̄)

)
N(s,H) d

(
h(H) Φ

) �≡ 0
for some s in †Ω(i)(s, s). If

Φ(·) = f(·) ri(·) q(·)h(·) Φ

and

Ψ(·) = g(·) ri(·) q(·)h(·)Ψ

and if b < a, and µ = 〈X(s),X(s)〉 − b2 then((
I −E(µ)

)
Qφ̂, ψ̂

)
=

1
(2πi)m

∑
s∈†Ω(i)(s,s)

∫
U
(†s,X(s),b

) f(H) g(−sH̄) ξ(s,H) dH

with

ξ(s,H) =
(
N(s,H) d

(
ri(H) q(H)h(H) Φ

)
, d
(
ri(H) q(H)h(H)Ψ

))
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For some s the function ξ(s,H) does not vanish identically. Consequently the expression on the right

is a positive semi-definite Hermitian symmetric form in f(·) and g(·)which does not vanish identically.

A simple approximation argument shows that there must be an so in †Ω(i)(s, s) such that H = −soH

for all H in U
(†s,X(s), b). Choosing b sufficiently close to a we conclude that H = −soH̄ for all H in

U
(†s,X(s),∞) and that so leaves every element of s̃ fixed.

Collections of subspaces and Eisenstein systems satisfying the conditions of Lemma 7.5 are just

what we need to describe the spectral decomposition of the spaces ∗L({P}, {V },W ). Let us see how

to associate to each such collection a closed subspace of each of the spaces ∗L({P}, {V },W ).

Lemma 7.6. Suppose that S(i), 1 ≤ i ≤ r, is a collection of distinct affine subspaces of a(i) and

that if s belongs to S =
⋃r
i=1 S

(i) there is given an Eisenstein system belonging to s. Suppose that

S and the associated Eisenstein systems satisfy the hypotheses of Lemma 7.5. Let ∗P be a cuspidal

subgroup belonging to some element of {P} and let ∗L′({P}, {V },W ) be the closed subspace of
∗L({P}, {V },W ) generated by functions of the form

(
I −E(λ)

)
Qφ̂ where λ and Φ(·) are such that

for some positive number a, some i, and some P in ∗{P}(i) the inequality R2 − λ < a2 is satisfied

and

Φ(·) = ri(·) Φ′(·)

with Φ′(·) in ∗H(V,W ). Let C1, · · · , Cu be the equivalence classes in ∗S and for each x, 1 ≤ x ≤ u,

choose sx in Cx such that s̃x is the complexification of a distinguished subspace of h. If P belongs

to {P}(i) and Φ(·) belongs to ∗H(V,W ) then∑
s∈Ω(i)(sx,Cx)

E
(
g, dΦ(ssoxH), ss

o
xH
)

is analytic on U
(†sx,X(sx),∞), where

Ω(i)(sx, Cx) = {s ∈ Ω(sx, Cx)
∣∣ js = i}

and if ωx is the number of elements in †Ω(sx, sx) then

φ(g, a) =
u∑
x=1

1
ωx(2πi)m

∫
U
(†sx,X(sx),a

) ∑
s∈Ω(i)(sx,Cx)

E
(
g, dΦ(ssoxH), ss

o
xH
)
dH

belongs to ∗L′({P}, {V },W ) and the projection of φ̂ on ∗L′({P}, {V },W ) is equal to lim
a→∞φ(·, a).

Moreover if P ′ belongs to ∗{P}(j) and Ψ(·) belongs to ∗H(V ′,W ) then∑
t∈Ω(j)(sx,Cx)

∑
s∈Ω(i)(sx,Cx)

(
N(tsoxs

−1, ssoxH) dΦ(ss
o
xH), dΨ(−tH̄)

)
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is analytic on U
(†sx,X(sx),∞) and the inner product of the projection s of φ̂ and ψ̂ on

∗L′({P}, {V },W ) is equal to

u∑
x=1

1
ωx(2πi)m

∫ ∑∑(
N(tsoxs

−1, ssoxH) dΦ(ss
o
xH), dΨ(−tH̄)

)
dH.

The inner sums are over t ∈ Ω(j)(sx, Cx) and s ∈ Ω(i)(sx, Cx). The integral is over

U
(†sx,X(sx),∞). Suppose a is a positive number, P belongs to ∗{P}(i),

Φ(·) = ri(·) Φ′(·)

with Φ′(·) in ∗H(V,W ), P ′ belongs to ∗{P}(j), and Ψ(·) belongs to ∗H(V ′,W ). To begin the proof of

the lemma we calculate the inner product
((

I − E(λ)
)
Qφ̂, ψ̂

)
when λ > R2 − a2. Choose β > R2,

α = λ, and γ > 0; according to Theorem 5.10 of [21]((
I −E(λ)

)
Qφ̂, ψ̂

)
= lim
δ→0

1
2πi

∫
C(α,β,γ,δ)

(
R(z,A)Qφ̂, ψ̂

)
dz.

Since (7.p) is analytic for Reλ > R2 − a2 it follows from the first corollary to Lemma 7.4 that the right

side equals

lim
δ→0

1
2πi

∫
C(α,β,γ,δ)

{∑∑ 1
(2πi)m

∫
(z − 〈H,H〉)−1

(
N(s,H) dΦ(H), dΨ(−sH̄)

)
dH
}
dz.

The sums are over s ∈ ∗S(i) and s ∈ †Ω(j)(s). The inner integral is over U
(†s,X(s), a). Let

〈X(s),X(s)〉 = µ(s).

Then a >
(
µ(s)− λ

) 1
2 ; so this limit equals

∑
s∈∗S(i)

∑
s∈†Ω(j)(s)

1
(2πi)m

∫
U

(†s,X(s),
(
µ(s)−λ

) 1
2

) (N(s,H) dΦ(H), dΨ(−sH̄)
)
dH

which we prefer to write as

(7.r)
u∑
x=1

∑∑ 1
ωx(2πi)m

∫ (
N(tsoxs

−1, ssoxH) dΦ(ss
o
xH), dΨ(−tH̄)

)
dH

The inner sums are over t ∈ Ω(j)(sx, Cx) and s ∈ Ω(i)(sx, Cx). The inner integral is overU
(†sx,X(sx), (µ(sx)−

λ
) 1

2
)

. It should perhaps be observed that if H belongs to U
(†sx,X(sx),∞) then

−tH̄ = tsoxH.
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Let

X(V,W ) =
∑

s∈Ω(i)(sx,Cx)

L
(
S
(
(sx)s

)
,E(V,W )

)
, 1 ≤ x ≤ u,

and define Xx(V ′,W ) is a similar fashion. If F = ⊕Fs belongs to Xx(V,W ) and F ′ = ⊕F ′
s belongs to

Xx(V ′,W ) let

[F,F ′] =
∑

t∈Ω(j)(sx,Cx)

∑
s∈Ω(i)(sx,Cx)

(
N(tsoxs

−1, ssoxH)Fs, F
′
t

)
.

Of course [F,F ′] depends on H . A simple approximation argument shows that, when H belongs to

U
(
sx,X(sx),∞

)
,

(7.s) [F,F ] ≥ 0; ∣∣[F,F ′]
∣∣2 ≤ [F,F ] [F ′, F ′].

At this point we need to remind ourselves of a number of simple facts from the theory of

integration (cf. [5], Ch. II). Let Lx(V,W ;λ) be the space of all functions

F (H) = ⊕Fs(H)

on U
(†sx,X(sx), (µ(sx)−λ

) 1
2
)

with values in Xx(V,W ) such that [F (H), F ] is measurable for every

F in Xx(V,W ),

Fsso
xr
(H) = Fs(soxrH)

for all r in †Ω(sx, sx), and

1
ωx(2π)m

∫
U
(†sx,X(sx),

(
µ(sx)−λ

) 1
2
)[F (H), F (H)] |dH| = ‖F (·)‖2

is finite. If two functions whose difference has norm zero are identified, Lx(V,W ;λ) becomes a Hilbert

space.

⊕ux=1Lx(V,W ;λ) = L(V,W ;λ)

is also a Hilbert space with the dense subset

K(V,W ;λ) =
{
⊕ux=1 ⊕s∈Ω(i)(sx,Cx)dΦ(ss

o
xH)

∣∣Φ(·) = ri(·) Φ′(·), Φ′(·) ∈∗H(V,W )
}
.

The map

Φ(·)→ (I −E(λ)
)
Qφ̂

can be extended to an isometric map of L(V,W ;λ) into ∗L′({P}, {V },W )

F (·)→ f̂
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where

F (·) = ⊕ux=1Fx(·).

Let Lx(V,W ) be the set of all functions

F (·) = ⊕Fs(·)

on U
(†sx,X(sx),∞) with values in Xx(V,W ) such that [F (H), F ] is measurable for every F in

Xx(V,W ),

Fsso
xr
(H) = Fs(rsoxH)

for all r in †Ω(sx, sx), and

1
ωx(2π)m

∫
U
(†sx,X(sx),∞

)[F (H), F (H)] |dH| = ‖F (·)‖2
is finite. Lx(V,W ) is also a Hilbert space; let

⊕ux=1Lx(V,W ) = L(V,W ).

The spacesL(V,W ;λ) can be regarded as subspaces ofL(V,W ) and
⋃
λ L(V,W ;λ) is dense inL(V,W ).

The map F (·) → f̂ can be extended to an isometric mapping of L(V,W ) into ∗L′({P}, {V },W ). It

follows readily from (7.r) that if F (·) belongs to L(V,W ) and G(·) belong to L(V ′,W ) then

(f̂ , ĝ) =
u∑
x=1

1
ωx(2π)m

∫
U
(†sx

,X(sx),∞
)
[F (H), G(H)] |dH|.

Let F x(·) = ⊕F xs (·), 1 ≤ x ≤ u, be a function in U
(†sx,X(sx),∞) with values in Xx(V,W ) such that

F xsso
xr
(H) = Fs(rsoxH)

for all r in †Ω(sx, sx) and suppose that if G(·) = ⊕ux=1Gx(·) belongs to K(V,W ;λ) for some λ then

[Fx(H), Gx(H)] is measurable for 1 ≤ x ≤ u and

u∑
x=1

1
ωx(2π)m

∫
U
(†sx,X(sx),

(
µ(sx)−λ

) 1
2
)[Fx(H), Gx(H)] dH

is defined and is at most c‖G(·)‖where c is some constant. Then F (·) belongs to L(V,W ) and its norm

is at most c.
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If Φ(·) belongs to ∗H(V,W ) and

Fx(H) = ⊕s∈Ω(i)(sx,Cx)dΦ(ss
o
xH),

this condition is satisfied with c = ‖Φ̂‖. If P ′ belongs to ∗{P}(j) and Ψ(·) belongs to ∗H(V ′,W ) it then

follows from (7.s) that

∑
t∈Ω(j)(sx,Cx)

∑
s∈Ω(i)(sx,Cx)

(
N(tsoxs

−1, ssoxH) dΦ(ss
o
xH), dΨ(−tH̄)

)

is integrable on U
(†sx,X(sx),∞). However, it is a meromorphic function with singularities which lie

along hyperplanes of the form α(H) = µ; so it is integrable over U
(†sx,X(sx),∞) only if it is analytic

on this set. Applying the map F (·) → f̂ to the above element of L(V,W ) we obtain a function φ′

in ∗L′({P}, {V },W ). To prove the final assertion of the lemma it is sufficient to show that φ′ is the

projection of φ̂ on ∗L′({P}, {V },W ) or that((
I − E(λ)

)
Qψ̂, φ̂

)
=
((

I −E(λ)
)
Qψ̂, φ′

)
whenever there is a positive number a and a P ′ in ∗{P}(j) for some j such that R2 − λ < a2 and

Ψ(·) = rj(·)Ψ′(·) with Ψ′(·) in ∗H(V ′,W ). This follows from the formula (7.r) with Φ(·) and Ψ(·)
interchanged.

Take Φ(·) as in the last paragraph and suppose that for some x

∑
s∈Ω(i)(sx,Cx)

E
(·, dΦ(ssoxH), ssoxH) = E(·,H)

is not analytic on U
(†sx,X(sx),∞). Let t be a singulary hyperplane which intersects U

(†sx,X(sx),
∞
)

. Select a unit normal to t, take an arbitrary analytic functiong(·)on†s, and considerRest{g(H)E(·,H)}.

If P ′ belongs to ∗{P}(j) for some j and ψ belongs to ∗D(V,W ) then∫
∗Θ\∗M×K

Rest{g(H)E(mk,H)} ˆ̄ψ(mk) dmdk

is equal to

Rest
{∫

∗Θ\∗M×K
g(H)E(mk,H) ˆ̄ψ(mk) dmdk

}
.

If ψ is the Fourier transform of Ψ(·) the expression in brackets is equal to

g(H)
∑

t∈Ω(j)(sx,Cx)

∑
s∈Ω(i)(sx,Cx)

(
N(tsoxs

−1, ssoxH) dΦ(ss
o
xH), dΨ(−tH̄)

)
.
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Since no singular hyperplanes of this function intersect U
(†sx,X(sx),∞) the residue is zero. Com-

paring this conclusion with Lemma 3.7 we obtain a contradiction. Suppose that φ′(·, a) is the image in

∗L′({P}, {V },W ) of the element

⊕uc=1Fx(H)

of L(V,W ) where

Fx(H) = ⊕s∈Ω(i)(sx,C)dΦ(ss
o
xH)

if ‖ ImH‖ < a and Fx(H) = 0 if ‖ ImH‖ ≥ a. Certainly the limit of φ′(·, a) as a approaches infinity

is equal to the function φ′ of the previous paragraph. To complete the proof of the lemma it has to be

shown that φ′(·, a) = φ(·, a). To do this we show that if P ′ belongs to ∗{P}(j) for some j and ψ belongs

to ∗D(V,W ) then (
φ′(·, a) ψ̂) = (φ(·, a), ψ̂).

Now
(
φ(·, a), ψ̂) is equal to

u∑
x=1

1
ωx(2πi)m

∫ ∑{∫
∗Θ\∗M×K

E
(
mk, dΦ(ssoxH), ss

o
xH
) ˆ̄ψ(mk) dmdk

}
dH.

The outer integral is over U
(†s,X(s), a) and the inner sum is over s ∈ Ω(i)(sx, Cx). Referring to (7.a)

we see that if ψ is the Fourier transform of Ψ(·) this equals

u∑
x=1

1
ωx(2πi)m

∫ ∑
t

∑
s

(
N(tsoxs

−1, ssoxH) dΦ(ss
o
xH), dΨ(−tH̄)

)
dH

which is, of course, equal to
(
φ′(·, a), ψ̂).

There is a corollary to this lemma which is of great importance to us.

Corollary. Let ∗P be a cuspidal subgroup belonging to some element of {P} let P belong to ∗{P}(i),
let s belong to ∗S(i) and let F belong to L

(
S(s),E(V,W )

)
. If a is the largest distinguished subspace

which s̃ contains and if r is the inverse image in s of a singular hyperplane of the function E(·, F,H)

on †s which meets U
(†s,X(s),∞) then r̃ contains a.

Suppose that s̃ is the complexification of a distinguished subspace a of h. The assertion in this

case is that E(·, F,H) has no singular hyperplanes which meet U
(†s,X(s),∞) and it will be proved

by induction on dim a − dim ∗a. We first take this difference to be one. Let H0 be a unit vector in
†s ∩ a(i). If X is a singular point of E(·, F,H) lying in U

(†s,X(s),∞) let

E(g, F,X + izH0) =
∞∑

k=−m
zk Ek(g)
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with m > 0 and E−m(g) �≡ 0. If s belongs to Cx choose sx = s and let Fn(·), for sufficiently large n,

be that element of Lx(V,W ) such that Fns (H) vanishes identically if s is not in †Ω(s, s), Fso(H) equals

nzmF if H = X + izH0 with 1/2n < z < 1/n and equals zero otherwise, and Fr(H) = Fso(rsoH) if

r belongs to †Ω(s, s). Since, for large n,

‖Fn(·)‖2 = n2/2π
∫ 1/n

1/2n

(
N(so,X)F,F

)
dz

lim
n→∞ ‖F

n(·)‖2 = 0. Let fn be the image of Fn(·) in ∗L′({P}, {V },W ). An argument like that used in

the proof of the lemma shows that

fn(g) = n/2π
∫ 1/n

1/2n

zmE(g, F,X + izH0) dz

= n/2π
∞∑

k=−m

∫ 1/n

1/2n

zm+k Ek(g) dz,

so that

lim
n→∞ fn(g) =

1
4π

E−m(g)

uniformly on compact sets. Comparing the two results we conclude that E−m(g) ≡ 0, and this is

impossible.

Suppose that dim a− dim ∗a = n is greater than one and that the assertion is true when dim a−
dim ∗a is less than n. If t in ∗S(j) belongs to the same equivalence class as s, if P belongs to ∗{P}(i), if F

belongs to L
(
S(s),E(V,W )

)
, if P ′ belongs to ∗{P}(j), if F ′ belongs to L

(
S(t),E(V,W )

)
, if s belongs

to †Ω(s, s), and if t belongs to †Ω(s, t) then

∣∣(N(tsos−1, ssoH)F,F ′)∣∣2
is at most (

N(ssos−1, ssoH)F,F
)(

N(tsot−1, tsoH)F ′, F ′)
which in turn equals (

N(so, ssoH)F,F
)(

N(to, tsoH)F ′, F ′)
if H belongs to U

(†s,X(s),∞). Consequently if a singular hyperplane of the function
(
N(tsos−1,

ssoH)F,F ′)meets U
(†s,X(s),∞) it must be a singular hyperplane of

(
N(to, tsoH)F ′, F ′). This fact

will be used to show that, if for some F in L
(
S(s),E(V,W )

)
the hyperplane †r meets U

(†s,X(s),∞)
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and is a singular hyperplane of E(·, F,H), then for some j, some t in ∗S(j) such that the largest distin-

guished subspace contained in t̃ is larger than ∗a, some P ′ in ∗{P}(j), some F ′ in L
(
S(t),E(V ′,W )

)
,

and some t in Ω(s, t) the function
(
N(to, tsoH)F ′, F ′) has †r as a singular hyperplane. Suppose not,

and let r be the inverse image of †r in s. Select a unit normal to r and consider the functionResr E(·, ·, ·)
defined on

∗A∗T\G× L
(
S(r), E(V,W )

)× {†r}.
If r belongs to †Ω(j)(r) for some j, then Resr N(r, ·) is zero unless there is a t in ∗S(j) such that the

largest distinguished subspace contained in t̃ is ∗a, and a t in †Ω(s, t) such that r is the restriction to r

of t. Then

Re
{− r

(
X(r)

)}
= −r

(
X(s)

)
= X(t)

belongs to +(†a(j)). It follows from the corollary to Lemma 5.1 that if F is in L
(
S(r),E(V,W )

)
and

Resr E(·, F,H) is defined at H in U(†r,X(r),∞), then it belongs to ∗L({P}, {V },W ). Choosing such

an H which is not real we contradict Lemma 7.3.

Let us, for brevity, call those s in S such that s̃ is the complexification of a distinguished subspace

principal. To complete the induction and to prove the lemma for those elements of S which are not

principal we will use the functional equations proved in Lemma 7.4. Let C be an equivalence class in
∗S and choose a principal element s in C . If s1 is in ∗S(i) and belongs to C and if P in ∗{P}(i) is given

we can choose the set of representatives P (i,k), 1 ≤ k ≤ m′
i, so that it contains P . Choose

F y = ⊕s∈Ω0(s,C)F
y
s

with F ys in L
(
S(ss),E(js)

)
so that the set of vectors ⊕t∈Ω(s,C)F

y
t (H)with

F yt (H) =
∑

s∈Ω0(s,C)

M(tsos−1, ssoH)F ys

is a basis for the range of M(H)when M(H) is defined. There are elements

Gy = ⊕s∈Ω0(s,C)G
y
s

such that if {Gt
∣∣ t ∈ Ω(s,C)} belongs to the range of M(H) and

Gt =
v∑
y=1

cy F
y
t
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for all t then

cy =
∑

s∈Ω0(s,C)

(Gs, Gys).

If F belongs to L
(
S(s1),E(V (i,k),W )

)
for some k, s1 belongs to †Ω(s, s1), and

v∑
y=1

cy(H)F
y
t (H) =M(tsos−1

1 , s1s
oH)F

for all t then

(7.t) E(g, F, s1s
oH) =

v∑
y=1

cy(H)
{ ∑
s∈Ω0(s,C)

E(g, F ys , ss
oH)

}
.

Suppose that s1 is principal and that r1 is the inverse image in s1 of a singular hyperplane of E(·, F, ·).
Let t in ∗S(j) be an element of C which contains a distinguished subspace ∗a1 larger than ∗a such

that for some P ′ in ∗{P}(j), some F ′ in L
(
S(t),E(V ′,W )

)
, and some t1 in †Ω(s1, t) the function(

N(to, t1so1H)F ′, F ′) has †r1 as a singular hyperplane. Since N(to, t1so1H) depends only on the

projection of t1so1H on the orthogonal complement of ∗a1 the hyperplane t1s
o
1(r̃1) contains ∗a1. There

is a principal element in ∗S1 which is equivalent to t; it may be supposed that we have chosen s to be

this element. Choose a t in Ω(s, t) which leaves every element of ∗a1 fixed. Let us take s1 to be t−1
1 tot.

Then E(g, F, s1s
oH) has a singular hyperplane †r which meets U

(†s,X(s),∞) such that r̃ contains

∗a1. As usual the inverse image r of †r in s is written as X(r) + r̃. Now

cy(H) =
∑

t∈Ω0(s,C)

(
M(tsos−1

1 , s1s
oH)F,Gyt

)

and is thus analytic on U
(†s,X(s),∞). Consequently for some s in Ω0(s, C) the function

E(·, F ys , ssoH) has r for a singular hyperplane. In other words we can suppose that if s belongs

to ∗S(k), there is a P in ∗{P}(k), and an F in L
(
S(s),E(V,W )

)
such that E(·, F, ·) has a singular

hyperplane †r which meets U
(†s,X(s),∞) and is such that r̃ contains ∗a1. Let ∗P1 be the cuspidal

subgroup with split component ∗a1 which belongs to P and let E1(·, ·, ·) be the associated function on

∗A1
∗T1\G× L

(
S(s),E(V,W )

)× †s′
if †s′ is the projection of s on the orthogonal complement of ∗a1. It follows from the relation (7.c) that

E1(·, F, ·) must have a singular hyperplane in †s′ which meets U
(†s′,X(s),∞) and this contradicts

the induction assumption.
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The general case now follows readily from the relation (7.t). Indeed a singular hyperplane

of the function E(·, F,H) defined on †s1, the projection of s1 on the orthogonal complement of ∗a,

can meet U
(†s,X(s),∞) only if it is a singular hyperplane of

(
M(tsos−1

1 ,H)F,Gt
)

for some s1

in †Ω(s, s1) and some t in Ω0(s, C) and hence, by (7.s), a singular hyperplane of
(
M(so1,H)F,F

)
.

Since M(so1,H) depends only on the projection of H on the orthogonal complement of the largest

distinguished subspace contained in s̃1 the corollary follows.

The principal assertion of the paper can now be formulated as follows.

Theorem 7.1. There are q + 1 unique collections Sm =
⋃r
i=1 S

(i)
m of affine spaces of dimension m

and unique Eisenstein systems, one belonging to each element of Sm, 0 ≤ m ≤ q, which satisfy the

hypotheses of Lemma 7.5 such that if ∗P is a cuspidal subgroup belonging to some element of {P}
and ∗Lm({P}, {V },W ) is the closed subspace of ∗L({P}, {V },W ) associated to Sm by Lemma 7.6

then, if ∗q is the dimension of ∗a,

∗L({P}, {V },W ) =
q∑

m=∗q

∗Lm({P}, {V },W )

and ∗Lm1({P}, {V },W ) is orthogonal to ∗Lm2({P}, {V },W ) if m1 �= m2.

