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1. Introduction. The success of renormalization group methods in statistical mechanics and, in

particular, in the study of critical phenomena is well known to be a consequence of the presence of

only a small number of expanding directions, often just one or two, at the pertinent fixed point of the

associated infinite­dimensional dynamical system, the other directions being contracting. What cannot

be sufficiently emphasized is that the numerical success and the great robustness of the methods appear

to result from the extreme rapidity with which the eigenvalues in the contracting directions descend to

0. Given the importance of this property, it is troubling that no methods have been found to establish

it rigorously in important concrete cases such as percolation or the Ising model.

It is not immediately clear what is called for, some flexibility certainly. There is of course a

dynamical system to define, but its relation to the given model is not prescribed. One might wish, as

in the early paper [W] of K. G. Wilson to replace a model on a discrete lattice, for example the Ising

model, by a family of Ginzburg­Landau models, more generally a difficult model by an easier model

that is more easily imbedded in a family or, for some other reason, more easily treated. Then the

appropriate strategy might be to establish the necessary dynamics in this family, enlarged if necessary,

and only afterwards transfer the results to the original model, discrete or not. This second step will

also be analytical and will presumably rely in turn on a different form of the very characteristics used

to establish the properties of the dynamical system.

The fixed point lies in the infinite­dimensional space of the dynamical system and is to be described

by coordinates. Since the space is not necessarily linear, these coordinates may not be of the same nature

or have the same meaning at the fixed point as they have at the models, which, I recall, are themselves

to be regarded as points in the space, but perhaps in a very different part, where the coordinates have

quite a different interpretation. The fixed point of the Ising model is, for example, related to a very

special conformal field theory, the minimal model with central charge c = 1/2. The data defining this

field theory must be present in the coordinates of the fixed point, either implicitly or explicitly, but are

scarcely to be seen, except by inference, in the model itself.

Another possibility is to search not for an infinite­dimensional system that contains the dynamics

of the renormalization but rather for a sequence of finite­dimensional approximations to it. This is

largely just a matter of realizing the analytic problems concretely. The second step would then be to

transfer the results for this sequence to the original model.
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I have thought about these questions over the years, very often in collaboration with Yvan Saint­

Aubin and with a number of students at the Université de Montréal, performing some instructive

experiments but without making any real mathematical inroads. I would like to take the opportunity

of this conference1 to review the results, and to reflect – in a highly speculative way – on some of the

analytic problems that I would like to see solved and on further possible numerical investigations. It

is best to turn immediately to the models, for once they are defined, it will be possible to explain in a

precise, concrete way what could only be intimated in these introductory remarks.

2. Percolation. There are many models for percolation. In some sense all the usual planar models,

for example those discussed in [P2]2, are associated to the same fixed point. Some care has to be taken

when interpreting this statement. The group GL(2,R) of linear transformations of the plane operates

on the models. So it should operate on the pertinent fixed points of the renormalization dynamics. It

turns out, numerically at least, that to each model is associated a conformal structure on the plane and

that the appropriate fixed point is determined by this conformal structure. Since the set of conformal

structures is a homogeneous space under GL(2,R) that can be identified with the upper half­plane,

so is the set of fixed points. To remove this indeterminacy, we consider only models symmetric with

respect to both coordinate axes and with respect to interchange of the two axes

To explain the strategy, we fix a model, to be specific, percolation by sites on the square lattice, but

any model would do. Recall that, in this model, each site (m,n), m,n ∈ Z, is open with a probability

p, 0≤ p≤ 1. One interesting value attached to the model is the probability πL(p) that there is a crossing

(by leaping from one open site to another open site adjacent in the sense of the lattice) of a large square

of side L. There is a unique critical value pc, 0 < pc < 1, for which

0 < lim inf
L→∞

πL(pc)≤ lim sup
L→∞

πL(pc) < 1.

For p < pc both limits are 0; for p > pc they are both 1. The simplest open problems are whether the

limit superior and the limit inferior are equal to each other at p = pc and whether they are both equal

to .5. In comparison to other questions about critical points, they are extremely easy to state, although

not necessarily easier to prove. The value .5 is supposed to be universal. It is believed to be valid for

1 This paper is based on notes for lectures at the Białowie_za conference that I was unable, at the last

minute, to attend.
2 The papers [P1, P2, P3] are also available on the website

www.sunsite.ubc.ca/DigitalMathArchive/Langlands/
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all other planar models provided they have the three basic symmetries: reflection symmetry in the two

axes and symmetry under interchange of the two axes.