We will use induction on m to establish the existence of these collections and the associated

Eisenstein system. Let us first describe the form the induction step takes, then show how to start

the induction, and then carry it out in general. Let m be an integer with 0 ≤ m ≤ q and suppose

that we have defined the collections S
(i)
n , 1 ≤ i ≤ r for all n > m and that if n1 �= n2 the spaces

∗Ln1({P}, {V },W ) and ∗Ln2({P}, {V },W ) are orthogonal. Suppose that for 1 ≤ i ≤ r we have also

defined a collection S(i) of distinct affine subspaces of a
(i)
c of dimension m and a collection T (i) of

not necessarily distinct affine subspaces of a
(i)
c of dimension m − 1 and that we have associated an

Eisenstein system to each element of S(i) and T (i). Suppose that every space in S(i) or T (i) meets

Di and that only a finite number of the elements of S(i) or T (i) meet each compact subset of a
(i)
c .

In particular then if s belongs to S(i) or T (i) the point X(s) lies in Di; we assume also that ReX(s)

belongs to +a if a is the orthogonal complement of the largest distinguished subspace contained in s̃

and to the closure of +a(s) if a(s) is the orthogonal complement of s̃ in a(i). Recall that +a(s) has been

defined in the discussion preceding Lemma 2.6. If s belongs to S(i) it is said to be of type A if for every

positive number a we have defined a non-empty convex cone V (s, a)with centre X(s) and radius ε(a)

so that if a1 is less than a2 then V (s, a1) contains V (s, a2), so that every singular hyperplane of the

associated Eisenstein system which meets the closure of the cylinder C
(
s, ε(a), a

)
meets the closure of
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U
(
s,X(s), a

)
but no singular hyperplane meets the closure of U(s, Z, a) if Z belongs to V (s, a), and so

that the closure of V (s, a) is contained in Di. An element t of T (i) is said to be of type B if it satisfies,

in addition to these conditions, the condition we now describe. Let P belong to {P}(i), let ∗P belong

to P , and let F belong to L
(
S(t),E(V,W )

)
. If a is the largest distinguished subspace which t̃ contains

and if r is the inverse image in t of a singular hyperplane of the function E(·, F, ·), which is defined on
†t, which meets U

(†t,X(t),∞) then r̃ contains a. If t lies in T (i) it is said to be of type C if for every

positive number a we have defined a non-empty open convex subset V (t, a) of t̃ so that if a1 is less

than a2 then V (t, a1) contains V (t, a2) so that no singular hyperplane meets the closure of U(t, Z, a) if

Z belongs to V (t, a), and so that {ReZ ∣∣Z ∈ V (t, a)} is contained in the interior of the convex hull of

(a(i))+ and the closure of +a(t). We assume that every element of S(i) is of type A and every element

of T (i) is of type B or C .

Suppose that ∗P is the cuspidal subgroup belonging to some element of {P} and let Q be the

projection of ∗L({P}, {V },W ) onto the orthogonal complement of

q∑
n=m+1

∗Ln({P}, {V },W )

We suppose that Q is zero if m is less than ∗q but that if m ≥ ∗q then for any P in ∗{P}(i), any Φ(·) in
∗H(V,W ), any P ′ in ∗{P}(j), andΨ(·) in ∗H(V ′,W ) and any positive number a the difference between(
R(λ,A)Qφ̂, ψ̂

)
and the sum of∑

s∈∗S(i)

∑
s∈†Ω(j)(s)

1
(2πi)m′

∫ (
N(s,H) d

(
(λ− 〈H,H〉)−1Φ(H)

)
, dΨ(−sH̄)

)
dH

and ∑
t∈∗T (i)

∑
t∈†Ω(j)(t)

1
(2πi)m′−1

∫ (
N(t,H) d

(
(λ− 〈H,H〉)−1Φ(H)

)
, dΨ(−sH̄)

)
dH

is analytic for Reλ > R2 − a2 if Z(s) belongs to V (S, a) and Z(t) belongs to V (t, a). The integrals

are over U
(†s, Z(s), a) and U

(†t, Z(t), a) respectively. The integer m′ equals m− ∗q. We also suppose

that the difference between
(
Qφ̂,R(λ̄, A) ψ̂

)
and the sum of∑

s∈∗S(i)

∑
s∈†Ω(j)(s)

1
(2πi)m′

∫ (
N(s,H) dΦ(H), d

(
(λ̄− 〈−sH̄,−sH̄〉)−1Ψ(−sH̄)

))
dH

and ∑
t∈∗T (i)

∑
t∈†Ω(j)(t)

1
(2πi)m′−1

∫ (
N(t,H) dΦ(H), d

(
(λ̄− 〈−sH̄,−sH̄〉)−1Ψ(−sH̄)

))
dH
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is analytic for Reλ > R2 − a2. The integrals are again over U
(†s, Z(s), a) and U

(†t, Z(t), a).
It is an easy matter to verify that the collections S(i) satisfy the conditions of Lemma 7.5. First

of all, Lemma 7.6, with m replaced by n > m, make it obvious that λ(f) commutes with Q if f(·)
belongs to †I0, so that it is only necessary to verify that for each ∗P and each positive number a there

are polynomials ri(·), 1 ≤ i ≤ r′, on †a(i) for which (7.p) and (7.q) have the required property. Since

there are only a finite number of t in ∗T (i) for which U
(†t, Z(t), a) is not empty, a polynomial ri(·) can

be chosen so that, for all P and P ′, all such t, and all t in †Ω(j)(t), the function N(t,H) dri(H) vanishes

identically on †t but so that ri(·) does not vanish identically on †s if s belongs to ∗S(i). It may also be

supposed that if s belongs to S(i) and s intersects

{H ∈ Di
∣∣ ‖ ImH‖ ≤ a}

then, for all P and P ′ and all s in †Ω(j)(s), the functions N(s,H) dri(H) on †s has no singular

hyperplanes which meet

{H ∈ Di
∣∣ ‖ ImH‖ ≤ a}

The conditions of the last paragraph imply that with such polynomials the conditions of Lemma 7.5

are satisfied. To see this one has to use the argument preceding Lemma 7.1 in the way that Lemma 7.1

is used below. We will take S
(i)
m to be S(i).

We must now examine the expression

(7.u)
∑

s∈∗S(i)

∑
s∈†Ω(j)(s)

1
(2πi)m′

∫
U
(†s,Z(s),a

) (N(s,H) dΦ(H), dΨ(−sH̄)
)
dH.

Since the set S =
⋃r
i=1 S

(i) is finite we may suppose that, for each positive a, the cones V (s, a), s ∈ S,

all have the same radius ε(a). We may also suppose that ε(a) is such that for each a and each s there is

a cone W (s, a) with centre X(s) and radius ε(a) such that if s belongs to Ω(s, t) for some t in S and Z

belongs to sso
(
W (s, a)

)
there is no singular hyperplane of the Eisenstein system associated to t which

meets the closure of U(t, Z, a). It may also be supposed that if r and s belong to S the collections

{
sso
(
W (s, a)

) ∣∣ s ∈ Ω(s, t)}
and {

rrp
(
W (r, a)

) ∣∣ r ∈ Ω(r, t)}
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are the same if Ω(r, s) is not empty and that if s ∈ Ω(s, t) and t ∈ Ω(s, t) then

sso
(
W (s, a)

) ∩ tso
(
W (s, a)

) �= φ

implies s = t. Choose for each s in S and each s in Ω(s, s) a point Z(s, s) in sso
(
W (s, a)

)
. According

to the remarks following the proof of Lemma 7.1 there is a collection T
(i)
1 of m− 1 dimensional affine

spaces and for each t in T
(i)
1 an Eisenstein system belonging to t and a cone V (t, a), with centre X(t)

and some radius δ(a), such that, for all ∗P , (7.u) is equal to the sum of

(7.v)
∑∑∑ 1

ω(s)(2πi)m

∫
U
(†s,Z(s,r),a

) (N(s,H) dΦ(H), dΨ(−sH̄)
)
dH

and

(7.w)
∑

t∈∗T (i)
i

∑
t∈†Ω(k)(t)

1
(2πi)m′−1

∫
U
(†t,Z(t),a

) (N(t,H) dΦ(H), dΨ(−tH̄)
)
dH

with Z(t) in V (t, a), and a sum of terms of the same type as (7.m). The sums in (7.v) are over s ∈ ∗S(i),

r ∈ Ω(s, s), and s ∈ †Ω(j)(s) and the number of elements in Ω(s, s) is ω(s). We can certainly suppose

that, with the cones V (t, a), the elements of T
(i)
1 are all of type B. The supplementary condition on

elements of type B must of course be verified but that is not difficult. We can also suppose that the sets

U ′ occurring in the terms of the form (7.m) all lie in

{H ∣∣ ‖ReH‖ < R, ‖ ImH‖ ≥ a}

This implies that ifΦ(H) is replaced by (λ−〈H,H〉)−1 Φ(H)orΨ(H) is replaced by (λ̄−〈H,H〉)−1Ψ(H)

the difference between (7.u) and the sum of (7.v) and (7.w) is analytic for Reλ > R2 − a2. If t belongs

to T
(i)
1 we will also have to know that if a is the orthogonal complement of the largest distinguished

subspace contained in t̃ then ReX(t) lies in +a and that if a(t) is the orthogonal complement in a(i) of

t̃ then ReX(t) lies in the closure of +a(t). The space t is a singular hyperplane of some s in S(i) such

that t meets U
(
s,X(s),∞); consequentlyReX(t) = X(s). The first point follows form the corollary to

Lemma 7.6 because according to it we can assume that the largest distinguished subspaces contained

in s̃ and t̃ are the same. If α is a positive root of a(i) let Hα be such that

〈H,Hα〉 = α(H)

for all H in a(i). The second point follows from the observation that the closures of +a(s) and +a(t) are

the non-negative linear combinations of the elements Hα where α varies over the positive roots which

vanish on s̃ and t̃ respectively.
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Let C1, · · · , Cu be the equivalence classes in ∗S and for each x choose a principal element sx in

Cx. Let ryx, 1 ≤ y ≤ vx, be a subset of Ω(sx, sx) such that every element of Ω(sx, sx) can be written in

the form ssoxr
y
x with a unique y and a unique s in †Ω(sx, sx). Choose for each x a point Zx in W (sx, a)

and if s belongs to Cx and s belongs to Ω(s, s) let

Z(s, s) = tsox(Zx)

if t is the unique element of Ω(sx, s) such that

sso
(
W (s, a)

)
= tsox

(
W (sx, a)

)
.

The expression (7.v) is equal to

u∑
x=1

vx∑
y=1

1
ω(sx)(2πi)m

′

∫ ∑∑(
N(tsoxs

−1, ssoxH) dΦ(ss
o
xH), dΨ(−tH̄)

)
dH.

The integral is taken overU
(†sx, ryx(Zx), a) and the sums are over t ∈ Ω(j)(sx, Cx) and s ∈ Ω(i)(sx, Cx).

It follows from Lemma 7.6 that each of these integrands is analytic in the closure of C
(
sx, ε(a), a

)
; con-

sequently the argument used in the proof of Lemma 7.1 shows that the sum is equal to

(7.x)
u∑
x=1

1
ωx(2πi)m

′

∫ ∑∑(
N(tsoxs

−1, ssoxH) dΦ(ss
o
xH), dΨ(−tH̄)

)
dH.

(the integral is here taken over U(†sx,X(sx), a)) plus a sum of terms of the form

1
ωx(2πi)m

′

∫
U ′

∑∑(
N(tsoxs

−1, ssoxH) dΦ(ss
o
xH), dΨ(−tH̄)

)
dH

where U ′ is an open subset of an m′-dimensional oriented real subspace of †sx which lies in

{H ∈ †sx
∣∣ ‖ReH‖ < R, ‖ ImH‖ ≥ a}.

In any case if Φ(H) is replaced by (λ− 〈H,H〉)−1Φ(H) orΨ(H) is replaced by (λ̄− 〈H,H〉)−1Ψ(H)

the difference between (7.x) and (7.v) is analytic for Reλ > R2 − a2. If φ̂m is the projection of φ̂

on ∗Lm({P}, {V },W ) it follows readily from Lemma 7.6 that the difference between
(
R(λ,A) φ̂m, ψ̂

)
and (7.x) with Φ(H) replaced by (λ − 〈H,H〉)−1Φ(H) is analytic for Reλ > R2 − a2 and that the

difference between
(
φ̂m, R(λ̄, A) ψ̂

)
and (7.x) withΨ(H) replaced by (λ̄− 〈H,H〉)−1Ψ(H) is analytic
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for Reλ > R2 − a2. In conclusion, if Q′ is the projection of ∗L({P}, {V },W ) on the orthogonal

complement of
q∑

n=m

∗Lm({P}, {V },W )

and R(i) is the union of T (i)
1 and T (i) then the difference between

(
R(λ,A)Q′φ̂, ψ̂

)
and

∑∑ 1
(2πi)m′−1

∫ (
N(r,H) d

(
(λ− 〈H,H〉)−1Φ(H)

)
, dΨ(−sH̄)

)
dH

and the difference between
(
Qφ̂,R(λ̄, A) ψ̂

)
and

∑∑ 1
(2πi)m′−1

∫ (
N(r,H) dΦ(H), d

(
(λ̄− 〈−rH̄,−rH̄〉)−1Ψ(−rH̄)

)
dH

are analytic for Reλ > R2 − a2. The sums in the two displayed expressions are over r ∈ ∗R(i),

r ∈ †Ω(j)(r), and the integral is taken over U
(†r, Z(r), a). In particular if m = ∗q these sums are empty

so that
(
R(λ,A)Q′φ̂, ψ̂

)
is entire and, hence Q′φ̂ = 0. Consequently

∗L({P}, {V },W ) = ⊕qm=∗q
∗Lm({P}, {V },W ).

We observed after defining an Eisenstein system that, for 1 ≤ i ≤ r, we could define in a simple

manner an Eisenstein system belonging to a(i). If R(i) = {a(i)} and if for all positive numbers a we

take V (a(i), a) to be {H ∈ A(i) ∩ a(i)
∣∣ ‖H‖ < R} then it follows readily from the relation (4.p) that the

difference between
(
R(λ,A) φ̂, ψ̂) and

∑∑ 1
(2πi)q′

∫ (
N(s,H) d

(
(λ− 〈H,H〉)−1Φ(H)

)
, dψ(−sH̄)

)
dH

and the difference between
(
φ̂, R(λ̄, A) ψ̂

)
and

∑∑ 1
(2πi)q′

∫ (
N(s,H) dΦ(H), d

(
(λ̄− 〈−sH̄,−sH̄〉)−1Ψ(−sH̄)

)
dH

are analytic forReλ > R2− a2 if Z(r) belongs to V (r, a). The ranges of summation and integation are

the same as above, and the integer q′ equals q − ∗q.

We now change notations so that m− 1 or q is m and show that from the collections R(i) we can

construct collections S(i) and T (i) which satisfy the induction assumption. Apart from the uniqueness

this will complete the proof of the lemma. The construction is such that the analytic conditions on

the associated Eisenstein systems are manifest; so only the less obvious geometrical conditions will

be verified. Suppose that r belongs to R(i) and is of type C ; since {ReH ∣∣H ∈ V (r, a)} lies in the
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interior of the convex hull of (a(i))+ and the closure of +a(r) there is an open cone with centre X(r)

whose projection on a(i) lies in the interior of this convex hull. We tentatively let S(i) be the set of

distinct affine subspaces s of a(i) such that s = r for some r in R(i). For each s in S(i) and each positive

number a we choose a non-empty convex open cone V (s, a) with centre X(s) and radius δ(a) so that

V (s, a1) contains V (s, a2) if a1 is less than a2, so that if s = r and r belongs to R(i) then every singular

hyperplane of the Eisenstein system associated to r which meets the closure of the cylinder C
(
s, δ(a), a

)
meets the closure of U

(
s,X(s), a

)
but so that no such hyperplane meets the closure of U

(
s, Z, a

)
if Z

belongs to V (s, a), and so that the closure of V (s, a) lies in Di. If s = r with r in R(i) and of type C

we further demand that {ReH ∣∣H ∈ V (s, a)} lie in the interior of the convex hull of (s(i))+ and the

closure of +a(s).

Suppose that r belongs to R(i) and is of type C . Choose the unique s in S(i) such that r = s.

Suppose that Y belongs to V (s, a), that Z belongs to V (r, a), and that the segment joining ReY and

ReZ meets the projection on a(i) of the singular hyperplane t of the Eisenstein system belonging to r.

We have oberved that the closure of +a(r) is contained in the closure of+a(t). Thus {ReH ∣∣H ∈ V (r, a)}
and {ReH ∣∣H ∈ V (s, a)} lie in the interior of the convex hull of (a(i))+ and the closure of +a(t). The

intersection of the convex hull of these two sets with {ReH ∣∣H ∈ t} also lies in this set. Take a point

in this set, which is not empty, and project it on a(t); the result is ReX(t). Thus ReX(t) lies in the

interior of the convex hull of the closure of +a(t) and the projection of (a(i))+ on a(t). If α is a positive

root of a(t), if H lies in (a(i))+, and if H ′ is the projection of H on a(t) then α(H′) = α(H) which is

positive. Thus ReX(t) lies in the interior of the convex hull of a+(t) and the closure of +a(t). This is
+a(t) itself. If β1,, · · · , βp, are the simple roots of a(t) then

ReX(t) =
p∑
j=1

bj Hβj,

with bj > 0. Let α1,, · · · , αq, be the simple roots of a(i) and let

βj, =
q∑
k=1

bjkαk,

with bjk ≥ 0. If
p∑
j=1

bjbj� = 0

for some % then bj� = 0 for all j and t̃ contains the distinguished subspace of a(i) defined by αk,(H) = 0,

k �= %. It follows readly that if a is the orthogonal complement of the largest distinguished subspace

which t̃ contains then ReX(t) lies in +a.
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The elements of T (i) will arise in two ways. Suppose that r belongs to R(i) and is of type C .

Choose the unique s in S(i) such that r = s. As a consequence of Lemma 7.1 we can choose a collection

T
(i)
(r)

of affine subspaces of a(i) of dimension m− 1 and a collection of Eisenstein sytems, one belonging

to each element of T (i)
(r) so that the difference between

∑
r∈†Ω(j)(r)

1
(2πi)m′

∫
U
(†r,Z(r),a

) (N(r,H) dΦ(H), dΨ(−sH̄)
)
dH

and the sum of

∑
s∈†Ω(j)(s)

1
(2πi)m′

∫
U
(†s,Z(s),a

) (Nr(s,H) dΦ(H), dΨ(−sH̄)
)
dH

and ∑
t∈∗T (i)(r)

∑
t∈†Ω(j)(t)

1
(2πi)m′−1

∫
U
(†t,Z(t),a

) (N(t,H) dΦ(H), dΨ(−sH̄) dH

is a sum of integrals of the form (7.m). Of course Z(r) belongs to V (r, a), Z(s) belongs to V (s, a), and

Z(t) belongs to a suitably chosen V (t, a). Referring to the previous paragraph we see that t, with the

given V (t, a), may be supposed to be of type C . The meaning of the function Nr(s,H) is clear.

Suppose that r belongs to R(i) and is of type B. Choose the unique s in S(i) such that r = s.

Appealing now to the remarks following the proof of Lemma 7.1 we obtain the same conclusions as

above except that the elements of T (i)(r) are of type B. We let

T (i) =
⋃

r∈R(i)

T (i)(r)

If s belongs to S(i) we associate to s the Eisenstein system obtained by adding together the Eisenstein

systems belonging to those r in R(i) such that r = s. If the sum is not an Eisenstein system, that is,

if it vanishes identically, we remove s from S(i). The collections S(i) and T (i) satisfy the induction

assumptions.

The proof of the uniqueness will merely be sketched. We apply the second corollary to Lemma 7.4.

Suppose that the collections Sm, 0 ≤ m ≤ q, of affine spaces together with an associated collection

of Eisenstein systems satisfy the conditions of the theorem. Let ∗P be a cuspidal subgroup of rank m

belonging to some element of {P}. If P belongs to ∗{P}(i) and Φ(·) belongs to ∗H(V,W ) the projection
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of φ̂ on the subspace of ∗L({P}, {V },W ) spanned by eigenfunctions of the operator A is uniquely

determined and is equal to ∑
s∈∗S(i)

E
(
·, dΦ(X(s)),X(s))

It follows readily that the points X(s), s ∈ ∗S(i), and the functions E
(·, F,X(s)

)
, F ∈ L

(
S(s),

E(v,W )
)
, are uniquely determined.
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Appendix I

Dirichlet Series Associated with Quadratic Forms

1. The object of this paper is to describe and prove the functional equations for some Dirichlet

series suggested by Selberg in [6]. In that paper he introduces invariant differential operators on the

space of positive definite m ×m matrices; it is unnecessary to describe the operators explicitly now.

The series considered here arise when one attempts to construct eigenfunctions of these differential

operators which are invariant under the unimodular substitutions T → UTU′. U is the integral and

has determinant±1. As Selberg observes, if s = (s1, · · · , sm) is a complex m-tuple and sm+1 = 0 then

ω(T, S) = |T |m+1
4

m∏
k=1

|T |sk−sk+1− 1
2

k

is an eigenfunction of the invariant differential operators. |T |k is the subdeterminant formed from

the first k rows of columns of T . Since the differential operators are invariant, if A is a non-singular

m × m matrix ω(A′TA, s) is also an eigenfunction with the same eigenvalues. In particular, if A

is a sub-diagonal matrix with diagonal elements ±1 then ω(ATA′, s) = ω(T, S). Consequently the

function

(1) Ω(T, s) =
∑
{U}

ω(UTU ′, s)

is, at least formally, an eigenfunction which is invariant under unimodular substitutions. The sum is

over a set of representatives of right-cosets of the group, V , of sub-diagonal matrices in the group of

unimodular matrices. The series converges when Re(sk+1 − sk) > 1
2 , k = 1, · · · ,m − 1. One hopes

to obtain eigenfunctions for other values of s by continuing Ω(T, S) analytically. If this is possible it

is natural to expect that Ω(T, s) satisfies some functional equations. The form of these equations is

suggested by the eigenvalues of the differential operators corresponding to the eigenfunction ω(T, s)

for they are symmetric functions of s. To be precise, if

a(t) = t(t− 1)π−t Γ(t) ζ(2t)

and

(2) Ψ(T, s) =
∏
i>j

a
(1
2
+ si − sj

)
Ω(T, s)

then Ψ(T, s) is an entire symmetric function of s.
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Similar series may be obtained from the modular group and the generalized upper half-plane.

If Z = X + iY with Y > 0, the functions

χ(Z, s) = ω
(
Y, s1 +

m+ 1
4

, · · · , sm + m+ 1
4

)
are eigenfunctions of the invariant differential operators. Moreover χ(Z, s) is invariant under the

group, N , of modular transformations of the form[
A B
0 A′−1

]
with A in V . Form the function

(3) X(Z, s) =
∑
{M}

χ
(
M(z), s

)
.

The sum is over a set of representatives of right cosets of N in the modular group. The series converges

when Re(sk+1 − sk) > 1
2 , k = 1, · · · ,m− 1, and Re(s1) > 1

2 . Let

(4) Φ(Z, s) =
∏
i>j

a
(1
2
+ si − sj

)
a
(1
2
+ si + sj

)∏
i

a
(1
2
+ si

)
X(Z, s).

Φ(Z, s) may be analytically continued to an entire symmetric function of s. Moreover

Φ(Z,±s1, · · · ,±sm) = Φ(Z, s1, · · · , sm).

So Φ is invariant under the Weyl group of the symplectic group just as Ψ is invariant under the

Weyl group of the special linear group.

Professor Bochner suggested the possibility of defining analogous functions for any algebraic

number field. In order to do this I describe alternative definitions of the series (1) and (3). For this some

elementary algebraic facts are required and it is convenient to state these for an arbitrary algebraic

number field, k, of finite degree over the rationals.

Let zm be the m-dimensional coordinate space over k. The elements of zm are taken to be row

vectors. All modules over o, the ring of integers of k are to be finitely generated and to be contained in

zm. Such a module, n, is said to be of rank k if the subspace z of zm generated by n is of dimension k.

The rank of a module will often be indicated by a subscript. In the following m will denote some fixed

module in zm of rank m. A submodule n of m is said to be primitive (with respect to m) if n = z ∩ m.

If nk is a submodule of m the quotient space zm/z may be identified with zm−k and the image of m is
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a module m′ in zm−k. If nk is primitive the kernel of the mapping m → m′ is nk. It is known that there

is a submodule p of m which maps onto m′ such that m = nk ⊕ p.

Now suppose that k is the rational field and that m consists of the elements of zm with integral

coordinates. If U = (u′
1, · · · , u′

m)
′ is a unimodular matrix with rows u1, · · · , um let nk be the submodule

of m consisting of integral linear combinations of u1, · · · , uk . nk is clearly of rank k and it is primitive.

For, let U−1 = (w1, · · · , wn) then if u =
∑k
i=1 aiui is integral uwj = αj , 1 ≤ j ≤ k, is integral. So to

each unimodular U there is associated an ascending chain n1 ⊂ · · · ⊂ nm of primitive submodules. If

U and V give rise to the same chain then

u1 = a11v1

u2 = a21v1 + a22v2

...

um = am1 + · · · + ammvm

with integral aij ; or U = AV with

A =


a11

a21 a22
...

am1 · · · amm


Comparing determinants one sees that A is unimodular. Consequently U and V belong to the same

right-coset of V . Conversely let n1 ⊂ n2 · · · ⊂ nm be an ascending chain of primitive submodules.

There is a vectoru1 such that n1 consists of integral multiples ofu1 . Let n1⊕p1 be the decomposition of m

described above. Then n2∩p1 is of rank 1 and consists of integral multiples of a vector u2. The elements

of n2 are integral linear combinations of u1 and u2. Continuing in this manner one obtains vectors

u1, · · · , um such that nk consists of integral linear combinations of u1, · · · , uk . Moreover the matrix

(u′
1, · · · , u′

m)′ is unimodular since u1, · · · , um span nm = m. Thus there is a one-to-one correspondence

between right-cosets of V and ascending chains of primitive submodules.

It remains to describe ω(UTU ′, s) in terms of the chain. Suppose once again that k is an arbitrary

algebraic number field. For convenience in calculating, the kth exterior product of zm is taken to be z(m
k )

and the coordinates of the kth exterior product of the vectors α1, · · · , αk are the k× k subdeterminants

of the matrix (α′
1, · · · , α′

k)
′. If n is a module in zm then nk is the module in z(m

k) generated by the kth

exterior products of the vectors in n. If nk is of rank k it is often convenient to write nk instead of nkk; in

this case nk is of rank 1.
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Now if U = (u′
1, · · · u′

m)′ is a unimodular matrix and n1 ⊂ · · · ⊂ nm the associated chain of

submodules nk consists of integral multiples of uk = u1 ∧ · · · ∧ uk , the exterior product of u1, · · · , uk.

Moreover, if T k is the
(
m
k

) × (m
k

)
matrix formed from the k × k subdeterminants of T then, by the

general Lagrange identity,

|UTU ′|k = ukT kuk
′
.

Since ukT kuk
′

depends only on T and nk it may be written T{nk}. Then

ω(U ′TU, s) = T{nm}
m+1

4

m∏
k=1

T{nk}sk−sk+1− 1
2

= T{m}m+1
4

m∏
k=1

{nk}sk−sk+1− 1
2

and

Ω(T, s) = T{m}m+1
4

∑ m∏
k=1

T{nk}sk−sk+1− 1
2 .

The sum is over all ascending chains of primitive submodules of the module of integral vectors.

Now let k be an algebraic number field of degree n over the rationals. Let k1, · · · , kn be the

conjugates of k; as usual ki is real if 1 ≤ i ≤ r1 and complex if r1 < i ≤ n; moreover ki+r2 = k̄i,

r1 < i ≤ r1+r2. LetT be then-tuple (T1, · · · , Tn). Ti, 1 ≤ i ≤ r1, is a positive definitem×m symmetric

matrix; Ti, ri < i ≤ n, is a positive definite m×m Hermitian matrix, and Ti+r2 = T̄i, r1 < i ≤ r1+ r2.

If n is a module of rank 1 in zm let α be a nonzero vector in n and let a = {a ∈ k
∣∣ aα ∈ n}. a is an ideal

in k and n = aα. Let

T{n} = N2a
n∏
k=1

αkTkᾱ
′
k

αk is of course the kth conjugate of α. T{n} is independent of the vector α chosen. If nk is of rank k set

T{nk} = T k{nk}; T k = (T k1 , · · · , T kn ). Finally, if m is a finitely generated module in zm of rank m set

(1′) Ω(T,m, s) = T{m}m+1
4

∑ m∏
k=1

T{nk}sk−sk+1− 1
2 .

This sum is over all ascending chains, n1 ⊂ n2 ⊂ · · · ⊂ nm, of primitive submodules of m. Let

a(t) = t(t− 1)π−nt2−2r2t∆tΓ(t)r1Γ(2t)r2ζ(2t).

∆ is the absolute value of the discriminant of k and ζ(·) is the zeta-function of k. Then set

(2′) Ψ(T,m, s) =
∏
i>j

a
(1
2
+ si − sj

)
Ω(T,m, s)
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Theorem 1. (i) The series (1′) converges if Re(sk+1 − sk) > 1
2 , k = 1, · · · ,m− 1.

(ii) Ψ(T,m, s) may be analytically continued to an entire symmetric function of s.

In order to carry out an induction on m it is necessary to add

(iii) If s = σ + iτ , then |Ψ(T,m, s)| ≤ f(σ)
∏
i �=j(|sk − sj |+ 1).

Of course f depends on T and m but no attempt is made here to determine precise estimates for Ψ.

Now consider the series (3). If M(Z) = X1 + iY1 and

M =
(

A B
C D

)
then Y1 = (CZ̄ +D)′−1

Y (CZ +D)−1 so Y −1
1 = (CZ +D)Y −1(CZ +D)∗. Moreover

ω(Y1, s1, · · · , sm) = ω′(Y −1
1 ,−sm, · · · ,−s1)

and if E is the matrix (δi,n+1−i),

ω′(Y, s) = ω(EY E, s).

Consequently the series (3) may be written

∑
ω′
(
(CZ +D)Y −1(CZ +D)∗,−sm − m+ 1

4
, · · · ,−s1 − m+ 1

4

)
.

>From an m× 2m matrix forming the lower half of a modular matrix, M , we may construct the chain

n1 ⊂ · · · ⊂ nm of primitive lattices; nk is the lattice spanned by the last k rows of M . nm is orthogonal

to itself with respect to the skew- symmetric form

m∑
i=1

xiym+i − yixm+1 = xJy′

Two modular matrices give rise to the same ascending chain if and only if they belong to the same right

coset of N .

Conversely, given such an ascending chain of lattices, let {u1, · · · , uk} span nk. Then it is possible

to choose v1, · · · , vm so that viJu′
j = δij . Suppose v1, · · · , vp have been chosen. Select vp+1 so that

vp+1Ju′
j = δp+1,j and then subtract a suitable linear combination of u1, · · · , up so that vp+1Jv′j = 0,

j = 1, · · · , p+ 1. It is clear that the matrix with rows vm, · · · , v1, um, · · · , u1 is modular.

Now let W be the real part of the matrix (Z, I)′Y −1(Z̄, I); then

(CZ +D)Y −1(CZ +D)∗ = (C,D)W (C,D)′.
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Using the previous notation the series (3) may now be written

∑ m∏
k=1

W (nk}sm−k−sm−k+1− 1
2 ;

the sum is over all ascending chains, n1 ⊂ · · · ⊂ nm, of primitive submodules of the module of the

integral vectors with the property that nm is orthogonal to itself.

Now let k be an algebraic number field as before. Let W = (W1, · · · ,Wn) be an n-tuple of

matrices satisfying the same conditions as above; let m be a module of rank 2m in z2m; and let

J be a non-degenerate skew-symmetric form with coefficients in k. We suppose, moreover, that

JiW̄
−1
i J̄ ′

i = Wi, Ji denoting the conjugates of J , and that mJ = m−1. m−1 is defined in Section 5.

Then define

(3′) χ(W,m, s) =
∑ m∏

k=1

W{nk}sm−k−sm−k+1− 1
2

the sum is over all ascending chains, n1 ⊂ · · · ⊂ nm, of primitive submodules of M such that nm is

orthogonal to itself with respect to J . Let

(4′) Φ(W,m, s) =
∏
i>j

a
(1
2
+ si − sj

)
a
(1
2
+ si + sj

)∏
k

a
(1
2
+ si

)
χ(W,m, s).

Theorem 2. (i) The series (3′) converges if Re(sk+1 − sk) > 1
2 , k = 1, · · · ,m− 1 and Re(s1) > 1

2 .

(ii) Φ(W,m, s) may be analytically continued to an entire symmetric function of s.

(iii) Φ(W,m,±s1, · · · ,±sm) = Φ(W,m, s1, · · · , sm).

The discussion of Section 2 and pp. 58–77 of [5] should provide the reader with the necessary

facts about Hecke’s theta-formula and its relation to Dirichlet series. It leads immediately to a proof

of Theorem 1 when m = 2. For other values of m the theorem is proved by induction in Section 4.

Section 3 contains a preliminary discussion of the series (1′). In Section 5 another functional equation

forΨ(T,m, s) is proved and Theorem 2 is proved in Section 6. In Section 7 the relation ofΨ(T,m, s) to

some Dirichlet series investigated by Koecher is discussed and in Section 8 a result of Klingen on the

convergence of Eisenstein series is derived.
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2. Let T = (T1, · · · , Tn) be as above and consider the series

(5) Θ(T, a1, · · · , am) =
∑
α

e−
∏
c
∑

n

k=1
(αkTkᾱ

′
k).

a1, · · · , am, are m ideals in k; c =
(∏

i∆ai
) −1

mn with ∆ai = ∆N2ai; the sum is over all vectors

α = (a1, · · · , am) with ai in ai; and αk is the kth conjugate of α. Let {ai1, · · · , ain} be a basis for ai,

then ai =
∑
j aijxij with integral xij and

n∑
k=1

αkTkᾱ
′
k = (x11, · · · , x1n, x21, · · · xmn)S(x11, · · · , xmn)′

where, denoting for the moment conjugates by superscripts and setting Tk = (tkij), S is the matrix

a1
11 · · · an11
...

...
a1
1n · · · an1n

. . .
a1
m1 · · · a1

m1
...

...
a1
mn · · · anmn





t111
. . .

tn11

· · ·
t11m

. . .
tn1m

...
...

t1m1

. . .
tnm1

· · ·
t1mn

. . .
tnmm





ā1
11 · · · ā1

11
...

...
ān11 · · · ān1n

. . .
ā1
m1 · · · ā1

mn
...

...
ānm1 · · · ānmn


The usual considerations show that

(6) Θ(T, a1, · · · , am) =
∏
k

|Tk|− 1
2 Θ(T̄−1, a′1, · · · , a′m)

where, if d is the different, a′i = d−1a−1
i . It is not difficult to show that

(7) |Θ(T, a1, · · · , am)− 1| ≤ Ce−
1
2‖(πcS)−1‖−1‖(πcS)−1‖mn

2 .

Let m be a module in zm of rank m and consider the series

ϕ(T,m, t) =
∑
{n1}

T{n1}−t;

the sum is over all primitive submodules of m of rank 1. If n is any submodule of m of rank 1 let

z be the one-dimensional subspace of zm generated by n and set n1 = z ∩ m. n1 is primitive and if

b = {a ∈ k
∣∣ an1 ∈ n} then b is an integral ideal and n = bn1. This representation of n as the product

of an integral ideal and a primitive submodule is unique. Thus

ζ(2t)ϕ(T,m, t) =
∑
n

T{n}−t.
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The sum is now over all submodules of m of rank 1 and ζ(2t) is the zeta function of k. It is known

that m = Am′; A is some m ×m matrix in k and m′ = {α = (a1, · · · , am)
∣∣ a1 ∈ a, a2, · · · , am ∈ o},

a being some ideal in k. If A′TA = (A′
1T1A1, · · · , A′

nTnAn), Ai being the conjugates of A, then

ϕ(T,m, t) = ϕ(A′TA,m′, t). Consequently it may be assumed that m = m′. It is also convenient to

take |Ti| = 1, i = 1, · · · ,m; then

ζ(2t)ϕ(T,m, t) =
∑
{ai}

(N2ai)−t
∑
α

m∏
k=1

(αkTkᾱ′
k)

−t.

ai runs over a set of representatives of ideal classes; α = (a1, · · · , an) with a1 ∈ aa−1
i , aj ∈ a−1

i ,

j = 2, · · · ,m; α = 0 is excluded from the sum and no two α differ by multiplication with a unit. For

if α is of this form for some i then aiα is a submodule of rank 1 in m. Conversely if n is a submodule

of rank 1 it has previously been observed that it may be written as bβ where β is a vector in zm and b

is an ideal in k. If b is in the class of ai, let b = ai(a) and α = aβ, then n = aiα and α is of the above

form. Moreover α is uniquely determined up to multiplication by a unit.

Multiply by

(Na)
2t
m π−nt2−2r2t∆t Γ(t)r1Γ(2t)r2 .

and apply the usual transformation to obtain∑
{ai}

∑
α

∫ ∞

−∞
dz1 · · ·

∫ ∞

−∞
dzr+1e

−πc
∑r+1

k=1
dk(αkTkᾱ

′
k)ezk

et
∑r+1

k=1
dkzk .

r + 1 = r1 + r2, ci =
(
∆(aa−1

i )∆(a−1
i )m−1

) −1
mn and di = 1, 1 ≤ i ≤ r1, di = 2, ri < i ≤ r + 1. The

familiar change of variables gives

(8)
∑
{ai}

N

w

∫ ∞

−∞
entv dv

∫ 1
2

− 1
2

dη1 · · ·
∫ 1

2

− 1
2

dηr

{
Θ
(
evT

r∏
�=1

|ε�|2η	 , aa−1
i , a−1

i , · · · , a−1
i

)
− 1
}
.

w is the order of the group of roots of unity in k and {ε1, · · · , εr} is a system of fundamental units; for

the meaning of N the reader is referred to [5].

It is easy to conclude from the estimate (7) that, if t = σ + iτ and σ > m
2
≥ 1

2
,

(9) |ϕ(T,m, t)| ≤ f(σ) ∗

∗Here and in the following f(σ) is used to denote a function of the real part of a complex vector

which majorizes a function of the complex vector. The function it denotes may vary from line to line.



Breaking the region of integration into two parts and changing the variable of integration, (8)

becomes

∑
{ai}

N

w

∫ ∞

0

entv
∫ 1

2

− 1
2

dη1 · · ·
∫ 1

2

− 1
2

dηr

{
Θ
(
evT

r∏
�=1

|ε�|2η	 , aa−1
i , · · · , a−1

i

)
− 1
}

+
∑
{ai}

N

w

∫ ∞

0

e−ntv
∫ 1

2

− 1
2

dη1 · · ·
∫ 1

2

− 1
2

dηr

{
Θ
(
e−vT

r∏
�=1

|ε�|2η	 , aa−1
i , · · · , a−1

i

)
− 1
}
.

Apply the formula (6) to obtain

∑
{ai}

N

w

∫ ∞

0

entv
∫ 1

2

− 1
2

dη1 · · ·
∫ 1

2

− 1
2

dηr

{
Θ
(
evT

r∏
�=1

|ε�|2η	 , aa−1
i , a−1

i , · · · , a−1
i

)
− 1
}

+
∑
{ai}

N

w

∫ ∞

0

en
(

m
2 −t
)
v

∫ 1
2

− 1
2

dη1 · · ·
∫ 1

2

− 1
2

dηr

{
Θ
(
evT̄−1

r∏
�=1

|ε�|2η	 , d−1a−1ai, d
−1ai, · · · , d−1ai

)
−1
}

− Nh

wnt
− Nh

wn
(
m
2
− t
) .

h is the class number of the field.

It is now easy to prove Theorem 1 when m = 1 or 2. Indeed if m = 1, z1 = k, m is an ideal a,

andΨ(T,m, s) = N2sa
∏n
i=1 t

s
i . Since, when m = 2,Ψ(T,m, s1, s2) is homogeneous of degree s1 + s2

in Ti, i = 1, · · · , n, it may be assumed that |Ti| = 1. It may also be assumed that m has the form of the

module m′ described above. Then

Ω(T,m, s1, s2) = T{m}s2+ 1
4 ϕ
(
T,m,

1
2
+ s2 − s1

)
and the series (1′) converges when Re

(
1
2
+ s2 − s1) > 1 or Re(s2 − s1) > 1

2
. Moreover, since

T{m} = N2a, Ψ(T,m, s1, s2) is
(
(s2 − s1)2 − 1

4

)
T{m}s1+s2 times the function represented by (10)

when t = 1
2 + s2 − s1. Thus it is an entire function. Since |Ti| = 1

T̄−1
i =

[
0 1
−1 0

]
Ti

[
0 −1
1 0

]
and

Θ
(
evT̄−1

r∏
�=1

|ε�|2η	 , d−1a−1ai, d
−1ai

)
= Θ

(
evT

r∏
�=1

|ε�|2η	 , d−1ai, d
−1a−1ai

)
.

However the function (10) does not depend on the representatives of the ideal classes chosen; so ai

could be replaced by daa−1
i . The result is the same as that obtained by interchanging s1 and s2; thus

(10) is a symmetric function of s1 and s2 and so is Ψ(T,m, s1, s2).
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3. If nk and mk are two primitive submodules of m of rank k such that that nkk = mkk then nk and mk

lie in the same k-dimensional subspace of zm and, thus, must be the same. Consequently the series for

Ω(T,m, s) is majorized by, setting s = σ + iτ ,

T{m}σm+ m−1
4

m−1∏
k=1

ϕ
(
T k,mk,

1
2
+ σk+1 − σk

)
.

So, when 1
2 + σk+1 − σk > 1

2

(
m
k

)
, k = 1, · · · ,m− 1, the series converges and, using (9),

(11) |Ψ(T,m, s)| ≤ f(σ)
∏
i �=j
(|si − sj |+ 1).

This is not the region of convergence promised in part (i) of Theorem 1; however (i) will follow from

(ii) and Landau’s Theorem on Dirichlet series with positive coefficients.

Before proceeding with the proof of (ii) it will be convenient to describe certain useful arrange-

ments of the series (1′). That series may be written

T{m}m+1
4

∑
{nk}

{∑ k∏
j=1

T{nj}sj−sj+1− 1
2

}{∑ m∏
j=k+1

T{nj}sj−sj+1− 1
2

}
.

The outer sum is over all primitive submodules of rank k. The first inner sum is over all chains,

n1 ⊂ n2 ⊂ · · · ⊂ nk, of primitive submodules ending at nk; the second is over all chains, nk ⊂ nk+1 ⊂
· · · ⊂ nm, beginning at nk.

It was observed above that for each nk there is a submodule p such that m = nk ⊕ p. Choose

bases {α1, · · · , αk} and {αk+1, · · · , αm} for the subspace of zm generated by nk and p respectively.

Then

n′ =
{
α = (a1, · · · , ak)

∣∣ ∑ aiαi ∈ nk
}

and

p′ =
{
β = (bk+1, · · · , bm)

∣∣ ∑ biαi ∈ p
}

are finitely generated modules in zk and zm−k. To simplify calculations assume that

n′ = {(a1, · · · , ak)
∣∣ a1 ∈ b, a2, · · · , ak ∈ o}; b is some ideal in k. Let B be the matrix (α′

1 · · ·α′
k)

′ and

A the matrix (α′
1 · · ·α′

m)
′; then set R = BTB̄′. It is convenient to omit any explicit reference to the

components in such equations.

There is a one-to-one correspondence between chains n1 ⊂ · · · ⊂ nk ending at nk and chains

n′
1 ⊂ · · · ⊂ n′

k in n′. Moreover T{nj} = R{n′
j}. Consequently the first inner sum is

Ω
(
R, n′, s1 − sk+1 − k + 1

4
, · · · , sk − sk+1 − k + 1

4

)
.
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There is also a one-to-one correspondence between chains nk ⊂ nk+1 ⊂ · · · ⊂ nm, chains in p,

and chains q1 ⊂ q2 ⊂ · · · ⊂ qm−k in p′. Introduce the n-tuple of matrices

S =

ATĀ′
(1,···,k,k+1; 1,···,k,k+1) · · · ATĀ′

(1,···,k,k+1; 1,···,k,m)

...
...

ATĀ′
(1,···,k,m; 1,···,k,k+1) · · · ATĀ′

(1,···,k,m; 1,···,k,m)


If H = (hij) is any matrix H(i1,···,i	; j1,···,j	) is the determinant of the matrix (hiujv ), u, v = 1, · · · , %.

Since

S(i1,···,i	; j1,···,j	)

is equal to

(ATĀ′
(1,···,k; 1,···,k))

�−1 ×ATĀ′
(1,···,k,i1,···i	; 1,···,k,j1,···,j	),

it is not difficult to show that

(12) T{nk+�} = N2b
∏
(ATĀ′

(1,···,k; 1,···,k))
1−� S{q�}.

The product is the product of the indicated subdeterminants of the components of ATĀ′. Consequently

the second inner sum with the factor T{m}m+1
4 incorporated is the product of

T{m} k
4 (N2b)sk+1−m−k−1

4

∏
(ATĀ′

(1,···,k; 1,···,k))
−sk+2···−sm−m−k−1

4

and

Ω(S, p′, sk+1, · · · , sm).

However

(13) N2b
∏

ATĀ′
(1,···,k; 1,···,k) = T{nk}

and the factor T{nk}−sk+2−···−sm−m−k−1
4 may be absorbed into the first sum. The result is

T{m} k
4

∑
{nk}

(N2b)sk+1+···+smΩ(S, p′, sk+1, · · · , sm) Ω(R, n′, r)

with

r =
(
s1 − sk+1 − · · · − sm − m

4
, · · · , sk − sk+1 − · · · − sm − m

4

)
.

There is a corresponding representation of Ψ:

(14) Ψ(T,m, s) = γk(s)T{m} k
4

∑
nk

(N2b)sk+1+···+smΨ(S, p′, sk+1, · · · , sm)Ψ(R, n′, r)
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with

γk(s) =
∏

i>k, j≤k
a
(1
2
+ si − sj

)
.

The series (14) converges if σk+1 − σk ≥ b (b is a suitable positive constant), k = 1, · · · ,m − 1.

Assume that parts (ii) and (iii) of the theorem are true for k and m− k. Then the series is symmetric in

the first k and last m− k coordinates of s. Thus, if for some permuation π of {1, · · · ,m} which leaves

the sets {1, · · · , k} and {k + 1, · · · ,m} invariant σπ(k+1) − σπ(k) ≥ b, k = 1, · · · ,m − 1, the series will

converge and the estimate (11) will be valid. It will now be shown that the series converges in the

region defined by

(15) σi − σj ≥ cm−k(b) + ck(b); i > k, j ≤ k

cm−k(b) and ck(b) are constants obtained from the following lemma.

Lemma. If γ = (γ1, · · · , γm) is an m-tuple of real numbers and b is a positive constant there are

m-tuples of γ′, γ′′ such that

(i) γ = 1
2
(γ′ + γ′′),

(ii) |γi − γ′
i| ≤ cm(b) and |γi − γ′′

i | ≤ cm(b),

(iii) there are permutations π′ and π′′ such that

γ′
π′(k+1) − γ′

π′(k) ≥ b, γ′′
π′′(k+1) − γ′′

π′′(k) ≥ b, k = 1, · · · ,m− 1.

cm(b) is a constant depending only on m and b.

Suppose the lemma has been proven for 1, · · · ,m− 1. It may be supposed that c1(b) ≤ c2(b) ≤
· · · ≤ cm−1(b) and that γ1 ≥ γ2 ≥ · · · ≥ γm. If γ1 − γm ≥ (m − 1)(2cm−1(b) + b

)
then for some

k, γk − γk+1 ≥ 2cm−1(b) + b. Apply the lemma to the vectors (γ1, · · · , γk) and (γk+1, · · · , γm) to

obtain γ′
1, · · · γ′

m, γ′′
1 , · · · , γ′′

m. These m-tuples satisfy the conditions of the lemma if cm(b) ≥ cm−1(b).

If γ1 − γm < (m− 1)(2cm−1(b) + b
)

set a = 2(m− 1)cm−1(b) +mb and

γ′
1 = γ1 + (m− 1)a, γ′

2 = γ2 + (m− 2)a, · · · , γ′
m = γm,

γ′′
1 = γ1 − (m− 1)a, γ′′

2 = γ2 − (m− 2)a, · · · , γ′′
m = γm.

Then
γ′
k − γ′

k+1 = a+ γk − γk+1 ≥ a− (m− 1)(2cm−1(b) + b
)
= b,

γ′′
k+1 − γ′′

k = a+ γk+1 − γk ≥ a− (m− 1)(2cm−1(b) + b
)
= b.
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This proves the lemma if cm(b) = (m− 1)a.

If s = (s1, · · · , sm) = (σ1 + iτ1, · · · , σm + iτm) is in the region defined by (13) apply the lemma

to (σ1, · · · , σk) and (σk+1, · · · , σm) to obtain σ′
1, · · · , σ′

m, σ′′
1 , · · · , σ′′

m. Set

s′ = (σ′
1 + iτ, · · · , σ′

m + iτm),

s′′ = (σ′′
1 + iτ, · · · , σ′′

m + iτm),

s(t) = ts′ + (1− t)s′′.

Then the series (14) may be written

(16)
T{m} k

4

∑
{nk}

e−
1
4

2πi

∫ 1+i∞

1−i∞
dt+

∫ −i∞

i∞
dt et

2
γk
(
s(t)
)
(N2b)sk+1(t)+···+sm(t)

·Ψ(S, p′, sk+1(t), · · · , sm(t)
)
Ψ
(
R, n′, r(t)

)
.

Because of the assumed validity of (iii) the integrals converge. Inverting the order of integration and

summation gives a series with a convergent majorant of the form

|et2 |
∏
i �=j

(|si(t)− sj(t)|+ 1
) ∑
{nk}

f(nk, σ).

σ is the real part of t. Consequently (14) converges and is equal to

T{m} k
4
e−

1
4

2πi

∫ 1+∞

1−∞
dt+

∫ −i∞

i∞
dt et

2
Ψ
(
T,m, s(t)

)
.

So Ψ(T,m, s) is defined; moreover

|Ψ(T,m, s)| ≤ c

∫ ∞

−∞
e−t

2
{∏
i �=j

(|si(it)− sj(it)|+ 1
)
f(σ′) +

∏
i �=j

(|si(1 + it)− sj(1 + it)|+ 1) f(σ′′)
}
dt

≤ f(σ)
∏
i �=j
(|si − sj |+ 1).

σ is the real part of s.
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4. The theorem will now be proved by induction. It is sufficient to show that for each N > 0,Ψ(T,m, s)

may be continued analytically to the region:
∑m−2
i=1 |σi| < N , σm−1 and σm arbitrary. The diagram

represents a decomposition of this region into four overlapping parts. The region I lies in the region

defined by (15) when k = m − 1. The region II lies in the region defined by (15) when k = m − 2.

Moreover when k = m − 1 or m − 2 the assumption of Section 3 is part of the induction hypothesis.

Consequently Ψ(T,m, s) may be continued analytically to the regions I and II. Moreover it will be

symmetric there in s1 and s2; consequently it may be extended to III. The inequality (11) will be valid

in these regions.

IV I

III
II

To extendΨ to the region IV let

ξ1 = sm−1 + sm

ξ2 = sm−1 − sm

Then, taking c large enough, the formula

Ψ(T,m, s) =
e−ξ

2
2

2πi

∫ c+i∞

c−i∞
dζ +

∫ −c−i∞

−c+i∞

eζ
2
Ψ
(
T,m, s1, · · · , sm−2,

ξ1+ζ
2 , ξ1−ζ2

)
ζ − ξ2

effects the desired continuation to IV. Moreover the inequality (11) is easily shown to remain valid.
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5. If m is a module of rank m in zm let m−1 = {β ∣∣αβ′ ∈ o for all α ∈ m}. As an essentially simple

consequence of the definition

(17) Ψ(T,m, s) = Ψ(T̄−1,m−1,−s)

Indeed, to establish this it is sufficient to show that

(18) Ω(T,m, s1, · · · , sm) = Ω(T̄−1,m−1,−sm, · · · ,−s1)

in the common region of convergence for the two series. If nk is a submodule of rank k let qm−k =

{β ∈ m1
∣∣αβ′ = 0 for all α ∈ nk}. qm−k is primitive and corresponding to the chain n1 ⊂ · · · ⊂ nm is

the chain q1 ⊂ · · · ⊂ qm = m−1. To prove (18) it is sufficient to show

(19) T{m}m+1
4

m∏
k=1

T{nk}sk−sk+1− 1
2 = T̄−1{m−1}m+1

4

m−1∏
k=1

T̄−1{qm−k}sk−sk+1− 1
2

Of course, s0 = 0. Replacing T by ATĀ′ if necessary, it may be assumed that

nk = {α = (a1, · · · , ak, 0, · · · , 0)
∣∣ ai ∈ ai}, k = 1, · · · ,m;

ai, i = 1, · · · ,m, being some ideal in k. Then

qm−k = {β = (0, · · · 0, bk+1, · · · , bm)
∣∣ bi ∈ a−1

i }, k = 0, · · · ,m− 1.

Since both sides are homogeneous of degree
∑
i si in Tj it may be assumed that |Tj | = 1, j = 1, · · · , n.

Then

T{nk} = N2(a1 · · · ak)
∏

T(1,···,k; 1,···,k)

and
T̄−1{qm−k} = N2(a−1

m · · · a−1
k+1)

∏
T̄−1

(k+1,···,m;k+1,···,m)

= N2(a−1
m · · · a−1

k+1)
∏

T(1,···,k; 1,···,k).

The product is over the indicated subdeterminants of the components ofT or T̄−1; there is no convenient

place for the subscripts. Thus the left side of (19) is

(N2a1)s1+
1−m

4 (N2a2)s1+
3−m

4 · · · (N2am)sm+ m−1
4

m∏
k=1

∏
(T(1,···,k; 1,···,k))sk−sk+1− 1

2

and the right side is

(N2a−1
m )−sm+ 1−m

4 · · · (N2a−1
1 )−s1+

m−1
4

m∏
k=1

∏
(T(1,···,k; 1,···,k))sk−sk+1− 1

2 ,

which establishes (19).
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6. The proof of Theorem 2 will now be given omitting, however, that part of the analysis which is

merely a repetition of the above. As in the proof of Theorem 1, the series for χ(W,m, s) is majorized by

m∏
k=1

ϕ
(
W k,mk,

1
2
+ sm−k+1 − sm−k

)
with s0 = 0. Consequently it converges for

(20) Re(sk+1 − sk) > b, k = 1, · · · ,m− 1, Re(s1) > b.

b is some positive constant. The series for Φ(W,m, s) may be written

∏
i>j

a
(1
2
+ si − sj

)∏
i

a
(1
2
+ si

) ∑
{nm}

∑∏
i>j

a
(1
2
+ si − sj

) m∏
k=1

W{nk}sm−k−sm−k+1− 1
2 .

The outer sum is over all primitive submodules which are orthogonal to themselves with respect to J ;

the inner sum is over all chains n1 ⊂ · · · ⊂ nm of primitive submodules which end at nm. For each

nm choose a basis {α1, · · · , αm} for the subspace of z2m spanned by nm. Set A = (α′
1 · · ·α′

m)′ and let

V = AWĀ′; then the inner sum is

Ψ
(
V, n,−sm − m+ 1

4
, · · · ,−s1 − m+ 1

4

)
with n = {(a1, · · · , am)

∣∣ ∑ aiαi ∈ nm}. Then

(21) Φ(W,m, s) =
∏
i>j

a
(1
2
+ si + sj

)∏
i

a
(1
2
+ si

)∑
Ψ
(
V, n,−sm − m+ 1

4
, · · · ,−s1 − m+ 1

4

)
Using the lemma and the techniques of Section 3 it can be shown that the series (21) converges for

Re(si) > bi, i = 1, · · · ,m, and represents a symmetric function of (s1, · · · , sm).
To continue the function to negative values of the arguments the arrangement

(22)
∏
i>j

a
(1
2
+ si+ sj

)
a
(1
2
+ si− sj

) m∏
i=2

a
(1
2
+ si

)∑∑
a
(1
2
+ s1

) m∏
k=1

W{nk}sm−k−sm−k+1− 1
2

is used. The outer sum is over all chains n1 ⊂ · · · ⊂ nm−1 such that nm−1 is orthogonal to itself; the

inner sum is over all primitive submodules nm such that nm−1 ⊂ nm ⊂ n⊥
m−1, n⊥

m−1 is the orthogonal

complement of nm−1 with respect to J .

Let {β1, · · · , βm+1} be a basis for the subspace of z2m generated by nm−1. Set

B = (β′
1 · · · β′

m+1)
′ and U = BWB̄′. Let

p =
{
(b1, · · · , bm+1)

∣∣ ∑ biβi ∈ n⊥
m−1

}
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and

q =
{
(b1, · · · , bm+1)

∣∣ ∑ biβi ∈ nm−1

}
.

Now in the argument preceding (12) replace nk by q, m by p and T by U . We conclude that there is a

module q2 of rank 2 in z2, an n-tuple S of 2× 2 matrices, an ideal b, and a one-to-one correspondence

between the primitive submodules nm and primitive submodules, q1, of rank 1 in q2 such that

W{nm} = N2bS{q1}.

Consequently the inner sum is

m−1∏
k=1

W{nk}sm−k−sm−k+1− 1
2 (N2b)−s1−

1
2 Ψ
(
S, q2,−s1 − 1

4
,−1
4

)
which equals

m−1∏
k=1

W{nk}sm−k−sm−k+1− 1
2 (N2b)−s1−

1
2Ψ
(
S, q2,−14 ,−s1 − 1

4

)
or

m−1∏
k=1

W{nk}sm−k−sm−k+1− 1
2 (N2b)−s1−

1
2 S{q2}−s1Ψ

(
S, q2, s1 − 1

4
,−1
4

)
However, by formulae (12) and (13)

S{q2} = (N2b)−2W{n⊥
m−1}W{nm−1}.

By the proof of the formula (19)

W{n⊥
m−1} =W{m} W̄−1{qm−1}.

qm−1 is the orthogonal complement of n⊥m−1 in m−1. Since m−1 = mJ , qm−1 = nm−1J . Moreover

W{m} =∏i |Wi|N2(m2m); (m−1)2m = |J |m2m, so that N2(n2m) = N−1(|J |); and JiW̄
−1
i J̄−1

i = Wi,

so that N2(|J |) =∏i |Wi|2. Consequently W{m} = 1. Finally

W{n⊥
m−1} = W̄−1{nm−1J} =W{nm−1}.

Thus the inner sum in (22) equals

m−1∏
k=1

W{nk}sm−k−sm−k+1− 1
2W{nm−1}−s1−s2− 1

2 (N2b)s1−
1
2Ψ
(
S, q2, s1 − 1

4
,−1
4

)
.

So it is an entire function of s1 which is invariant when s1 changes sign. Using the previous methods

it may be concluded that Φ(T,m, s) may be continued to the region: Re(si) > bi, i = 2, · · · ,m, s1

arbitrary. It may then be continued to any domain obtained from this one by permuting the variables.

The continuation to the entire m-dimensional space is then effected by Cauchy’s integral formula.
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7. Koecher [4] establishes, at least when k is the rational field, a functional equation for the series

(23) ζk(T,m, t) =
∑
{n}

T{n}−t

where the sum is taken over all submodules of rank k of a given module m, of rank m, contained in zm.

It will be shown in this section that for special values of s the functionΨ(T,m, s) reduces, apart from a

factor depending only on t, to ζk(T,m, t) and that the functional equation for ζk is a special case of the

functional equations for Ψ. The factor however has too many zeros and it is apparently not possible to

deduce Koecher’s results on the poles of ζk from the fact that Ψ is entire. These may be established by

separate arguments similar to those above.

The series in (23) may be reduced to a sum over primitive submodules. If n is a submodule of

rank k then n may be uniquely represented as ank; nk is a primitive submodule and a is an integral

right ideal in the ring of endomorphisms of nk. Using the theory of algebras, as presented in [1], it is

not difficult to show that (23) equals

(24) ζ(2t) · · · ζ(2t− (k − 1)) ∑
{nk}

T{nk}−t,

the sum now being over all primitive submodules of rank k. ζ(·) is the zeta-function of the given field

k.

Using formula (14) of Section 3 it may be shown by induction that

(25) Ψ
(
T,m, t− m− 1

4
, t− m− 3

4
, · · · , t+ m− 1

4

)
= γmT{m}t

with

γm =
(Nh

wn

)m−1(2 · 1
4

)m−2(3 · 2
4

)m−3

· · · (m− 1)(m− 2)
4

m!
2m−1

b(1)m−1b
(3
2

)m−2

· · · b
(m− 1

2

)
,

b(t) = π−nt2−2r2t∆tΓ(t)r1Γ(2t)r2ζ(2t).

Indeed, by the induction hypothesis and formula (14) with k = 1

Ψ
(
T,m, s1, t− m− 3

4
, · · · , t+ m− 1

4

)
=

m∏
i=2

a
(1
2
+ si − s1

)
γm−1T{m}t+ 1

2

∑
{n1}

T{n1}s1−t−
m+1

4

Setting s1 − t− m+1
4

= −m
2

or s1 = t− m−1
4

and applying formula (10), we obtain (25).
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As a consequence

Ψ
(
T,m, s1, · · · , sk,−m− 1

4
,−m− 1

4
+
1
2
, · · · ,−m− 1

4
+

m− k − 1
2

)
is equal to

γk(s) γm−kT{m} k
4

∑
{nk}

(N2b)sk+1+···+smS(p′)
−k
4 Ψ
(
R, n′, s1 + (m− k)

k

4
− m

4
, · · ·

)
or

γk(s) γm−k
∑
{nk}

Ψ
(
R, n′, s1 − m− k

4
, · · · , sk − m− k

4

)
.

Now let sk = −t+ m−1
4

, · · · , s1 = −t+ m−1
4
− k−1

2
and apply (25) again to obtain

(26) γkγm−kγk(s)
∑
{nk}

T{nk}−t.

Let

a′(t) = π−nt2−2r2t∆tΓ(t)r1Γ(2t)r2 ,

ψ(t) = t
(
t− 1

2

)
a′(t) ζ(2t),

and

Ψk(T,m, t) =
k−1∏
j=0

(
t− j

2

)(
t− m− j

2

)
a′
(
t− j

2

)
ζk(T,m, t).

Finally, let Ψk(t) be the function obtained by multiplying together all terms of the matrix
ψ
(
t− k

2

)
ψ
(
t− k+1

2

)
· · · ψ

(
t− m−2

2

)
ψ
(
t− k−1

2

) ...

...
ψ
(
t− 1

2

)
· · · Ψ

(
t− m−k−1

2

)


Then, if k < m, (26) equals

γk γm−k ψk(t)Ψk(T,m, t).

Since ψ(t) = ψ
(

1
2
− t
)
, replacing t by m

2
− t in the above matrix gives the same result as reflecting it in

its centre. Consequently

ψk(t) = ψk

(m
2
− t
)
.
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Making use of the functional equations for Ψ, we see that

γk γm−k ψk(t)Ψk(T,m, t)

is equal to

Ψ
(
T,m,−t+

m− 1
4

− k − 1
2

, · · · ,−t+
m− 1
4

,−m− 1
4

, · · · ,−m− 1
4

+
m− k − 1

2

)
or

Ψ
(
T̄−1,m−1, t− m− 1

4
, · · · , t− m− 1

4
+

k − 1
2

,
m− 1
4

− m− k − 1
2

, · · · , m− 1
4

)
.

This is the same as

T{m}−k
2Ψ
(
T̄−1,m−1, t−m

2
+

m− 1
4

−k − 1
2

, · · · , t−m

2
+

m− 1
4

,−m− 1
4

, · · · ,−m− 1
4

+
m− k − 1

2

)
which equals

γk γm−k ψk
(m
2
− t
)
T{m}−k

2Ψk
(
T̄−1,m−1,

m

2
− t
)
.

So

Ψk(T,m, t) = T{m}−k
2Ψk

(
T̄−1,m−1,

m

2
− t
)
.

This is the functional equation of Koecher.

Suppose for the moment thatk is the rational field. According to equation (3.17) of [4],Ψk(T,m, t)

is zero at the numbers common to
{
0, 1

2 , · · · , k−1
2

}
and

{
m−k+1

2 , · · · , m2
}

. However if k = m, T is the

identity matrix, and m is the lattice of integral vectors, then

Ψk(T,m, t) =
m−1∏
j=0

Ψ
(
t− j

2

)

But, as is well known, Ψ(t) does not vanish for real values of t.

In view of this it seems worthwhile to sketch a proof of the

Proposition. Ψk(T,m, t) is an entire function.

It is only necessary to establish this for k < m since Ψm(T,m, t) may be expressed in terms

of the zeta-function of k and the proposition follows from the known properties of this zeta function.
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The proof is by induction. For k = 1 the proposition is a consequence of the discussion in Section 2.

Suppose it is true for k − 1. Set

α(t) = t
(
t− k

2
)
a′(t) ζ(2t),

β(t) =
k−2∏
j=0

(
t− j

2

)(
t− m− j − 1

2

)
a′
(
t− j

2

)
ζ(2t− j),

γ(t) = t
(
t− m− k + 1

2

)
a′(t)Ψ(2t),

and consider the series

(27) α(s1)β(sk) γ
(
s1 + sk − k − 1

2

) ∑
n1⊂nk

T{n1}−s1T{nk}−sk .

The sum is over all chains of primitive submodules of ranks 1 and k. Call the function defined by (27)

ϕ(T,m, s1, sk). To establish the proposition it will be shown that ϕ is an entire function of s1 and sk

and that

ϕ(T,m, 0, t) =
Nhk

2wn
Ψk(T,m, t).

If σ1 and σk are the real parts of s1 and sk the diagram represents a decomposition of the (s1, sk) space.

ϕ(T,m, s1, sk) is clearly analytic in the region I. As before the continuation into the regions II, III, IV

is effected by suitable arrangements of the series (27). Moreover in the regions I, II, III, IV, ϕ will have

only polynomial growth on vertical lines. The proof of this is omitted; the analysis required is the same

as above. Consequently Cauchy’s integral formula may be applied to effect the continuation to the

entire (s1, sk) space.

σ1

σ k

II

III

IV

I
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Since, in the notation of Section 5,

∑
{qk}

T̄−1{qk}−t = T{m}t
∑

{nm−k}
T{nm−k}−t,

the functional equation for Ψk(T,m, t) yields the equality of

(28a)
k−1∏
j=0

(
t− j

2

)(
t− m− j

2

)
a′
(
t− j

2

)
ζ(2t− j)

∑
{nk}

T{nk}−t

and

(28b) T{m}m−k
2 −t

k−1∏
j=0

(
t− j

2

)(
t− m− j

2

)
a′
(m− j

2
− t
)
ζ(m− j − 2t)

∑
{nm−k}

T{nm−k}t−m
2 ,

in the sense that the functions represented by these series are equal. For brevity some equalities in the

proof of the proposition have been written in this manner.

The first arrangement of the series is, in the notation of the argument preceding formula (12),

(29) β(sk) γ
(
s1 + sk − k − 1

2

)∑
{nk}

T{nk}−skΨ1(R, n′, s1)

which, as a consequence of (28), equals

(30) α
(k
2
− s1

)
β(sk) γ

(
s1 + sk − k − 1

2

) ∑
nk−1⊂nk

T{nk−1}s1− k
2 T{nk}

k−1
2 −s1−sk .

(30) converges in the part of the region II which is sufficiently far to the left of the σk axis. (29) converges

wherever (27) or (30) converge. Arguments similar to those of Section 3 show that it converges in all of

I and II. In particular, if in (29), s1 is set equal to zero the result is Nhk2wn Ψk(T,m, sk).

The second arrangement is, in the notation of Section 3 but with n1 representing nk,

(31) α(s1) γ
(
s1 + sk − k − 1

2

)∑
{n1}

T{n1}−s1(N2b)−skΨk−1(S, p′, sk).

Using (28) and simplifying, (31) becomes the product of

(32a) α(s1)β
(m− 1

2
− sk

)
γ
(
s1 + sk − k − 1

2

)
T{m}m−k

2 −sk

and

(32b)
∑

T{n1}
k−1
2 −s1−skT{nm−k+1}sk−m−1

2 .
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The sum is over all chains n1 ⊂ nm−k+1. This series converges in that part of the region III which is

sufficiently far below the σ1-axis. Consequently (31) converges in the regions I and III.

Replacing nk by nm−k+1 in the definition of R and n′, write (32) as

α(s1)β
(m− 1

2
− sk

)
T{m}m−k

2 −sk

times ∑
{nm−k+1}

T{nm−k+1}sk−m−1
2 Ψ1

(
R, n′, s1 + sk − k − 1

2

)
.

This is similar to the series (29) and by the same argument may be shown to converge in IV.

It should be remarked that if this sequence of rearrangements is carried one step further the

functional equation is obtained.

The proposition implies that ζk(T,m, t) is a meromorphic function with at most a simple pole at

t = m
2
, · · · , m−k+1

2
. Some information about the residues may be obtained from the equations

γk γm−k ψk
( j
2

)
Ψk
(
T,m,

j

2

)
= γj γm−j ψj

(k
2
)Ψj

(
T,m,

k

2

)
if 1 ≤ j, k < m and

γk γm−k ψk
(m
2

)
Ψk
(
T,m,

m

2

)
= γmT{m}− k

2

if 1 ≤ k < m and j = m. To prove it observe that the left side is the value of Ψ at

(
− j

2
+

m− 1
4

− k − 1
2

, · · · ,− j

2
+

m− 1
4

, · · · ,−m − 1
4

, · · · ,−m− 1
4

+
m− k − 1

2

)
and the right side is the value of Ψ at

(
− k

2
+

m− 1
4

− j − 1
2

, · · · ,−k

2
+

m− 1
4

,−m− 1
4

, · · · ,−m− 1
4

+
m− j − 1

2

)
.

But the second vector is obtained by permuting the coordinates of the first.
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8. Let Zj = Xj + iYj , Yj > 0, be n m×m matrices in the generalized upper half-plane and let k be a

totally-real field of degree n. If nm is a module of rank m in z2m, let α1, · · · , αm be a basis for the vector

space generated by nm and let mm be the module generated over o by α1, · · · , αm. Then nm = amm,

where a is some ideal in k whose class depends only on nm. Let A = (α′
1 · · ·α′

m)′ and set

λ(Z1, · · · , Zn, nm) = Na
∏
i

|Ai(Zi, I)|.

Ai, i = 1, · · · , n, are the conjugates of A. λ(Z1, · · · , Zn; nm) does not depend on the basis chosen. Then

the Eisenstein series are defined by

(33) ϕg(Z1, · · · , Zn; j) =
∑
{nm}

λ(Z1, · · · , Zn; nm)−g

The sum is over those primitive submodules of rank m of the module of integral vectors in z2m which

are orthogonal to themselves with respect to the skew-symmetric form
∑

xiym+i − yixm+i and such

that the ideal a is in the class j. g is an even integer. It will now be shown that the series converges

absolutely if g > m+ 1 (cf. [3]).

Let Wi be the real part of the matrix (Zi, I)′Y −1
i (Z̄i, I) and W the n-tuple (W1, · · · ,Wn). It

follows from the discussion in Section 1 that

(34) |λ(Z1, · · · , Zn; nm)|2 =
∏
i

|Yi|W{nm}.

In the formula (21) set sm = t− 1
2 , sm−1 = t− 1, · · ·, s1 = t− m

2 and obtain, by formula (25),

(35) γm
∏
i>j

a
(1
2
+ si + sj

)∏
i

a
(1
2
+ si

)∑
W{nm}−t,

for V {n} = W{nm}. The sum is over all primitive submodules of rank m which are orthogonal to

themselves. Since (35) is an entire function the series converges to the right of the first real zero of the

coefficient ∏
i>j

a
(1
2
+ si + sj

)∏
i

a
(1
2
+ si

)
That is, where si >

1
2 , i = 1, · · · ,m, or t > m+1

2 . It follows form (34) that (33) converges absolutely if

g > m+ 1.
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Appendix II

Adèle Groups

The principal theorem in the text, Theorem 7.7 is so formulated that it is impossible to understand

its statement without knowing its proof as well, and that is technically complicated. In an attempt

to remedy the situation, whose disadvantages are manifest, I shall reformulate the theorem in this

appendix.

The first, obvious point is that it should be formulated adelicly, for a reductive algebraic group

over a number field F . A will be the adèle ring of F . The typical function space which one has to

understand in applications of the trace formula is of the following sort. Suppose Z is the centre of G

and Z0 a closed subgroup of Z(A) for which Z0Z(F ) is also closed and Z0Z(F )\Z(A) is compact. Let

ξ be a character of Z0 trivial on Z0 ∩ Z(F ), which for the moment we take to be unitary, in order to

postpone the explanation that would otherwise be necessary. Let L = L(ξ) be the space of measurable

functions on ϕ on G(F )\G(A) satisfying

(i) ϕ(zg) = ξ(z)ϕ(g)

(ii)
∫
Z0G(F )\G(A)

|ϕ(g)|2 dg <∞

L is clearly a Hibert space and, of course, G(A) acts by right translations. The decompositions of L

that we seek are to respect the action of G(A). An obvious decomposition is

(1) L(ξ) = ⊕ζL(ζ)

where ζ runs over all extensions of ξ to Z(F )\Z(A). It seems therefore that we might as well take

Z0 = Z(A).

However, this will not do for the induction which lies at the heart of the study of Eisenstein series.

It is even necessary to drop the assumption that Z0Z(F )\Z(A) is compact but it is still demanded that ξ

be unitary. In any case the set of all homomorphisms of Z0Z(F )\Z(A) into R+ is a finite-dimensional

vector space X(R) over R. Multiplication by the scalar r takes χ to z → χ(z)r . The map that

associates to χ ⊗ c the character z → χ(z)c extends to an injection of X(C) into the set of characters

of Z0Z(F )\Z(A). Thus the set D of extensions ζ to ξ to Z0Z(F )\Z(A) is a complex manifold, each

component being an affine space. The component containing ζ is

{ζχ ∣∣χ ∈ X(C)}.
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The set D0 of unitary characters in a component, a real subspace of the same dimension, is defined by

Re ζ = 0, if

Re ζ = |ζ|.

The character |ζ| may be uniquely extended to a homomorphism ν of G(A) into R+. We can define

L(ζ) by substituting for the condition (ii), the following:

(ii)′
∫
Z(A)G(F )\G(A)

ν−2(g) |ϕ(g)|2 dg <∞.

Since we may uniquely extend elements of X(R) to G(A), we may also regard the elements of X(C)

as characters of G(A). The map ϕ→ ϕ′ = χϕ. That is,

ϕ′(g) = χ(g)ϕ(g)

is an isomorphism of L(ζ)with L(ξχ). This enables us to regard the spaces L(ζ) as an analytic bundle

over D, the holomorphic sections locally on ζχ(C) being of the form

χ(g)
{ n∑
i=1

ai(ζχ)ϕi(g)
}

with ϕi in L(ζ) and ai holomorphic with values in C.

If ϕ lies in L(ξ) and is smooth with support that is compact modulo Z0G(F ) and ζ lies in D set

Φ(g, ζ) =
∫
Z0Z(F )\Z(A)

ϕ(zg) ζ−1(z) dz.

Then, if we take the dual Haar measure on D0,

(2) ϕ(g) =
∫
D0

Φ(g, ζ) |dζ|.

Indeed if χ ∈ X(R) is given then

ϕ(g) =
∫

Re ζ=χ

Φ(g, ζ) |dζ|.

There are various ways to define |dζ| on Re ζ = χ. The simplest is by transport of structure from D0 to

D0χ = {ζ
∣∣ Re ζ = χ}.

The most intuitive is to define |dζ| in terms of affine coordinates on the components. From (2) one

easily deduces the direct integral decomposition

(3) L(ξ) =
∫ ⊕

D0

L(ζ) |dζ|.
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A cusp form in L is defined by the condition that whenever N is the unipotent radical of a

parabolic subgroup P over F different from G itself then∫
N(F )\N(A)

ϕ(ng) dn = 0

for almost all g. It is sufficient to impose this condition for those P containing a given minimal P0. We

consider henceforth only such P and these we divide into classes {P} of associate parabolic subgroups.

The class {G} consists of G alone. The space of cusp forms on L(ξ)will be denoted by L({G}, ξ). For

cusp forms the direct integral (3) becomes

L({G}, ξ) =
∫ ⊕

D0

L({G}, ζ) |dζ|.

If Z0Z(F )\Z(A) is compact then L({G}, ξ) decomposes into a direct sum of invariant, irre-

ducible subspaces, and any irreducible representation of G(A) occurs in L({G}, ξ)with finite, perhaps

zero, multiplicity. This is in particular so when ξ is replaced by ζ in D. Moreover the decomposition of

L({G}, ζ) and L({G}, ζχ), χ ∈ X(C), are parallel.

Suppose P is a parabolic subgroup of G with Levi factor M . It is understood that P and M are

defined over F and that P contains P0. Since Z is contained in the centre of M , L({M}, ξ) is defined

as a space of functions on M(A) and M(A) acts on it. The representation

Ind
(
G(A),M(A),L({M}, ξ))

is really a representation of G(A) induced from the representation of P (A) obtained from the homo-

morphism P (A) → M(A) and the action of M(A) on L({M}, ξ). It acts on the space of functions ϕ

on N(A)\G(A) satisfying

(i) for all g ∈ G(A):

ϕ(ng) ∈ L({M}, ξ),

(ii) ∫
Z0N(A)P (F )\G(A)

|ϕ(mg)|2 dg <∞.

We denote this space of functions by E(P, ξ).

Let D(M) and D0(M) be the analogues of D and D0 when G is replaced by M . We may also

define Ind
(
G(A),M(A),L({M}, ζ)) for ζ ∈ D(M). The induced representation is unitary ifRe ζ = δ,
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where δ is defined by the condition that δ2(m) is the absolute value of the determinant of the restrictions

of Adm to n, the Lie algebra of N . It is easily seen that

Ind
(
G(A),M(A),L({M}, ξ)) = ∫ ⊕

D0(M)

Ind
(
G(A),M(A),L({M}, ζδ)) |dζ|.

Thus if ϕ is a well-behaved function in E(P, ξ) and

Φ(g, ζ) =
∫
Z0ZM (F )\ZM(A)

ϕ(ag) ζ−1(a) δ−1(a) da

then

ϕ(g) =
∫
D0(M)

Φ(ζ, g) |dζ|

We cannot easily describe what, at least for the purpose immediately at hand, a well-behaved function

in E(P, ξ) is, without stepping slightly outside the categories introduced above. XM (R) is defined in

the same way as X(R) except that M replaces G. Set

M0 = {m ∈M(A)
∣∣χ(m) = 1 for all χ ∈ X(R)}.

M0 contains M(F ) and the definitions made for M(F )\M(A) could also have been made for

M(F )\M0. Fix a maximal compact subgroup of
∏
v G(Fv) ⊆ G(A), where the product is taken

over all infinite places. Let E0(P, ξ) be the space of continuous functions ϕ in E(P, ξ)with the follow-

ing properties.

(i) ϕ is K∞-finite.

(ii) ϕ is invariant under a compact open subgroup of G(Af ).

(iii) For all g ∈ G(A) the support of m→ ϕ(mg), a function on M(A), is compact modulo M0.

(iv) There is an invariant subspace V of the space of cusp forms on M0 transforming according

to ξ which is the sum of finitely many irreducible subspaces, and for all g ∈ G the function

m→ ϕ(mg), now regarded as a function on M0, lies in V .

The functions ϕ in E0(P, ξ)will serve us well. In particular

ϕ̂(g) =
∑

P (F )\G(F )

ϕ(γg)

is a function in L(ξ). If ϕ1 lies in E0(P1, ξ) and ϕ2 lies in E0(P2, ξ) then ϕ̂1 and ϕ̂2 are orthogonal if

P1 and P2 are not associate. If {P} is a class of associate parabolic subgroups we let L({P}, ξ) be the
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closure of the linear span of the functions ϕ̂ with ϕ ∈ E0(P, ξ) and P ∈ {P}. It is proved quite early

in the theory (cf. Lemma 4.6) that

(4) L(ξ) = ⊕{P}L({P}, ξ).

Abstractly seen, the main problem of the theory of Eisenstein series is to analyze the space L(ξ)

or the spaces L({P}, ξ) in terms of the cusp forms on the various M . This analysis is carried out—in

principle—in the text. However, one can be satisfied with a more perspicuous statement if one is content

to analyze L(ξ) in terms of the representations occurring discretely in the spaces of automorphic forms

on the groups M .

It is clear that

L({P}, ξ) =
∫ ⊕

D0

L({P}, ζ) |dζ|.

Let L(G, {P}, ζ) be the closure of the sum of irreducible invariant subspaces of L({P}, ζ) and let

L({G}, {P}, ξ) = L(G, {P}, ξ) =
∫ ⊕

D0

L(G, {P}, ζ) |dζ|.

We write {P} ! {P1} if there is a P ∈ {P} and a P1 ∈ {P1} with P ⊇ P1. We shall construct a finer

decomposition

(5) L({P1}, ξ) = ⊕{P}�{P1}L({P}, {P1}, ξ).

If P ∈ {P} let p = p({P1}) be the set of classes of associate parabolic subgroups P1(M) of M of the

form

P1(M) =M ∩ P1

with P1 ∈ {P1} and P1 ⊆ P . The space L({P}, {P1}, ξ) will be isomorphic to a subspace of

(6) ⊕P∈{P} ⊕p Ind
(
G(A),M(A),L

(
M, {P1(m)}, ξ

))
which may also be written as

(7) ⊕P∈{P} ⊕p

∫ ⊕

D0(M)

Ind
(
G(A),M(A),L

(
M, {P1(m)}, ζδ

)) |dζ|
To describe these subspaces, we need the Eisenstein series.

The induced representations occurring in (6) act on a space E
(
P, {P1(M)}, ξ) of functions ϕ

on N(A)P (F )\G(A) that satisfy the condition: for all g ∈ G(A) the function m → ϕ(mg) lies in
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L
(
M, {P1, (M)}, ξ). We may also introduce E0

(
P, {P1(M)}, ξ) in much the same manner as we

introduced E0(P, ξ). The induced representations in (7) act on spaces E
(
P, {P1(M)}, ζδ) and the

spaces E0

(
P, {P1(M)}, ζ), just as above, form a holomorphic vector bundle over D0(M).

If L is the lattice of rational characters of M over F then X(R)may be imbedded in L⊗R, and

the positive Weyl chamber in X(R) with respect to P is well-defined. We write χ1 > χ2 if χ1χ
−1
2 lies

in it. If Φ lies in E0

(
P, {P1, (M)}, ζδ) and Re ζ > δ the series

E(g,Φ) =
∑

P (F )\G(F )

Φ(γg)

converges. For each g it may be analytically continued to a meromorphic function on the whole

vector bundle, which will of course be linear on the fibres. It is an important part of the Corollary to

Lemma 7.6 that none of its singular hyperplanes—the singularities all lie along hyperplanes—meet the

set Re ζ = 0. If

ϕ =
∫
D0(M)

Φ(ζ) |dζ|,

with Φ(ζ) in E0

(
P, {P1(M)}, ζδ), lies in E0

(
P, {P1(M)}, ξ) then

Tϕ(g) = lim
∫

E
(
g,Φ(ζ)

) |dζ|
exists, the limit being taken over an increasing exhaustive family of compact subsets of D0(M). The

linear transformation ϕ → Tϕ extends to a continuous linear transformation from E
(
P, {P1(M)}, ξ)

to L(ξ). By additivity we define it on

⊕P∈{P} ⊕p E
(
P, {P1(M)}, ξ).

Then T commutes with the action on G(A) and its image is, by definition, L({P}, {P1}, ξ). It has still

to be explained how, apart from a constant factor, T is the composition of an orthogonal projection and

an isometric imbedding. The functional equations now begin to play a role.

Suppose P and P ′ lie in {P}. If Φ = ⊕Φp lies in

⊕pE0

(
P, {P1(M)}, ξ)

we set

E(g,Φ) =
∑

p

E(g,Φp).
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If Re ζ > δ consider ∫
N ′(F )\N ′(A)

E(ng,Φ) dn.

Since, as a function,

Φ(g) =
∑

p

Φp(g),

this integral is equal to

∑
w∈N ′(F )\G(F )/P (F )

∫
w−1 P (F )w∩N ′(F )\N ′(A)

Φ(w−1ng) dn.

We are only interested in those w for which

wMw−1 =M ′.

Then the integral equals

Φ′(g) =
∫
wN(A)w−1∩N ′(A)\N ′(A)

Φ(w−1ng) dn

and

Φ→ N(w)Φ = Φ′

is a linear transformation

⊕pE0

(
P, {P1(m)}, ζδ

)→ ⊕p′E0

(
P ′, {P ′

1(M)}, ζw−1
δ′
)
.

It is easy to turn

HomG(A)
(
⊕p E0

(
P, {P1(M)}, ζδ),⊕p′E0

(
P ′, {P ′

1(M)}, ζw−1
δ′
))

into a holomorphic bundle on D(M). N(w) can be extended to a mermorphic section of it. Observe

that N(mw) = N(w) if m ∈M(F ). The important functional equations are the following.

(i) If w2Mw−1
w =M ′ and w1M

′w−1
1 =M ′′ then

N(w1)N(w2) = N(w1w2).

(ii) For any w

E
(
g,N(w)Φ

)
= E(g,Φ).

They are consequences of the rather turbid Lemma 7.4, immediate once its meaning is understood.
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There is in addition a more elementary functional equation. We easily define a natural sesquilinear

pairing {
⊕p E0

(
P, {P1(M)}, ζδ)}× {⊕p E0

(
P, {P1(M)}, ζ̄−1δ

)}→ C.

If K is a compact subgroup of G(A) and G(A) is a finite disjoint union

⋃
N(A)M(A) giK,

there are constants ci such that∫
G(A)

f(g) dg =
∑
i

ci

∫
N(A)

dn

∫
M(A)

dm

∫
K

dk f(nmgik).

The pairing is

〈ψ1, ψ2〉 =
∑
i

ci

∫
ZM (A)\M(A)

dm

∫
K

dk ψ1(mgik) ψ̄2(mgik).

According to Lemma 7.5 the adjoint N∗(w) of

N(w) : ⊕E0

(
P, {P1(m)}, ζδ

)→ ⊕E0

(
P ′, {P ′

1(M)}, ζw−1
δ
)

is

N(w−1) : ⊕E0

(
P ′, {P ′

1(M)}, ζ̄−w−1
δ
)→ ⊕E0

(
P, {P1(M)}, ζ̄−1δ

)
.

The functional equations

N(w−1)N(w) = N(w)N(w−1) = I

then imply that N(w) is an isomorphism and an isometry when ζ is unitary.

The functional equations for Eisenstein series imply that if

ϕ = ⊕ϕP

then Tϕ(g), which is given by,

lim
∑
P∈{P}

∫
E
(
g,ΦP (ζ)

) |dζ|
is also equal to

lim
∑
P∈{P}

∫
E
(
g,
1
ω

∑
N(w)ΦP (ζw)

)
|dζ|.
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Here the sum is over all w such that, for some P ′ ∈ {P}, wMw−1 = M ′ taken modulo M(F ), and ω

is the number of terms in the sum. It is implicit that we have fixed a Levi factor of each P in {P}. The

linear transformation

⊕Φ(ζ)→ ⊕
{ 1
ω

∑
N(w) ΦP (ζw)

}
is the orthogonal projection U of the space (5) onto the closed, G(A)-invariant subspace defined by the

equations

ΦP ′(ζw−1) = N(w) ΦP (ζ)

whenever wMw−1 =M ′. It is clear that T = TU . If ⊕ΦP (ζ) lies in the range of U then (Lemma 7.6)

‖Tϕ‖2 = ω‖ϕ‖2

The main results of the text summarized, I would like to draw attention to a couple of questions

that it seems worthwhile to pursue. The first, which I mention only in passing, is to extend the

decompositions (4) and (5) to other function spaces, especially those needed for the study of cohomology

groups (cf. [6]). The second involves a closer study of the operators N(w). They have already

led to many interesting, largely unsolved problems in the theory of automorphic forms and group

representations ([4], [5]).

Suppose V is an irreducible invariant subspace of

∑
p

L
(
M, {P1(M)}, ζ0δ

)
.

If ζ = ζ0χ lies in the same component as ζ0 we may define

Vζ = {χ(m)ϕ(m)
∣∣ϕ ∈ V }

as well as the spaces E(P, Vζ) on which the induced representations

Ind
(
G(A),M(A), ρζ

)
act. Here ρζ is the representation of M(A) on Vζ . We may also introduce E0(P, Vζ).

There are two ways of regarding the functions Φ in E(P, Vζ). Φmay be considered a function on

N(A)P (F )\G(A) for which the function

m→ Φ(mg)
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is for all g an element F (g) of V . We may on the other hand emphasize F , from which Φ may be

recovered; it is a function on N(A)\G(A)with values in Vζ and

F (mg) = ρζ(m)F (g)

for all m and g.

If wMw−1 =M ′ and ζ′ = ζw
−1

, we can introduce a space V ′
ζ′ and a representation ρ′ζ′ of M ′(A)

on it in two different ways. Either Vζ′ is Vζ and

ρ′ζ′(m
′) =

δ′(m′)
δ(m)

ρζ(m), m = w−1m′w,

or

Vζ′ =
{
ϕ′ ∣∣ϕ′(m′) =

δ′(m′)
δ(m)

ϕ(m)
}

and ρζ′ acts by right translations. With the second definition V ′
ζ′ is clearly a subspace of L(ζ ′δ′). Since

N(w) is easily seen to take E0(P, Vζ) to E0(P ′, V ′
ζ′) we conclude that V ′

ζ′ lies in

⊕ρ′L
(
M ′, {P1(M ′)}, ζ ′δ′).

In terms of F and F ′ and the first definition of V ′
ζ′ , we have

F ′(g) =
∫
wN(A)w−1∩N ′(A)\N ′(A)

F (w−1ng) dn.

The integrals are now vector-valued. It is this definition of N(w), which now takes F to F′, that we

prefer to work with. Of course the formula above is only valid for Re ζ > δ. We write V as a tensor

product over the places of F

V = ⊗Vv

Then N(w) too becomes a product of local operators Nv(w) : Fv → F ′
v with

F ′
v(g) =

∫
wN(Fv)w−1∩N ′(Fv)\N ′(Fv)

Fv(w−1ng) dn, g ∈ G(Fv).

Suppose, in order to describe the second problem, that the L-functions and ε-factors intimated

in [4] have been defined for all irreducible representations of M(Fv) and all relevant representations of

the associate group M∨ of M . Using the notions of [4] we see that M∨ acts on n∨∩w−1n′∨w\w−1n′∨w.

Here n∨, n′∨ lie in the Lie algebra of the associate group G∨ and w is obtained from the isomorphism

of the Weyl groups of G and G
◦∨. Denote the above representation of the group M∨ by r(w) and, in
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order to make room for a subscript, denote ρζ by ρ(ζ). The calculations of [2], [3], and [5] suggest the

introduction of a normalized interwining operator Rv(w) by the equation

Nv(w) =
L
(
0, ρv(ζ), r̃(w)

)
ε
(
0, ρv(ζ), r(w), ψv

)
L
(
1, ρv(ζ), r̃(w)

) Rv(w).
r̃(w) is contragredient to r(w). Exploiting the anticipated functional equation we obtain the global

formula

N(w) = ⊗vNv(w) =
L
(
0, ρ(ζ), r̃(w)

)
L
(
0, ρ(ζ)r(w)

) ⊗v Rv(w).

If s(w) is the representation of M∨ on w−1n′∨w then

r(w)− r̃(w) = s(w)− s(1)

and
L
(
0, ρ(ζ), r̃(w)

)
L
(
0, ρ(ζ), r(w)

) = L
(
0ρ(ζ), s(1)

)
L
(
0, ρ(ζ), s(w)

) .
If w2Mw−1

2 = M ′ and w1M
′w−1

1 = M ′′ then s′(1) composed with m → w2mw−1
2 is s(w2) and

s′(w1) composed with the same homomorphism is s(w1w2). Consequently the quotient of the two

L-functions is multiplicative in w.

We are led to the following questions:

Is it possible to continue analytically the operators Rv(w), which are at first defined for Re ζv > 0

to meromorphic functions on an entire component of the local analogue of D(m)? Is Rv(w) then

unitary on D0(M)? Is the functional equation

Rv(w1)Rv(w2) = Rv(w1w2)

satisfied?

If r is archimedean, the L-functions and ε-factors can be defined ([7]). It is very likely that, in

this case, answers to the above questions are contained in the work of Knapp–Stein [1]; but I have not

tried to check this.
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Appendix III

Examples for §7

It might be a help to the reader who resolves to force his way through the jungle of Paragraph §7
to know the sources, apart from the author’s expository inadequacy, of the complexity of the notation

and the proofs. A number of unexpected and unwanted complications must be taken into account, and

it may be asked whether they can really, under sufficiently unfavorable circumstances, arise or whether

it was simply not within the author’s power to eliminate them from consideration. Unfortunately they

do arise, and they cannot be ignored unless a procedure radically different form that of the text be

found.

I cannot comment on all the complexities, for a good deal of time has elapsed since the text

was written, and I myself now have difficulty finding my way through it. But some of them were

sufficiently vexing to imprint themselves indelibly on my memory, and these I shall try to explain.

Some of the notational elaborateness is of course purely formal, a result of the generality, and

this part it is best to remove at once by fixing our attention on some special cases, in which the essential

mathematics is nonetheless retained.

We take G to be the set of real points in a simply-connected Chevally group and Γ to be the set

of integral points. Fix a percuspidal subgroup P ; then all other percuspidal subgroups are conjugate

to it with respect to Γ. We take V and W to be the space of constant functions so that E(V,W ) too

consists of constant functions. The corresponding Eisenstein series we parametrize by λ in the dual of

the Lie algebra a, rather than by an element in a itself, as in the text. When writing it I was too strongly

influenced by the then prevalent fashion of identifying a with its dual.

We take Φ to be identically 1 and write E(g, λ) instead of E(g,Φ,H). The constant term of

E(g, λ), that is ∫
Γ∩N\N

E(ng, λ) dn

is then ∑
s∈Ω

M(s, λ) esλ
(
H(g)

)
+ρ
(
H(g)

)
where M(s, λ) is now a scalar which if G is SL(2) can be easily computed. Lemma 6.1 then shows that

it is in general equal to ∏
α>0
sα<0

ξ
(
λ(Hα)

)
ξ
(
1 + λ(Hα)

) .



Appendix 3 219

Here

ξ(z) = π− z
2Γ
(z
2

)
ξ(z)

and Hα is the coroot defined by

λ(Hα) = 2
(λ,α)
(α,α)

.

The space L({P}, {V },W ) is isomorphic to the space obtained by completing the space of

complex-valued functions of λ holomorphic in the tube over a large ball and decaying sufficiently

rapidly at infinity. The inner product is

(1)
1

(2π)q

∫
Reλ=λ0

∑
s∈Ω

M(s, λ)Φ(λ)Ψ(−sλ̄) |dλ|.

Here λ0 must satisfy

〈λ0, α〉 > 〈ρ, α〉

for all positive roots α. The integer q is the rank of G.

On the space L of functions on the set Reλ = 0 square-integrable with respect to the measure

|Ω| · dλ

(2π)q

we introduce the operator

Q : Φ(λ)→ 1
|Ω|
∑
s

M(s−1, sλ)Φ(sλ).

Since

M(s, tλ)M(t, λ) =M(st, λ)

the operator Q is a projection. Its range consists of the functions satisfying

Φ(sλ) =M(s, λ)Φ(λ)

for all s and λ. Since

M(s, λ) =M(s−1,−sλ̄)

we infer also that Q is self-adjoint. The inner product of QΦ and Ψ is given by (1).

If λ0 were 0 we would infer that L({P}, {V },W ) was isomorphic to the quotient of L by the

kernel of Q or to the range of Q. This is the kind of concrete realization of the space L({P}, {V },W )



Appendix 3 220

which the theory of Eisenstein series seeks to give. If the functions M(s, λ) had no poles in the region

defined by

(2) Re〈λ,α〉 ≥ 0

for all positive α we could, because of the Cauchy integral theorem, replace λ0 by 0. However,

they do have poles. But we can deform the contour of integration in (1) to Reλ = 0 if the zeros of

Φ(λ) compensate for the poles of the functions M(s, λ). Therefore, the subspace of L({P}, {V },W )

generated by such functions is isomorphic to the quotient of L by the kernel of Q and the inner product

of the projection of the elements of L({P}, {V },W ) represented by Φ(λ) andΨ(λ) on this subspace is

given by (1) with λ0 replaced by 0.

The inner product of the projections on the orthogonal complement of the subspace will be given

by the residues which enter when we deformReλ = λ0 to Reλ = 0. This will be a sum of integrals of

roughly the same type as (1), but over hyperplanes of dimension q − 1. The procedure of §7 is to treat

them in the same way, and then to proceed by induction until there is nothing left. The procedure is

carried out fully for two simple examples in [1].

A number of difficulties can enter at the later stages which do not appear at first. The functions

M(s, λ) remain bounded as Imλ→∞ in the region defined by (2) so that the application of the residue

theorem is clearly justified. However, at least in the general case when the functions M(s, λ) are not

explicitly known, it was necessary to deform the contour into regions in which, so far as I could see, the

behaviour of the relevant functions as Imλ → ∞ was no longer easy to understand. Some substitute

for estimates was necessary. It is provided by unpleasant lemmas, such as Lemma 7.1, and the spectral

theory of the operator A introduced in §6. The idea is, if I may use a one-dimensional diagram to

illustrate it, to deform the contour as indicated and then to show

b

a
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that at least on the range of an idempotent in the spectral decomposition of A associated to a

finite interval only the interval [a, b] of the deformed contour matters. Of course for a given idempotent

the interval [a, b] has to be taken sufficiently large. For function fields, this sort of problem would not

arise.

At the first stage the functions M(s, λ) have simple poles so that the residues which appear

do not involve the derivatives of Φ(λ) or Ψ(λ). At later stages this may not be so, and the elaborate

discussion of notation with which §7 is prefaced is not to be avoided. The first—and only—example of

such behaviour that I know is provided by the exceptional group of type G2.

The root diagram for G2 is:

β6

β5β4β1 β2

β3

We take as coordinates of λ the numbers z1 = λ(Hβ1), z2 = λ(Hβ6) and the measure |dλ| is then

dy1 dy2. Since the poles of the functions M(s, λ) all lie on hyperplanes defined by real equations we

can represent the process of deforming the contour and the singular hyperplanes met thereby by a

diagram in the real plane. The singularities that are met all lie on the hyperplanes si defined by

λ(Hβi
) = 1, 1 ≤ i ≤ 6.
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As can be seen in the diagram, if we move the contour along the dotted line indicated we may pick up

residues at the points λ1, · · · , λ6.

λ6

λ0

λ1

λ5

s1 s6 s5

s4

s3

s2

In order to write out the resulting residual integrals explicitly as in §7 we have to list the elements

of Ω(si, sj), and then tabulate the residues of M(s, λ) on si for each s in Ω(si, sj). We first list the

elements of the Weyl group, together with the positive roots that they send to negative roots. Let ρi be

the reflection defined by βi and σ(θ) the rotation through the angle θ.

(3)

{β > 0
∣∣αβ < 0}

1
ρ1 β1

ρ2 β1, β2, β3

ρ3 β1, β2, β3, β4, β5

ρ4 β2, β3, β4, β5, β6

ρ5 β4, β5, β6

ρ6 β6

σ(π3 ) β1, β2

σ( 2π
3
) β1, β2, β3, β4

σ(π) β1, β2, β3, β4, β5, β6

σ( 4π3 ) β3, β4, β5, β6

σ( 5π
3
) β5, β6
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Since an element of the Weyl group takes long roots to long roots and short roots to short roots,

the set Ω(si, sj) is empty unless i and j are both even or both odd. This allows us to consider the two

sets {s1, s3, s5} and {s2, s4, s6} separately. We tabulate below the sets Ω(si, sj), together with another

more convenient labelling of the elements in them. The second labelling refers only to their action on

si.

(4)

si
�

sj
s1 s3 s5

ρ1 = ρ+ ρ2 = σ+ ρ3 = τ+
s1

σ(π) = ρ− σ( 2π3 ) = σ− σ(π3 ) = τ−

ρ2 = ρ+ρ+σ−1
+ = ρ−ρ+σ−1

− ρ3 = σ+ρ+σ−1
+ = σ−ρ+σ−1

− ρ4 = τ+ρ+σ−1
+ = τ−ρ+σ−1

−
s3

σ( 4π
3
) = ρ−ρ+σ−1

+ = ρ+ρ+σ−1
− σ(π) = σ−ρ+σ−1

+ = σ+ρ+σ−1
− σ( 2π

3
) = τ−ρ+σ−1

+ = τ+ρ+σ−1
−

ρ3 = ρ+ρ+τ−1
+ = ρ−ρ+τ−1

− ρ4 = σ+ρ+τ−1
+ = σ−ρ+τ−1

− ρ5 = τ+ρ+τ−1
+ = τ−ρ+τ−1

−
s5

σ( 5π
3
) = ρ+ρ+τ−1

− = ρ−ρ+τ−1
+ σ( 4π

3
) = σ−ρ+τ−1

+ = σ+ρ+τ−1
− σ(π) = τ−ρ+τ−1

+ = τ+ρ+τ−1
−

(5)

si
�

sj
s2 s4 s6

ρ2 = ρ+τ+ρ−1
+ = ρ−τ+ρ−1

− ρ3 = σ+τ+ρ−1
+ = σ−τ+ρ−1

− ρ4 = τ+τ+ρ−1
+ = τ−τ+ρ−1

−
s2

σ(π) = ρ−τ+ρ−1
+ = ρ+τ+ρ−1

− σ( 2π3 ) = σ−τ+ρ−1
+ = σ+τ+ρ−1

− σ(π3 ) = τ−τ+ρ−1
+ = τ+τ+ρ−1

−

ρ3 = ρ+τ+σ−1
+ = ρ−τ+σ−1

− ρ4 = σ+τ+σ−1
+ = σ−τ+σ−1

− ρ5 = τ+τ+σ−1
+ = τ−τ+σ−1

−
s4

σ( 4π3 ) = ρ+τ+σ−1
− = ρ−τ+σ−1

+ σ(π) = σ−τ+σ−1
+ = σ+τ+σ−1

− σ( 2π3 ) = τ−τ+σ−1
+ = τ+τ+σ−1

−

ρ4 = ρ+ ρ5 = σ+ ρ6 = τ+
s6

σ( 5π
3
) = ρ− σ( 4π

3
) = σ− σ(π) = τ−
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Of course then ρ+, ρ−, etc., which appear in the two tables are distinct, but there is no point in

encumbering the notation with primes or superscripts.

We have next to choose a coordinate on each of the si and calculate the residues of M(s, λ),

s ∈ Ω(si, sj), with respect to it. The coordinate will be denoted z and will be the restriction of the

coordinate on the total λ-space indicated in the table below.

s1 s2 s3 s4 s5 s6

3
2
+ z2

1
2
− z1

3
2
− λ(Hβ2)

1
2
− λ(Hβ5)

3
2
− z2

1
2
+ z1

To calculate the residue we have to choose near si as coordinates λ(Hβi
) and ±λ(Hβj

) where z =

ai ± λ(Hβj
) and express the other coordinates λ(Hβk

) in terms of them.

Principal coordinates Other coordinates

1) λ(Hβ1), λ(Hβ6) Hβ2 = 3Hβ1 +Hβ6 Hβ3 = 2Hβ1 +Hβ6

Hβ4 = 3Hβ1 + 2Hβ6 Hβ5 = Hβ1 +Hβ6

2) λ(Hβ2), −λ(Hβ1) Hβ3 = Hβ2 −Hβ1 Hβ4 = 2Hβ2 − 3Hβ1

Hβ5 = Hβ2 − 2Hβ1 Hβ6 = Hβ2 − 3Hβ1

3) λ(Hβ3), −λ(Hβ2) Hβ1 = Hβ2 −Hβ3 Hβ4 = 3Hβ3 −Hβ2

Hβ5 = 2Hβ3 −Hβ2 Hβ6 = 3Hβ3 − 2Hβ2

4) λ(Hβ4), −λ(Hβ5) Hβ1 = Hβ4 − 2Hβ5 Hβ2 = 2Hβ4 − 3Hβ5

Hβ3 = Hβ4 −Hβ5 Hβ6 = 3Hβ5 −Hβ4

5) λ(Hβ5), −λ(Hβ6) Hβ1 = Hβ5 −Hβ6 Hβ2 = 3Hβ5 − 2Hβ6

Hβ3 = 2Hβ5 −Hβ6 Hβ4 = 3Hβ5 −Hβ6

6) λ(Hβ6), λ(Hβ1) Hβ2 = 3Hβ1 +Hβ6 Hβ3 = 2Hβ1 +Hβ6

Hβ4 = 3Hβ1 + 2Hβ6 Hβ5 = Hβ1 +Hβ6

In table (6) the residues n(σ, z) or n(σ, λ), λ = λ(z), for the elements of table (4) are given and

in table (7) those for the elements of table (5). To obtain them one uses the formula for M(s, λ), the

table (3), and the relations (5). To make sure that there is no ambiguity I observe that, for example, the

entry in the third row and third column of (6) is n(τ+ρ+σ−1
+ , z) and corresponds to the third row and
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third column of (4). The residue of ξ(z)
ξ(1+z) at z = 1 is 1

ξ(2) . Thus, for example, the residue of M
(
σ(π), λ

)
on s1 is

1
ξ(2)

ξ
(
z − 3

2

)
ξ
(
z − 1

2

) ξ
(
z − 1

2

)
ξ
(
z + 1

2

) ξ
(
z + 1

2

)
ξ
(
z + 3

2

) ξ
(
z + 3

2

)
ξ
(
z + 5

2

) ξ(2z)
ξ(1 + 2z)

=
1

ξ(2)

ξ
(
z − 3

2

)
ξ(2z)

ξ
(
z + 5

2

)
ξ(1 + 2z)

.

To save space the factor 1
ξ(2) , which should appear before all entries, is omitted and ξ(az+ b) is written

as (az + b)

(6)

1 (z+ 1
2 )

(z+ 5
2 )

(z− 1
2 )

(z+5
2 )

(2z)
(2z+1)

(z− 3
2 )

(z+ 5
2 )

(2z)
(1+2z)

(z+ 1
2 )

(z+ 5
2 )

(2z)
(2z+1)

(z+ 3
2 )

(z+ 5
2 )

( 1
2−z)

( 5
2−z)

( 1
2−z)

( 5
2−z)

(z+ 1
2 )

(z+ 5
2 )

( 3
2−z)

( 5
2−z)

(z+ 1
2 )

(z+ 5
2 )

(2z)
(2z+1)

(z+ 1
2 )

(z+ 5
2 )

(2z)
(2z+1)

( 1
2−z)

( 5
2−z)

(z+ 1
2 )

(z+ 5
2 )

(2z)
(2z+1)

( 1
2−z)

( 5
2−z)

(z+ 3
2 )

(z+ 5
2 )

(z− 1
2 )

(z+ 5
2 )

(2z)
(2z+1)

(z+ 1
2 )

(z+ 5
2 )

( 3
2−z)

( 5
2−z)

(2z)
(2z+1)

(z+ 3
2 )

(z+ 5
2 )

( 3
2−z)

( 5
2−z)

( 3
2−z)

( 5
2−z)

(z+ 1
2 )

(z+ 5
2 )

( 3
2−z)

( 5
2−z)

(z− 1
2 )

(z+ 5
2 )

( 3
2−z)

( 5
2−z)

(2z)
(2z+1)
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(7)

( 1
2−z)

( 3
2−z)

( 1
2+z)

( 3
2+z)

( 1
2−z)

( 3
2−z)

( 1
2+z)

( 3
2+z)

( 1
2+3z)

( 3
2+3z)

(2z)
(3z+1)

( 1
2+z)

( 3
2+z)

(− 1
2+3z)

( 3
2+3z)

(2z)
(2z+1)

( 1
2−z)

( 3
2−z)

( 1
2+z)

( 3
2+z)

(− 1
2+3z)

( 3
2+3z)

(2z)
(2z+1)

( 1
2−z)

( 3
2−z)

( 1
2+z)

( 3
2+z)

( 1
2+3z)

( 3
2+3z)

( 1
2−z)

( 3
2−z)

(2z)
(2z+1)

(3z+ 1
2 )

(3z+ 3
2 )

(z+ 1
2 )

(z+ 3
2 )

( 1
2−z)

( 3
2−z)

(3z+ 1
2 )

(3z+ 3
2 )

(z+ 1
2 )

(z+ 3
2 )

( 1
2−z)

( 3
2−z)

( 1
2−3z)

( 3
2−3z)

( 1
2−z)

( 3
2−z)

( 1
2−3z)

( 3
2−3z)

(z+ 1
2 )

(z+ 3
2 )

( 1
2−z)

( 3
2−z)

( 1
2−3z)

( 3
2−3z)

(2z)
(2z+1)

(3z+ 1
2 )

(3z+ 3
2 )

(z+ 1
2 )

(z+ 3
2 )

( 1
2−z)

( 3
2−z)

( 1
2−3z)

( 3
2−3z)

(2z)
(2z+1)

(3z+ 1
2 )

(3z+ 3
2 )

(z+ 1
2 )

(z+ 3
2 )

(3z− 1
2 )

(3z+ 3
2 )

(2z)
(2z+1)

(z+ 1
2 )

(z+ 3
2 )

(3z+ 1
2 )

(3z+ 3
2 )

(z+ 1
2 )

(z+ 3
2 )

1

(z+ 1
2 )

(z+ 3
2 )

(2z)
(2z+1)

(3z+ 1
2 )

(3z+ 3
2 )

(z+ 1
2 )

(z+ 3
2 )

(z− 1
2 )

(z+ 3
2 )

(3z− 1
2 )

(3z+ 3
2 )

(2z)
(2z+1)

The difference between (1) and the analogous integral with λ0 = 0 is the sum of

(8)
3∑
i=1

3∑
j=1

∑
σ∈Ω(s2i,s2j)

1
2πi

∫
Reλ=λ2i

n(σ, λ)Φ(λ)Ψ(−σλ̄) dz

and

(9)
3∑
i=1

3∑
i=1

∑
σ∈Ω(s2i−1,s2j−1)

1
2πi

∫
Reλ=λ2i−1

n(σ, λ)Φ(λ)Ψ(−σλ̄) dz.

Here λ = λ(z). If we follow the procedure of §7, we deform the contours toReλ = λ(0). The resulting

expressions give the inner product of the projections on the one-dimensional spectrum. The residues

which arise during the deformation when added together give the inner product of the projections on

the spectrum of dimension 0. We shall see that the subspace corresponding to the discrete spectrum,

that is, the spectrum of dimension 0, is of dimension two, consisting of the constant functions and

another eigenspace of dimension one.

Before carrying out the deformation and computing the residues explicitly, we write out for the

collections {s1, s3, s5} and {s2, s4, s6} the matrix M(H) figuring in Lemma 7.4, observing as a check

upon tables (6) and (7) that they satisfy the conclusion of Lemma 7.4, that is, they are both of rank one.

H is now λ = λ(z) and the matrix elements are functions of z. The matrices are given in tables (10) and
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(11). Once again, to save space the factor 1
ξ(2) has been omitted from all entries and ξ(az+ b) is written

simply (az + b). In (10) the element so of the text is ρ+; in (11) it is τ+. Thus if λ = λ(z) the entry in

the box of (10) with row labelled σ+ and column ρ− is ξ(2)n(σ+ρ+ρ−1
− , ρ−ρ+λ). It should perhaps be

stressed that if λ = λ(z) then for all σ the coordinate of −σλ is ±z.

Since none of the functions n(σ, λ) has a singularity on Reλ = λ(0)we may deform each of the

terms in (8) and (9) separately. Since there are eighteen terms in each of the two expressions, and since

some of the residues arising are complicated, the computation will be lengthy. Nonetheless it is best to

write it out completely, for one appreciates better the difficulties faced in §7 if one sees the procedure

which was there described in an abstract form carried out in a specific case, which is after all relatively

simple. Suppose that, near z = 1,

ξ(z) =
1

z − 1 + a+ b(z − 1) + O
(
(z − 1)2).
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1) We begin by finding the residues for s1. At λ1

3
2

< z <
5
2

Let R(ρ+), R(ρ−), and so on, denote the residues arising from the corresponding terms of (8). Making

use of (4) and (6) we obtain the following results. Observe that the relevant singularities occur at the

intersections of s1 with some other sj .

R(ρ+) = 0,

R(ρ−) = − ξ(3)
ξ(2) ξ2(4)

Φ(β3)Ψ̄(β3) +
1

2ξ(2) ξ(3)
Φ(β2)Ψ̄(β2),

R(σ+) =
1

ξ(2) ξ(3)
Φ(β2)Ψ̄(β2).

The term R(σ−) is more complicated because the poles of n(σ−, λ) are not simple. We let Di be

the differential operator

DiΦ(λ) =
d

dt
Φ(λ+ tβi)

∣∣
t=0

.

Then, as the conscientious reader will readily verify, R(σ−) is the sum of

1
2ξ2(2) ξ(2)

{Φ(β2)D6Ψ̄(β4) +D4Φ(β2)Ψ̄(β4)}

and {
3a

2ξ2(2) ξ(3)
− ξ′(2)

ξ(3) ξ3(2)
− ξ′(3)
2ξ2(2) ξ2(3)

}
Φ(β2)Ψ̄(β4).

Moreover R(τ+) is the sum of

−1
2ξ2(2) ξ(3)

{Φ(β2)D2Ψ̄(β4) +D4Φ(β2)Ψ̄(β4)}

and
ξ(3)

ξ(2) ξ2(4)
Φ(β3)Ψ̄(β3) +

{ −a

2ξ2(2) ξ(3)
+

ξ′(3)
2ξ2(2) ξ2(3)

+
ξ′(2)

ξ3(2) ξ(3)

}
Φ(β2)Ψ̄(β4),

while

R(τ−) = 0.

Adding these six terms together we see that the total residue from s1 is

3
2ξ(2) ξ(3)

Φ(β2)Ψ̄(β2) +
a

ξ2(2) ξ(3)
Φ(β2)Ψ̄(β4)− 1

2ξ2(2) ξ(3)
Φ(β2)D1Ψ̄(β4).

Since there is considerable cancellation involved in these calculations which cannot be predicted from

general principles, the interested reader is advised to verify each step for himself.
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2) The residues for s2 are easier to find. The coordinate of the point λ2 satisfies 1
6 < z < 1

2 .

R(ρ+τ+ρ−1
+ ) = 0,

R(ρ−τ+ρ−1
+ ) =

−ξ2( 13) ξ(
2
3)

3ξ2(2) ξ2( 43) ξ(
5
3)
Φ
(β3

3

)
Ψ̄
(β3

3

)
,

R(σ+τ+ρ−1
+ ) =

ξ2( 1
3
) ξ( 2

3
)

3ξ2(2) ξ2( 4
3
) ξ( 5

3
)
Φ
(β3

3

)
Ψ̄
(β3

3

)
,

R(σ−τ+ρ−1
+ ) =

ξ( 13) ξ(
2
3)

3ξ2(2) ξ( 43)ξ(
5
3 )
Φ
(β3

3

)
Ψ̄
(β5

3

)
,

R(τ+τ+ρ−1
+ ) =

−ξ( 1
3
) ξ( 2

3
)

3ξ2(2) ξ( 4
3
) ξ( 5

3
)
Φ
(β3

3

)
Ψ̄
(β5

3

)
,

R(τ−τ+ρ−1
+ ) = 0.

The sum of these six terms is 0. It is clear from the diagram of the spaces si that there are no residues

for s3 or s4. The residues from s5 and s6 are however extremely complicated.

5) The coordinate of λ5 satisifes 1
2 < z < 3

2 . Putting our head down and bashing on we obtain the

following results for the residues. R(ρ+ρ+τ−1
+ ) is the sum of

−1
2ξ2(2) ξ(3)

{Φ(β4)D4Ψ̄(β2) +D2Φ(β4)Ψ̄(β2)}

and { −a

2ξ2(2) ξ(3)
+

ξ′(3)
2ξ2(2) ξ2(3)

+
ξ′(2)

ξ3(2) ξ(3)

}
Φ(β4)Ψ̄(β2).

R(ρ−ρ+τ−1
+ ) is easier to find; it equals

−1
ξ2(2)

Φ(β4)Ψ̄(−β6).

Since−β6 does not lie in the dual of the positive chamber, we infer from Lemma 7.5 that this term will

be cancelled by another, for it cannot remain when all the residues are added together.

The other terms grow more complicated. R(σ+ρ+τ−1
+ ) is the sum of the following expressions.

−1
2ξ3(2) ξ(3)

{D2Φ(β4)D6Ψ̄(β4) +
1
2
Φ(β4)D2

6Ψ̄(β4) +
1
2
D2

2Φ(β4)Ψ̄(β4)};

1
ξ(2)

{
1
2

( ξ′(2)
ξ3(2) ξ(3)

+
ξ′(3)

ξ2(2) ξ2(3)

)
− a

ξ2(2) ξ(3)

}{
D2Φ(β4)Ψ̄(β4) + Φ(β4)D6Ψ̄(β4)

}
;

1
ξ(2)

{
a
( ξ′(2)
ξ3(2)ξ(3)

+
ξ′(3)

ξ2(2) ξ2(3)

)
+

1
ξ2(2) ξ(3)

(a2

2
− 3b

)}
Φ(β4)Ψ̄(β4);

1
ξ(2)

{
5

4ξ(2) ξ(3)

(ξ′′(2)
ξ2(2)

− 2
(
ξ′(2)

)2
ξ3(2)

)
+

1
4ξ2(2)

(ξ′′(3)
ξ2(3)

− 2
(
ξ′(3)

)2
ξ3(3)

)}
Φ(β4)Ψ̄(β4);

−1
ξ(2)

( ξ′(2) ξ′(3)
ξ3(2) ξ2(3)

− 2
(
ξ′(2)

)2
ξ4(2) ξ(3)

)
Φ(β4)Ψ̄(β)4).



Appendix 3 232

R(σ−ρ+τ−1
+ ) is not so bad; it is the sum of

1
ξ2(2) ξ(3)

{Φ(β4)D6Ψ̄(β2)−D2Φ(β4)Ψ̄(β2)}

and {
ξ′(3)

ξ2(2) ξ2(3)
− ξ′(2)

ξ3(2) ξ(3)

}
Φ(β4)Ψ̄(β2).

R(τ+ρ+τ−1
+ ) is simply

−1
ξ(2) ξ(3)

Φ(β4)Ψ̄(β6)

With R(τ−ρ+τ−1
+ ) complications appear once again. It is the sum of the following terms.

1
2ξ3(2) ξ(3)

{D2Φ(β4)D2Ψ̄(β4) +
1
2
D2

2Φ(β4)Ψ̄(β4) +
1
2
Φ(β4)D2

2Ψ̄(β4)};

− 1
2ξ(2)

{
ξ′(2)

ξ3(2) ξ(3)
+

ξ′(3)
ξ2(2) ξ2(3)

}
{D2Φ(β4)Ψ̄(β4) + Φ(β4)D2Ψ̄(β4)};

1
ξ(2)

{
1
2

( ξ′(2) ξ′(3)
ξ3(2) ξ2(3)

− 2
(
ξ′(2)

)2
ξ4(2) ξ(3)

)
+

1
ξ2(2) ξ(3)

(
3b− 3a2

2

)}
Φ(β4)Ψ̄(β4);

1
2ξ(2)

{
−5

2ξ(2) ξ(3)

(ξ′′(2)
ξ2(2)

− 2
(
ξ′(2)

)2
ξ3(2)

)
− 1
2ξ2(2)

(ξ′′(3)
ξ2(3)

− 2
(
ξ′(3)

)2
ξ3(3)

)}
Φ(β4)Ψ̄(β4).

We add up all the terms above and find that the total contribution from s5 is the sum of the

following six expressions.{
a

ξ(2)

(
ξ′(2)

ξ3(2) ξ(3)
+

ξ′(3)
ξ2(2) ξ2(3)

)
− a2

ξ3(2) ξ(3)

}
Φ(β4)Ψ̄(β4);

− a

ξ3(2) ξ(3)
D2Φ(β1)Ψ̄(β4)− a

ξ3(2) ξ(3)
Φ(β4)D6Ψ̄(β4);

− 1
ξ2(2)

Φ(β4)Ψ̄(−β6)− 1
ξ(2) ξ(3)

Φ(β4)Ψ̄(β6);

− 1
2ξ2(2) ξ(3)

Φ(β4)D1Ψ̄(β2)− 3
2ξ2(2) ξ(3)

D2Φ(β4)Ψ̄(β2);

1
ξ2(2) ξ(3)

(−a

2
+
3ξ′(3)
2ξ(3)

)
Φ(β4)Ψ̄(β2) +

1
4ξ3(2) ξ(3)

Φ(β4)(D2
2 −D2

6)Ψ̄(β4);

1
2ξ3(2) ξ(3)

D2Φ(β4)D1Ψ̄(β4)− 1
2ξ(2)

(
ξ′(2)

ξ3(2) ξ(3)
+

ξ′(3)
ξ2(2) ξ2(3)

)
Φ(β4)D1Ψ̄(β4).

The term involving Ψ̄(−β6) has not yet disappeared.

The reader will be losing heart, for we still have s6 to work through. He is urged to persist, for

the final result is very simple. I do not know the reason.
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6) The coordinate of λ6 is greater then 3
2 . It will be seen from the diagram of the spaces si that we may

pick up residues at three points, at the intersection of s6 and s1, at the common intersection of s6, s5,

s3, and s2, and at the intersection of s6 with s4. The corresponding values of z are 3
2

, 1
2

, and 1
6

. The

contribution R(ρ+) is the sum of the following terms.

1
6ξ3(2) ξ(3)

{
D3Φ(β4)D5Ψ̄(β4) +

1
2
D2

3Φ(β4)Ψ̄(β4) + Φ(β4)D5Ψ̄(β4)
}
;

1
ξ(2)

{
a

ξ2(2) ξ(3)
− 1
2

(
ξ′(3)

ξ2(2) ξ2(3)
+

ξ′(2)
ξ3(2) ξ(3)

)}{
D3Φ(β4)Ψ̄(β4) + Φ(β4)D5Ψ̄(β4)

}
;

1
ξ3(2) ξ(3)

{(
11
6
a2 +

7
3
b

)
− a

(
3ξ′(3)
ξ(3)

+
3ξ′(2)
ξ(2)

)}
Φ(β4)Ψ̄(β4);

1
6ξ(2)

{
9ξ′(2) ξ′(3)
ξ3(2) ξ2(3)

+
2
(
ξ′(2)

)2
ξ4(2) ξ(3)

}
Φ(β4)Ψ̄(β4);

−1
12ξ2(2)

{
9

ξ(2)

(
ξ′′(3)
ξ2(3)

− 2
(
ξ′(3)

)2
ξ3(3)

)
+

5
ξ(3)

(
ξ′′(2)
ξ2(2)

− 2
(
ξ′(2)

)2
ξ3(2)

)}
Φ(β4)Ψ̄(β4);

− ξ( 1
3
) ξ( 2

3
)

3ξ2(2) ξ( 53) ξ(
4
3 )
Φ
(β5

3

)
Ψ̄
(β3

3

)
.

The value of R(ρ−) is simply
1

ξ2(2)
Φ(β4)Ψ̄(−β6).

It cancels the term for s5 which had troubled us.

The value of R(σ+) is

1
ξ(2) ξ(3)

Φ(β4)Ψ̄(β6) +
ξ( 2

3
)

3ξ2(2)ξ( 5
3
)
Φ
(β5

3

)
Ψ̄
(β5

3

)
.

For R(σ−)we obtain the sum of three terms.

1
2ξ2(2) ξ(3)

{D3Φ(β4)Ψ̄(β2) + Φ(β4)D1Ψ̄(β2)};{
3a

2ξ2(2) ξ(3)
− 3ξ′(3)
2ξ2(2) ξ2(3)

}
Φ(β4)Ψ̄(β2);

ξ( 1
3
) ξ( 2

3
)

3ξ( 43) ξ(
5
3) ξ

2(2)
Φ
(β5

3

)
Ψ̄
(β3

3

)
.
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R(τ+) is of course zero, but R(τ−) is the sum of the following nine terms. δ is now one-half the

sum of the positive roots.

1
ξ(2) ξ(6)

Φ(δ)Ψ̄(δ);

−1
6ξ3(2) ξ(3)

{D3Φ(β4)D3Ψ̄(β4) +
1
2
D2

3Φ(β4)Ψ̄(β4) +
1
2
Φ(β4)D2

3Ψ̄(β4)};

1
2ξ(2)

{
ξ′(3)

ξ2(2) ξ2(3)
+

ξ′(2)
ξ3(2) ξ(3)

}{
Φ(β4)D3Ψ̄(β4) +D3Φ(β4)Ψ̄(β4)

}
;

−2a
3ξ3(2) ξ(3)

{Φ(β4)D3Ψ̄(β4) +D3Φ(β4)Ψ̄(β4)};

2a
ξ(2)

{
ξ′(3)

ξ2(2) ξ2(3)
+

ξ′(2)
ξ3(2) ξ(3)

}
Φ(β4)Ψ̄(β4);

−1
6ξ(2)

{
9ξ′(2) ξ′(3)
ξ3(2) ξ2(3)

+
2
(
ξ′(2)

)2
ξ4(2) ξ(3)

}
Φ(β4)Ψ̄(β4);

−1
6ξ3(2) ξ(3)

(a2 − 14b)Φ(β4)Ψ̄(β4);

1
6ξ(2)

{
5

2ξ(2) ξ(3)

(
ξ′′(2)
ξ2(2)

− 2
(
ξ′(2)

)2
ξ3(2)

)
+

9
2ξ2(2)

(
ξ′′(3)
ξ2(3)

− 2
(
ξ′(3)

)2
ξ3(3)

)}
Φ(β4)Ψ̄(β4);

−ξ( 13)
3ξ( 43) ξ(

5
3) ξ

2(2)
Φ
(β5

3

)
Ψ̄
(β5

3

)
.

Adding the six contributions together we see that the total residue from s6 is the sum of the

following terms.

1
ξ2(2)

Φ(β4)Ψ̄(−β6) +
1

ξ(2) ξ(3)
Φ(β4)Ψ̄(β6) +

1
ξ(2) ξ(6)

Φ(ρ)Ψ̄(ρ);

1
2ξ2(2) ξ(3)

{Φ(β4)D1Ψ̄(β2) +D3Φ(β4)Ψ̄(β2)};

3
2ξ2(2) ξ(3)

(
a− ξ′(3)

ξ(3)

)
Φ(β4)Ψ̄(β2) +

1
12ξ3(2) ξ(2)

Φ(β4)(D2
5 −D2

3)Ψ̄(β4);

−1
6ξ3(2) ξ(3)

D3Φ(β4)D1Ψ̄(β4) +
1

2ξ(2)

(
ξ′(3)

ξ2(2) ξ2(3)
+

ξ′(2)
ξ3(2) ξ(3)

)
Φ(β4)D1Ψ̄(β4);

a

3ξ3(2) ξ(3)
D3Φ(β4)Ψ̄(β4) +

a

ξ3(2) ξ(3)
Φ(β4)

(
D5 − 2

3
D3

)
Ψ̄(β4);

5a2

3ξ3(2) ξ(3)
Φ(β4)Ψ̄(β4)− a

ξ(2)

(
ξ′(2)

ξ3(2) ξ(3)
+

ξ′(3)
ξ2(2) ξ2(3)

)
Φ(β4)Ψ̄(β4).



Appendix 3 235

Now all we have to do is add together the contributions from s1, · · · , s6. The result may be

expressed simply in matrix notation as:



Ψ(ρ)

Ψ(β1)

Ψ(β4)

D1Ψ(β4)



∗ 

1
ξ(2) ξ(6)

0 0 0

0 3
2ξ(2) ξ(3)

a
ξ2(2) ξ(3)

−1
2ξ2(2) ξ(3)

0 a
ξ2(2) ξ(3)

2a2

3ξ3(2) ξ(3)
−a

3ξ3(2) ξ(3)

0 −1
2ξ2(2) ξ(3)

−a
3ξ3(2) ξ(3)

1
6ξ3(2) ξ(3)





Φ(ρ)

Φ(β2)

Φ(β4)

D1Φ(β4)


That the matrix turns out to be symmetric and positive-definite is a check on our calculations. Since

it is of rank two, the discrete spectrum contains two points. One of the associated subspaces is the

space of constant functions. The constant term of the functions in the other space is not a sum of pure

exponentials. The appearance of a second point in the discrete spectrum is a surprise. One wonders

what its significance is.

In the example just discussed the functions n(σ, λ) were analytic on the line Reλ = λ(0), and

the corresponding residues of the Eisenstein series must be as well. This may not always be so,

and one must be content with a weaker assertion, that of Lemma 7.6. This is seen already with the

one-dimensional spectrum for the group of type A3.

This is the group SL(4). We may take as coordinates of λ, parameters z1, z2, z3, z4 with
∑

zi = 0.

The elements of the Weyl group are permutations and

M(s, λ) =
∏
i<j

s(i)>s(j)

ξ(zi − zj)
ξ(1 + zi − zj)

.

At the first stage the integration will be taken over the set Re zi = zoi with zoi − zoj > 1 if i < j. Then

it is moved to Re zi = 0. Residues are obtained on the hyperplanes sij defined by zi − zj = 1. These

give the two-dimensional spectrum. In order to obtain the one-dimensional spectrum the integration

has then to be moved to

Re zk =
δki
2
− δkj

2
,

where δki is Kronecker’s delta. If M(s, λ) has a singularity on sij then s(i) > s(j). If k < % and

s(k) > s(%)with (ij) �= (k%) then
ξ(zk − z�)

ξ(1 + zk − z�)
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is a factor of the residue. If k �= j then 1 + zk − z� ≥ 1 during the deformation and the zeros of the

demonimator play no role. If k = j then s(i) > s(%) and the residue contains the factor

ξ(zi − z�)
ξ(1 + zi − z�)

ξ(zj − z�)
ξ(1 + zj − z�)

Since zi = 1 + zj on sij the denominator is again harmless. The relevant singularities lie on the

intersection of sij with some si′j′ .

Because we are interested in the one-dimensional spectrum and want to proceed as expedi-

tiously as possible, we shall only write down those two-dimensional residues which in turn yield

one-dimensional residues. We take zoi − zoi+1 > zoi+1 − zo4 , i = 1, 2.

1) i = 1, j = 4. When we deform the two-dimensional integral on s14 we pick up no residues. So this

hyperplane may be ignored.

2) i = 1, j = 3. Because of our choice of zoi , the only singular hyperplane that we meet during the

deformation is s14. The intersection is s = (2
3
, 0, −1

3
, −1

3
) + (u, v, u, u) with 3u + v = 0. We obtain

contributions from those s for which s(4) < s(1) and s(3) < s(1). For these we obtain the following

results:

s R(s)

(1234)→ (3412) ( 2
3
, 0, −1

3
, −1

3
) + (u, v, u, u) → (−1

3
, −1

3
, 2

3
, 0) + (u, u, u, v) (23)(24)

→ (4312) → (−1
3
, −1

3
, 2

3
, 0) + (u, u, u, v) −(23)(24)

→ (3421) → (−1
3 , −1

3 , 0, 2
3 ) + (u, u, v, u) (12)(23)(34)

→ (4321) → (−1
3 , −1

3 , 0, 2
3 ) + (u, u, v, u) −(12)(23)(34)

→ (3241) → (−1
3 , 0, −1

3 , 2
3 ) + (u, v, u, u) (12)(23)

→ (4231) → (−1
3
, 0, −1

3
, 2

3
) + (u, v, u, u) −(12)(24)

→ (2341) → (0, −1
3
, −1

3
, 2

3
) + (v, u, u, u) (12)

→ (2431) → (0, −1
3
, −1

3
, 2

3
) + (v, u, u, u) −(12)

The symbol (k%) is an abbreviation for
ξ(zk − z�)

ξ(1 + zk − z�)

and we have omitted from all the R(s) a common constant. But this is unimportant, for we see that the

residues cancel in pairs and that s13 contributes nothing to the one-dimensional spectrum.
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3) i = 1, j = 2. There will be singularities at the intersections of s12 with s13 and s14. Because of our

choice of zoi , they are the only ones which affect our calculations.

s12 ∩ s13 =
(2
3
,
−1
3

,
−1
3

, 0
)
+ (u, u, u, v),

s12 ∩ s14 =
(2
3
,
−1
3

, 0,
−1
3

)
+ (u, u, v, u).

If s contributes to the residue on the first intersection then s(2) < s(1) and s(3) < s(1). If s0 is

the interchange of (2) and (3) then ss0 has the same effect on s12 ∩ s13, but the residues of R(s) and

R(ss0) are of opposite sign because
ξ(z2 − z3)

ξ(1 + z2 − z3)

is −1 when z2 = z3. Thus the contribution of the first intersection to the one-dimensional spectrum is

0.

If s contributes to the residue on the second intersection then s(2) < s(1) and s(4) < s(1). The

possibilities are given below.
s R(s)

(1234)→ (2413) (43)

→ (4213) −(43)

→ (2431) (13)(34)

→ (4231) −(13)(34)

→ (2341) (13)

→ (4321) −(13)(23)(34)

→ (3241) (13)(23)

→ (3421) −(13)(23)

Since

z1 − z3 = −(z3 − z4)

on the intersection,
ξ(z2 − z3)

ξ(1 + z2 − z3)
ξ(z3 − z4)

ξ(1 + z3 − z4)
= 1.

Once again the cancellation is complete
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4) i = 2, j = 4. The poles occur at the intersection of s24 with s12, s13, and s14. These intersections are:

s24 ∩ s12 = (1, 0, 0,−1) + (u, u, v, u),
s24 ∩ s13 =

(1
2
,
1
2
,
−1
2

,
−1
2

)
+ (u, v, u, v),

s24 ∩ s14 =
(1
3
,
1
3
, 0,
−2
3

)
+ (u, u, v, u).

We list in the three cases the relevant s and the corresponding residues.

a) s R(s)

(1234)→ (4213) (1, 0, 0,−1) + (u, u, v, u) → (−1, 0, 1, 0) + (u, u, u, v) (34)

→ (4231) → (−1, 0, 0, 1) + (u, u, v, u) (13)(34)

→ (4321) → (−1, 0, 0, 1) + (u, v, u, u) (13)(23)(34)

→ (3421) → (0, 1, 0,−1) + (v, u, u, u) (13)(23)

We have omitted the common factor 1
ξ(2) ξ(3) .

b) s R(s)

(1234)→ (3142)
(

1
2 ,

1
2 ,

−1
2 , −1

2

)
+ (u, v, u, v) →

(
−1
2 , 1

2 ,
−1
2 , 1

2

)
+ (u, u, v, v) (23)

→ (3412) →
(

−1
2
, −1

2
, 1

2
, 1

2

)
+ (u, v, u, v) (14)(23)

→ (3421) →
(

−1
2
, −1

2
, 1

2
, 1

2

)
+ (u, v, v, u) (12)(14)(23)

→ (4312) →
(

−1
2
, −1

2
, 1

2
, 1

2

)
+ (v, u, u, v) (14)(23)(34)

→ (4321) →
(

−1
2
, −1

2
, 1

2
, 1

2

)
+ (v, u, v, u) (12)(14)(23)(34)

→ (4231) →
(

−1
2
, 1

2
, −1

2
, 1

2

)
+ (v, v, u, u) (12)(14)(34)

We have omitted a common factor 1
ξ2(2)

.

c) If s contributes to the residue for the third intersection then s(4) < s(1) and s(4) < s(2). If s0

interchanges 1 and 2 and leaves 3 and 4 fixed, then ss0 contributes as well. Since

R(s) = −R(ss0)
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the total contribution will be 0.

5) i = 2, j = 3. The relevant poles occur at the intersection of s23 with s12, s13, s14, and s24. These

intersections are as follows:

s23 ∩ s12 = (1, 0,−1, 0) + (u, u, u, v),
s23 ∩ s13 =

(1
3
,
1
3
,
−2
3

, 0
)
+ (u, u, u, v),

s23 ∩ s14 =
(1
2
,
1
2
,
−1
2

,
−1
2

)
+ (u, v, v, u),

s23 ∩ s24 =
(
0,
2
3
,
−1
3

,
−1
3

)
+ (u, v, v, v).

Again we list the pertinent s and the corresponding R(s)

a) s R(s)

(1234)→ (3214) (1, 0,−1, 0) + (u, u, u, v) → (−1, 0, 1, 0) + (u, u, u, v) 1

→ (3241) → (−1, 0, 0, 1) + (u, u, v, u) (14)

→ (3421) → (−1, 0, 0, 1) + (u, v, u, u) (14)(24)

→ (4321) → (0,−1, 0, 1) + (v, u, u, u) (14)(24)(34)

Again a common factor 1
ξ(2) ξ(3) has been omitted.

b) The same argument as above establishes that the total contribution from this intersection is 0.

c) s R(s)

(1234)→ (4132)
(

1
2
, 1

2
, −1

2
, −1

2

)
+ (u, v, v, u) →

(
−1
2
.1
2
, −1

2
, 1

2

)
+ (u, u, v, v) (24)(34)

→ (4312) →
(

−1
2
, −1

2
, 1

2
, 1

2

)
+ (u, v, u, v) (13)(24)(34)

→ (4321) →
(

−1
2
, −1

2
, 1

2
, 1

2

)
+ (u, v, v, u) (12)(13)(24)(34)

→ (3412) →
(

−1
2
, −1

2
, 1

2
, 1

2

)
+ (v, u, u, v) (13)(24)

→ (3421) →
(

−1
2
, −1

2
, 1

2
, 1

2

)
+ (v, u, v, u) (12)(13)(24)

→ (3241) →
(

−1
2
, 1

2
, −1

2
, 1

2

)
+ (v, v, u, u) (12)(13)
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d) Here again the total contribution is 0

6) i = 3, j = 4. The intersections with any of the other si′j′ are now relevant. These intersections are

as follows:

s34 ∩ s12 =
(1
2
,
−1
2

,
1
2
,
−1
2

)
+ (u, u, v, v),

s34 ∩ s13 = (1, 0, 0,−1) + (u, v, u, u),
s34 ∩ s14 =

(1
3
, 0,

1
3
,
−2
3

)
+ (u, v, u, u),

s34 ∩ s23 = (0, 1, 0,−1) + (u, v, v, v),
s34 ∩ s24 =

(
0,
1
3
,
1
3
,
−2
3

)
+ (u, v, v, v).

Again we take each possibility in order and list the pertinent s and the corresponding R(s).

a) s R(s)

(1234)→ (2143)
(

1
2
, −1

2
, 1

2
, −1

2

)
+ (u, u, v, v) →

(
−1
2
, 1

2
, −1

2
, 1

2

)
+ (u, u, v, v) 1

→ (2413) →
(

−1
2
, −1

2
, 1

2
, 1

2

)
+ (u, v, u, v) (14)

→ (2431) →
(

−1
2
, −1

2
, 1

2
, 1

2

)
+ (u, v, v, u) (13)(14)

→ (4213) →
(

−1
2
, −1

2
, 1

2
, 1

2

)
+ (v, u, u, v) (14)(24)

→ (4231) →
(

−1
2
, −1

2
, 1

2
, 1

2

)
+ (v, u, v, u) (13)(14)(24)

→ (4321) →
(

−1
2
, 1

2
, −1

2
, 1

2

)
+ (v, v, u, u) (13)(14)(23)(24)

A common factor 1
ξ2(2)

has been omitted.

b) s R(s)

(1234)→ (4312) (1, 0, 0,−1) + (u, v, u, u) → (−1, 0, 1, 0) + (u, u, u, v) (23)(24)

→ (4321) → (−1, 0, 0, 1) + (u, u, v, u) (12)(23)(24)

→ (4231) → (−1, 0, 0, 1) + (u, v, u, u) (12)(24)

→ (2431) → (0,−1, 0, 1) + (v, u, u, u) (12)
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The common factor 1
ξ(2) ξ(3) has been omitted.

c) The total contribution is again 0.

d) s R(s)

(1234)→ (1432) (0, 1, 0,−1) + (u, v, v, v) → (0,−1, 0, 1) + (u, v, v, v, ) 1

→ (4132) → (−1, 0, 0, 1) + (v, u, v, v) (14)

→ (4312) → (−1, 0, 0, 1) + (v, v, u, v) (13)(14)

→ (4321) → (−1, 0, 1, 0) + (v, v, v, u) (12)(13)(14)

Again the common factor 1
ξ(2) ξ(3)

has been omitted.

e) The total contribution is 0.

The one-dimensional spectrum is therefore determined by two collections of subspaces. The first

collection is formed by:

(0, 1, 0,−1) + (u, v, v, v),
(1, 0, 0,−1) + (v, u, v, v),
(1, 0, 0,−1) + (v, v, u, v),
(1, 0,−1, 0) + (v, v, v, u).

For any two, s and t, of these subspaces, the set Ω(s, t) consists of a single element. The matrix M(H)

figuring in Lemma 7.4 is given, apart from the factor 1
ξ(2) ξ(3)

, in Table (12). It is, as it must be of rank

one. However, it does have singularities at u = v = 0, that is, on the line over which we must finally

integrate.
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This is disconcerting at first, but, as shown in the text, presents no insurmountable problem. The

constant term of the Eisenstein series, or system, associated to the line (1, 0,−1, 0)+(u, v, v, v) is, apart

from the factor
1

ξ(2) ξ(3)
e

3
2 z1+

1
2 z2− 1

2 z3− 3
2 z4 ,

given by the sum of

e−z2+z4euz1+vz2+vz3+vz4 +
ξ(u− v − 1)
ξ(u− v + 2)

e−z1+z3evz1+vz2+vz3+vz4

which has no poles on the line Re(u− v) = 0 and

ξ(1 + u− v)
ξ(2 + u− v)

e−z1+z4
{
evz1+uz2+vz3+vz4 +

ξ(u− v)
ξ(1 + u− v)

evz1+vz2+uz3+vz4
}

.

Since the factor ξ(u−v)
ξ(1+u−v) equals−1 at u = v, this term too has no poles on the linesRe(u−v). Thus the

constant term, and hence the Eisenstein series itself is analytic on that line. This is a simple illustration

of the corollary to Lemma 7.6.

The second collection is formed by

(1
2
,
−1
2

,
1
2
,
−1
2

)
+ (u, u, v, v)(1

2
,
1
2
,
−1
2

,
−1
2

)
+ (u, v, u, v)(1

2
.
1
2
,
−1
2

,
−1
2

)
+ (u, v, v, u)

The sets Ω(s, t) now consist of two elements. The matrix of Lemma 7.4 is given in Table (13). It may be

readily verified that it is of rank one.

References

1. R.P. Langlands, Eisenstein series, in Algebraic Groups and Discontinuous Subgroups, Amer. Math.

Soc. (1966).



Appendix 3 244

(1
3
)

(
1 2

;

�

1
2

;

1 2

;

�

1
2

)

+
(u
;
u

;
v

;
v

)

(
1 2

;

�

1
2

;

1 2

;

�

1
2

)

+
(v
;
v

;
u

;
u

)

(
1 2

;

1 2

;

�

1
2

;

�

1
2

)

+
(u
;
v

;
v

;
u

)

(
1 2

;

1 2

;

�

1
2

;

�

1
2

)

+
(v
;
u

;
u

;
v

)

(
1 2

;

1 2

;

�

1
2

;

�

1
2

)

+
(u
;
v

;
u

;
v

)

(
1 2

;

1 2

;

�

1
2

;

�

1
2

)

+
(v
;
u

;
v

;
u

)

(
1 2

;

�

1
2

;

1 2

;

1 2

)

+
(u
;
u

;
v

;
v

)

1

�

(v
�

u

)

�

(2
+
v

�

u

)
�

(v
�

u

�

1
)

�

(v
�

u

+
1
)

�

(v
�

u

)

�

(2
+
v

�

u

)

�

(v
�

u

)

�

(2
+
v

�

u

)

�

(1
+
v

�

u

)

�

(2
+
v

�

u

)

�

(v
�

u

)

�

(2
+
v

�

u

)

�

(v
�

u

)

�

(1
+
v

�

u

)

(
1 2

;

�

1
2

;

1 2

;

�

1
2

)

+
(v
;
v

;
u

;
u

)

�

(u
�

v

)

�

(2
+
u

�

v

)
�

(u
�

v

�

1
)

�

(u
�

v

+
1
)

1

�

(u
�

v

)

�

(2
+
u

�

v

)

�

(u
�

v

)

�

(2
+
u

�

v

)

�

(u
�

v

)

�

(2
+
u

�

v

)

�

(u
�

v

)

�

(1
+
u

�

v

)

�

(1
+
u

�

v

)

�

(2
+
u

�

v

)

(
1 2

;

1 2

;

�

1
2

;

�

1
2

)

+
(u
;
v

;
v

;
u

)

�

(u
�

v

)

�

(2
+
u

�

v

)

�

(v
�

u

)

�

(2
+
v

�

u

)

�

(v
�

u

)

�

(2
+
v

�

u

)

�

(u
�

v

)

�

(2
+
u

�

v

)

�

(1
+
v

�

u

)

�

(2
+
v

�

u

)
�

(1
+
u

�

v

)

�

(2
+
u

�

v

)

�

(u
�

v

)

�

(2
+
u

�

v

)
�

(1
+
v

�

u

)

�

(2
+
v

�

u

)

�

(v
�

u

)

�

(2
+
v

�

u

)
�

(1
+
u

�

v

)

�

(2
+
u

�

v

)

(
1 2

;

1 2

;

�

1
2

;

�

1
2

)

(v
;
u

;
u

;
v

)

�

(u
�

v

)

�

(2
+
u

�

v

)

�

(v
�

u

)

�

(2
+
v

�

u

)

�

(1
+
u

�

v

)

�

(2
+
u

�

v

)
�

(1
+
v

�

u

)

�

(2
+
v

�

u

)

�

(1
+
v

�

u

)

�

(2
+
v

�

u

)

�

(u
�

v

)

�

(2
+
u

�

v

)

�

(u
�

v

)

�

(2
+
u

�

v

)
�

(1
+
v

�

u

)

�

(2
+
v

�

u

)

�

(u
�

v

)

�

(1
+
u

�

v

)

�

(1
+
v

�

u

)

�

(2
+
v

�

u

)
�

(1
+
u

�

v

)

�

(2
+
u

�

v

)

(
1 2

;

1 2

;

�

1
2

;

�

1
2

)

+
(u
;
v

;
u

;
v

)

�

(1
+
u

�

v

)

�

(2
+
u

�

v

)

�

(v
�

u

)

�

(1
+
v

�

u

)

�

(v
�

u

)

�

(2
+
v

�

u

)

�

(1
+
u

�

v

)

�

(2
+
u

�

v

)

�

(v
�

u

)

�

(2
+
v

�

u

)

�

(v
�

u

)

�

(2
+
v

�

u

)
�

(1
+
u

�

v

)

�

(2
+
u

�

v

)

�

(1
+
u

�

v

)

�

(2
+
u

�

v

)
�

(1
+
v

�

u

)

�

(2
+
v

�

u

)

�

(v
�

u

)

�

(2
+
v

�

u

)
�

(1
+
u

�

v

)

�

(2
+
u

�

v

)

�

(v
�

u

)

�

(1
+
v

�

u

)

(
1 2

;

1 2

;

�

1
2

;

�

1
2

)

+
(v
;
u

;
v

;
u

)

�

(u
�

v

)

�

(1
+
u

�

v

)

�

(u
�

v

)

�

(2
+
u

�

v

)

�

(1
+
v

�

u

)

�

(2
+
v

�

u

)

�

(u
�

v

)

�

(2
+
u

�

v

)
�

(1
+
v

�

u

)

�

(2
+
v

�

u

)

�

(1
+
v

�

u

)

�

(2
+
v

�

u

)

�

(u
�

v

)

�

(2
+
u

�

v

)

�

(u
�

v

)

�

(2
+
u

�

v

)
�

(1
+
v

�

u

)

�

(2
+
v

�

u

)

�

(u
�

v

)

�

(1
+
u

�

v

)

�

(1
+
v

�

u

)

�

(2
+
v

�

u

)
�

(1
+
u

�

v

)

�

(2
+
u

�

v

)

T
h
e
p
ri
n
ci
p
le
a
cc
o
rd
in
g
to
w
h
ic
h
th
e
en
tr
ie
s
a
re
in
d
ex
ed
is
th
e
sa
m
e
a
s
in
th
e
p
re
ce
d
in
g
ta
b
le
.



Appendix 4 245

Appendix IV

The Simplest Case

I have been requested to append an independent exposition of the methods employed in the text

in the simplest case, that of a Fuchsian subgroup Γ of G = PSL(2,R)with a single cusp, the Eisenstein

series being taken to be invariant under right multiplication by elements of K = PSO(2,R). The

methods of the text when applied to SL(2,R) are basically those of Selberg, with the inner product

formula of §4 taking the place of what Harish–Chandra has called the Maass–Selberg relation. But this

and a few other minor modifications do not affect the essence of the proof.

In order to be as brief as possible, I shall tailor the exposition to the needs of a competent analyst

familiar with the first part of Lang’s book and the geometry of fundamental domains. Moreover I shall

use the Maass–Selberg relation as well as the inner product formula.

If

g =
(

α 0
0 α−1

)(
1 x
0 1

)
k, α = α(g) > 0,

with k in K and λ a complex number, set

F (g, λ) = αλ+1.

If P is the group of upper-triangular matrices and the cusp is supposed to lie at infinity then the

Eisenstein series

E(g, λ) =
∑

Γ∩P\Γ
F (γg, λ)

converges for Reλ > 1. It is continuous as a function of g and λ and analytic as a function of λ in this

region. It needs to be analytically continued.

If N is the group of matrices in P with eigenvalues 1 then

(1)
∫

Γ∩N\N
E(ng, λ) dn

is easily evaluated. We take the measure of Γ ∩N\N to be 1 and write Γ as a union of double cosets

(Γ ∩N)γ(Γ ∩ P ).

The integral then becomes the sum over these double cosets of∫
(Γ∩N)∩γ−1(Γ∩P )γ\N

F (γng, λ) dn
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If γ lies in the trivial double coset this integral is equal to F (g, λ). Otherwise it is∫
N

F (γng, λ) dn.

Writing

γ =
(
1 x
0 1

)(
α 0
0 α−1

)(
0 1
−1 0

)(
1 y
0 1

)
, α > 0,

we see that this integral equals

αλ+1

{∫
N

F

((
0 1
−1 0

)
n, λ

)
dn

}
F (g,−λ)

and conclude that the integral (1) is equal to

F (g, λ) +M(λ)F (g,−λ)

where M(λ) is analytic for Reλ > 1. The analytic continuation of E(g, λ) is bound up with that of

M(λ).

If φ is a smooth, compactly supported function on N\G/K we may write

φ(g) =
1
2π

∫
Reλ=λ0

Φ(λ)F (g, λ) |dλ|,

where Φ(λ) is an entire function. The function

φ̂(g) =
∑

Γ∩P\Γ
φ(γg)

is smooth and compactly supported on Γ\G and in particular lies in L2(Γ\G). It is given by

(2) φ̂(g) =
1
2π

∫
Reλ=λ0

Φ(γ)E(g, λ) |dλ|, λ0 > 1.

If we have chosen the Haar measures properly we may calculate the inner product

(φ̂, ψ̂) =
∫

Γ\G
φ̂(g) ˆ̄ψ(g) dg

as follows. Substitute the formula (2) for φ̂(g) and write out ψ̂(g) according to its definition. We obtain

1
2π

∫
Reλ=λ0

Φ(λ)
{∫

Γ\G
E(g, λ)

∑
γ∩P\Γ

ψ̄(γg) dg
}
|dλ|.
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The inner integral is equal to∫
Γ∩P\G

E(g, λ)ψ̄(g) dg =
∫ ∞

0

{
αλ+1 +M(λ)α−λ+1

}
α−2ψ̄

((
α 0
0 α−1

))
dα

α
.

By the Fourier inversion formula this integral is equal to

Ψ̄(−λ̄) +M(λ)Ψ̄(λ̄).

We see that the product is given by

(3)
1
2π

∫
Reλ=λ0

{Φ(λ)Ψ̄(−λ̄) +M(λ)Φ(λ)Ψ̄(λ̄)} dλ.

We can already deduce a great deal from the fact that (3) defines an inner product which is

positive semi-definite. By approximation, we may extend the inner product to the space of functions

analytic and bounded in some strip |Re λ| < 1 + ε, ε > 0, and decreasing to 0 at infinity faster than

any polynomial. We denote it by
(
Φ(·),Ψ(·)). We may form the completion with respect to this inner

product and obtain a Hilbert space H .

If f is bounded and analytic in some strip |Reλ| < 1 + ε, ε > 0, and

f(−λ) = f(λ),

then (
f(·)Φ(·),Ψ(·)) = (Φ(·), f∗(·)Ψ(·))

Here

f∗(λ) = f̄(−λ̄)

Suppose

sup
|Reλ|<1+ε

|f(λ)| < k.

Then

g(λ) =
√

k2 − f∗(λ)f(λ)

is analytic and bounded for |Re λ| < 1 + ε. Moreover

g(λ) = g(−λ)

and

g∗(λ) = g(λ).
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Thus ((
k2 − f∗(·))Φ(·),Φ(·)) = (g(·)Φ(·), g(·)Φ(·)).

We conclude that multiplication by f extends to a bounded linear operator on H with adjoint given by

multiplication by f∗.

If µ > 1 we may in particular take

f(λ) =
1

µ− λ2
.

The associated operator is bounded and self-adjoint. Its range is clearly dense. We deduce that

multiplication by λ2 defines an unbounded self-adjoint operator A on H with

R(µ,A) =
1

µ− A

being the operator defined by the given f .

If Reµ > λ0 > 1 then

(
R(µ2, A)Φ(·),Ψ(·)) = 1

2π

∫
Reλ=λ0

1
µ2 − λ2

{Φ(λ)Ψ̄(−λ̄) +M(λ)Φ(λ)Ψ̄(λ̄)} |dλ|.

This integral may be evaluated by moving the lines of integration off to the right. We obtain the sum of

(4)
1
2µ
{Φ(µ)Ψ̄(−µ̄) +M(µ)Φ(µ)Ψ̄(µ̄)}

and, if λ1 is very large,

1
2π

∫
Reλ=λ1

1
µ2 − λ2

{Φ(λ)Ψ̄(−λ̄) +M(λ)Φ(λ)Ψ̄(λ̄)} |dλ|.

The resolvent R(µ2, A) is certainly analytic in the domain Reµ > 0, µ �∈ (0, 1]. We infer that the

expression (4) is too. Taking

Φ(µ) = Ψ(µ) = eµ
2

we can deduce that M(µ) is analytic in the same region.

We next continue the function E(g, λ) into this region. Observe that if f is a continuous function

on G with compact support and invariant under multiplication by elements of K from the left or the

right then

r(f)F (g, λ) =
∫
G

F (gh, λ)f(h) dh



Appendix 4 249

is equal to

αf (λ)F (g, λ).

Here α1(λ) is an entire function of λ and for any given λ we may choose f so that αf (λ) �= 0. We

conclude immediately from the definition of E(g, λ) that

r(f)E(g, λ) = αf (λ)E(g, λ), Re λ > 1.

If λ → E(·, λ) can be analytically continued when regarded as a function with values in the space of

locally integrable functions on Γ\G this relation will persist and we may infer that the continuation

yields in fact a continuous function of g and λ.

We now introduce two auxiliary functions. If

g =
(

α 0
0 α−1

)(
1 x
0 1

)
k, α > 0,

let

F ′(g, λ) =
{

F (g, λ), α ≤ 1,
0, α > 1,

and let

F ′′(g, λ) =
{

F (g, λ), α ≤ 1,
−M(λ)F (g,−λ), α > 1.

If Reλ > 1, Reµ > 1 we may invoke an approximation argument and apply our inner product

formula to the pairs

(i) φ(g) = F ′(g, λ), ψ(g) = F ′(g, µ),

(ii) φ(g) = F ′′(g, λ), ψ(g) = F ′′(g, µ).

For the first pair the Fourier transform of φ is

Φ(z) =
1

λ− z
.

Thus if

E′(g, λ) =
∑

Γ∩P\Γ
F ′(g, λ)

then (
E′(·, λ), E′(·, µ))
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is equal to
1
2πi

∫
Re z=λ0

1(
λ− z)(µ̄+ z)

+
M(z)

(λ− z)(µ̄− z)
dz.

We evaluate the integral by moving the vertical line of integration off to the right. The result is

1
λ+ µ̄

+
M(λ)
µ̄− λ

+
M(µ̄)
λ− µ̄

= ω(λ, µ̄).

In general

(5)
( ∂n

∂λn
E′(·, λ), ∂n

∂µn
E′(·, µ)

)
=

∂2n

∂λn ∂µ̄n
w(λ, µ̄).

Thus if λ1 is any point with Reλ1 > 1,

∞∑
n=0

1
n!
|λ− λ1|n

∥∥∥ ∂n

∂λn
E′(·, λ)

∥∥∥
converges in the largest circle about λ1 which does not meet the real or imaginary axis. Since the

formula (5) persists in any region in Reλ > 0, Reµ > 0, λ, µ �∈ (0, 1] to which the functions in it can

be analytically continued we deduce by iteration that

λ→ E′(·, λ)

may be analytically continued as a function with values in L2(Γ\G) to the region Reλ > 0, λ �∈ (0, 1].
Since ∑

Γ∩P\Γ

(
F (γg, λ)− F ′(γg, λ)

)
is clearly an analytic function of λ, E(g, λ) can itself be continued to this region.

For the second pair the Fourier transform of φ is

Φ(z) =
1

λ− z
− M(λ)

λ+ z
.

The integrand occurring in the formula for

(
E′′(·, λ), E′′(·, µ)),

where

E′′(g, λ) =
∑

Γ∩P\Γ
F ′′(g, λ),
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will now be the sum of eight terms. They can each be easily evaluated by moving the line of integration

to the left or right. Carrying out the evaluation and summing one obtains

(6)
1

λ+ µ̄

{
1−M(λ)M(µ)

}
=

1
λ− µ̄

{
M(λ)−M(µ)

}
.

The formula just obtained remains valid forReλ > 0,Reµ > 0, λ, µ �∈ (0, 1]. Since (6) is positive

when λ = µ we infer that M(λ) is bounded in the neighbourhood of any point different from 0 on

the imaginary axis. By this we mean that it is bounded in the intersection of a small disc about that

point with the region in which M(λ) has so far been defined. We shall deduce that ‖E′′(·, λ)‖ is also

bounded in such a neighbourhood.

Assuming this for the moment we return to (6) once agin and conclude that

|M(λ)| → 1

as λ→ iτ , a point on the imaginary axis different from 0. Of course we are constrained to approach it

from the right-hand side. Since

M(λ) =M(λ)

we also have

lim
σ↓0

M−1(σ − iτ)−M(σ + iτ) = 0.

We define

(7) M(λ) =M−1(−λ)

for Reλ < 0, λ ∈ [−1, 0) and infer from the reflection principle that M(λ) can then be extended across

the imaginary axis as well. It is defined and meromorphic outside the interval [−1, 1] and satisfies the

functional equation (7).

To complete the proof of the analytic continuation and the functional equation we need a lemma.

Suppose λ1, λ2, · · · is a sequence of points and λk → λ. Suppose in addition that for each λk we are

given a continuous function Ek(g) on Γ\G with the following properties.

(i) There is a constant a and constants ck > 0 such that

|Ek(g)| ≤ ckα(g)a

for α(g) ≥ ε > 0. Here ε is fixed.
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(ii) Ek(g) is orthogonal to all rapidly decreasing cusp forms.

(iii) If f is a continuous, compactly supported function in G bi-invariant under K then

r(f)Ek(g) = αf (λk)Ek(g).

(iv) ∫
γ∩N\N

Ek(ng) dn = AkF (g, λk) + BkF (g,−λk)

with Ak, Bk in C.

Then if the sequences {Ak}, {Bk} are bounded, the inequalities of (i) are valid with a bounded

sequence ck. Moreover, if the sequences {Ak}, {Bk} converge then the sequence {Ek(g)} converges

uniformly on compact sets.

In order to prove the lemma we have to look at

r(f)ϕ(g) =
∫
G

ϕ(h)f(g−1h) dh

more carefully. Let

ϕ2(g) =
∫

Γ∩N\N
ϕ(ng) dn

and define ϕ1(g) by

ϕ(g) = ϕ1(g) + ϕ2(g).

The expression for r(f)ϕ(g) breaks up then into the sum of two similar expressions, and we

want to consider the first ∫
g

ϕ1(h)f(g−1h) dh.

We write it as ∫
Γ∩N\G

ϕ1(h)
∑
δ∈Γ∩N

f(g−1δh) dh.

The qualitative behaviour of the kernel

(8)
∑

δ∈Γ∩N
f(g−1δh)

for

g =
(
1 x
0 1

)(
α 0
0 α−1

)
k, |x| ≤ b, α > ε > 0,
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is easy enough to discover. Let

h =
(
1 y
0 1

)(
β 0
0 β−1

)
k.

We assume, for it is simply a matter of the proper choice of coordinates in the space defining SL(2,R),

that

Γ ∩N =
{(

1 k
0 1

) ∣∣∣ k ∈ Z

}
.

We may take b = 1 and assume that |y| ≤ b. It is clear that there is a δ > 0 such that each term of the

sum (8) is 0 unless

(9) δ ≤ α

β
≤ 1

δ
.

However when this is so the sum becomes, at least if f is bi-invariant under K ,

∑
f

((
α−1β 0
0 αβ−1

)(
1 β−2(k + y − x)
0 1

))
.

Replacing the sum by an integral, we see that (8) is equal to∫
N

f(g−1nh) dn+ R(g, h)

where R(g, h) is 0 unless (9) is satisfied, and then it goes to zero faster than any power of α is α→∞.

The integral ∫
G

ϕ1(h)f(g−1h) dh

is equal to ∫
Γ∩N\G

ϕ1(h)R(g, h) dh.

If

|ϕ(h)| ≤ cα(h)a

for β(h) ≥ ε′ > 0, with ε′ sufficiently small, this integral is smaller in absolute value than

cd(r)α(g)a−r

for any real r. Here d(r) and ε′ depend on f , but there is an obvious uniformity.

We return to the proof of the lemma. Choose an f with αf (λ) �= 0. We may as well suppose that

αf (λk) �= 0 for all k. If

fk =
1

αf (λk)
f



then

(10) r(fk)Ek(g) = Ek(g).

The inequality (i) implies a similar inequality

|Ek(g)| ≤ c′ckα(g)a

for α(g) ≥ ε′. Here c′ is a constant depending on Γ, ε, ε′, and a. Applying the discussion of the

previous paragraph to fk and ϕ(g) = Ek(g), we see that

(11) Ek(g) = AkF (g, λk) +BkF (g,−λk) +Rk(g)

with

(12) |Rk(g)| ≤ dckα(g)a
′
.

Here a′ is a real number with

(13) a′ < −Inf |Re λk|, a′ < a,

and d depends on a′.

We choose ck to be as small as possible and yet still satisfy (i). If the sequence is not bounded we

pass to a subsequence and suppose ck ↑ ∞. Then for some g with α(g) ≥ ε

(14) |Ek(g)| ≥ ck
2
α(g)a.

It follows from (11), (12), and (13) that there is an R such that for all k any g satisfying (14) also satisfies

(15) α(g) ≤ R.

>From (10) and Ascoli’s lemma we can pass to a subsequence and suppose that { 1
ck

Ek(g)} converges

uniformly on compact sets to a function E(g). By (15) this function will not be identically zero. On the

other hand ∫
Γ∩N\N

E(ng) dn ≡ 0

and E(g) is orthogonal to all rapidly decreasing cusp forms. This is a contradiction.

Once we know that the ck can be taken to be bounded, we can apply (10) and Ascoli’s lemma to

find convergent subsequences of {Ek(g)}. If two subsequences converged to different limits then the
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difference of the limits would again be cusp forms and yet orthogonal to cusp forms. This contradiction

yields the second assertion of the lemma.

It also follows form the above proof that

Ek(g)− AkF (g, λk)− BkF (g,−λk)

is uniformly rapidly decreasing as α(g) → ∞ and in particular is uniformly square integrable. If

Ek(g) = E(g, λk) is an Eistenstein series then for α(g) sufficiently large this difference is just E′(g, λk).

The boundedness of ‖E′(·, λ)‖ in a neighbourhood of a point on the imaginary axis which we asserted

above is therefore clear.

We define E(g, λ) in the domain Reλ < 0, λ �∈ [−1, 0) by

E(g, λ) =M(λ)E(g,−λ).

Then ∫
Γ∩N\N

E(ng, λ) = F (g, λ) +M(λ)F (g,−λ)

and the discussion above allows us to extend by the reflection principle across the imaginary axis.

It remains to treat the interval [−1, 1]. Here it is simplest to depart from the methods of the text

and to employ instead the Maass–Selberg relations. To verify these it is best to regard a function on

G\K as a function of

z = x+ iy

in the upper half-plane. Here

gi = z

and if

g =
(
1 x
0 1

)(
α 0
0 α−1

)
k

then

gi = x+ iα2.

If E(g) is a function on Γ\G let

F (g) =
∫

Γ∩N\N
E(ng) dn.

If

r(f)E = αf (λ)E
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for compactly supported, bi-invariant f then

r(f)F = αf (λ)F

for all such f . Moreover if ∆ is the operator

y2

{
∂2

∂x2
+

∂2

∂y2

}
then

∆E =
λ2 − 1
4

E

and

∆F =
λ2 − 1
4

F

Thus if λ �= 0
F (g) = AF (g, λ) + BF (g,−λ) = Ay

λ+1
2 +By

−λ+1
2

while if λ = 0

F (g) = Ay1/2 + By1/2lny

The proof of the lemma shows that if E(g) does not grow too rapidly as α(g)→∞ then

E(g) ∼ F (g).

Suppose we have two such function E and E′ corresponding to the same λ. Remove from the

upper half-plane the region y > R, for a sufficiently large R, as well as the transforms under Γ of all

such points. Division by Γ then yields a manifold M which may be thought of as a closed manifold

with a cylindrical tube protruding from it. The boundary is a circle, the image of y = R. If we integrate

with respect to the invariant area,

0 =
∫
M

∆E ·E′ −E ·∆E′.

Integrating by parts we see easily that the right side is asymptotic as N →∞ to

λ(AB′ −BA′) λ �= 0
BA′ −AB′ λ = 0.

These are the Maass–Selberg relations. We conclude in particular that if E and E′ are both orthogonal

to cusp forms then they are proportional.
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Now choose any point λ0 �= 0 in the interval [−1, 1]. Choose a nonsingular matrix(
a b
c d

)
so that if E0(g) is a function as above corresponding to λ0 and orthogonal to cusp forms then

(16) aA0 + bB0 = 0.

If E(g) corresponds to λ and is also orthogonal to cusp forms then for λ close to λ0

cA+ dB

must dominate

aA+ dB.

Otherwise we could choose a sequence λk → λ0 and a sequence Ek(g)with

cAk + dBk → 0, aAk + bBk → 1.

Our lemma would then show that Ek → E0, for some E0, contradicting (16).

To show that M(λ) is meromorphic near λ0 we have only to show that

a+ bM(λ)
c+ dM(λ)

is continuous. We have just observed that it is bounded. If it were not continuous at λ, or rather, since it

is only defined in a dense set, if it cannot be extended to be continuous, we could choose two sequences

{λ′
k}, {λ′′

k} both approaching λ but with

lim
a+ bM(λ′

k)
c+ dM(λ′

k)
�= lim a+ bM(λ′′

k)
c+ dM(λ′′

k)
.

The lemma would give two functions E′(g) and E′′(g)whose difference E(g)would have

F (g) = AF (g, λ) +BF (g,−λ)

with
aA+ bB �= 0
cA+ dB = 0

This is a contradiction.

To show that M(λ) is meromorphic at λ0 = 0we use for λ near 0 the representation

F (g) = Aα(g) coshλα(g) +Bα(g)
sinhλα(g)

λ

and a simple variant of the basic lemma. Otherwise the argument is the same.