There is a more general form of the question ([P2]). Take, once and for all, p = pc. Suppose C is

a simple closed curve in the plane and α, β are two intervals on it. If L is any large positive number,

we can define as in [P2] the probability πL
C(α, β) of a crossing inside the dilation LC of C from Lα to

Lβ. Then it is believed – the belief is supported by the numerical evidence – that the limit, πC(α, β) of

πL
C(α, β) asL approaches infinity exists and is universal. More generally, it should be possible to define

a similar limiting probability πC(α1, β1, α2, β2, . . . ; γ1, δ1, γ2, δ2, . . .) that there are crossings from α1

to β1, α2 to β2 and so on, but none from γ1 to δ1 and so on. Numerical studies give us every reason

to believe that these limits, referred to as crossing probabilities, exist and that they are universal, thus

independent of the model. This was implicit in [P3], where they, or rather collections of numbers,

ρ(E) = ρC(α1, β1, α2, β2, . . . ; γ1, δ1 . . .),

in which E stands for the event or crossing defined by C and the collection of intervals, are used as

coordinates in the space in which the dynamics is defined. In particular, the collection

{π(E)} = {πC(α1, β1, α2, β2, . . . ; γ1, δ1, γ2, δ2, . . .)},

in which C runs over all admissible curves and the intervals in C are arbitrary, are supposed to be the

coordinates of the pertinent fixed point.

Before coming to [P3], I recall that thanks to Schramm, Smirnov, and several other authors (see

[SS] and the papers referred to there) a good deal more is now known than was known when [P2] and

[P3] were written. Since the central problem, universality, remains unsolved, it is still possible, none

the less, that [P3] has something to offer. It will no doubt be clear to the reader that to overcome the

technical difficulties that arise in pursuing the strategy of that paper a much better command of the

available techniques than I possess at present will be required. Although life for many of us is not so

short as it once was, art too grows longer and ever more rapidly; this has to serve as my apology for

presenting my reflections in a half­baked form.

In response to the studies on crossing probabilities reported in [P1], M. Aizenman suggested

an hypothesis of conformal invariance for the crossing probabilities. It is still not known that the

crossing probabilities are defined for any but a few very special models. It is, for example, not

known that they are defined for the square lattice. It is therefore certainly not known that they are

universal. Smirnov has, however, proved that the crossing probabilities are defined for percolation
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on the triangular lattice and that Aizenman’s hypothesis of conformal invariance is valid in this case.

Thus what remains to be proved is existence in general and universality. Although the papers [P1, P3]

were numerical, they were also, for me at least, an attempt to create some confidence in a particular

analytic strategy for establishing universality as a consequence of the existence of fixed points for an

appropriate renormalizing dynamical system. Although these systems were introduced in [P3], the

strategy was not explained. I would like to explain it here, even though I have not yet made any serious

attempt to deal with the analytic problems that arise; they are formidable. All I can do is remind myself

of them. I begin with a brief review of the definitions of [P3], referring the reader to that paper for more

precision.

If conformal invariance is assumed, many of the coordinates πC(α1, . . . ; γ1, . . .) are redundant. In

particular, it is enough to take C to be a unit square. For each positive integer l we divide each of its

sides into l intervals of length 1/l. This yields a set Al of 4l intervals on the boundary of the square. On

the assumption of continuity of the crossing probabilities, it would be enough to know the coordinates

πC(α1, β1, α2, β2, . . . ; γ1, δ1 . . .) for intervals αi, βi, γj and δj that are unions of some of the intervals

in Al, provided of course that l is taken larger and larger. In other words, as an approximation to the

full set of crossing probabilities, we can consider only the set defined by the events associated to the

unit square and intervals αi, βi, γj and δj each of which is a union of intervals in Al.

These events can be defined by a family of basic events. We can attach to each configuration for

percolation a function y on pairs (α, β) in Al that takes values in {0, 1}. The value is 1 if the configuration

contains a crossing from α to β and is otherwise 0. The underlying space of the dynamical system is,

in principle, the space Πl of measures on the set Zl of such functions. The insistence in [P3] and [P4]

on the FKG­inequality was somewhat of a luxury. It would, however, have been much better to take,

as we ultimately did in [P3], only measures that respect the three basic symmetries. So I now add this

to the definition of Πl. It is clear that whenever we can attach crossing probabilities to a given model

M of percolation, we can attach to it an element ηl = ηl(M) of the space Πl. Moreover, if l|m then we

can deduce ηl(M) from ηm(M) because the intervals in Al are unions of the intervals in Am. Finally,

universality amounts, at least for crossing probabilities, to the assertion that the family {ηl | l ∈ N} is

independent of M .

To establish universality it would suffice to show that there is another family νl, defined indepen­

dently of any particular model, such that, for any given modelM , the point ηl(M) is well approximated

by νl for large l, a relation more precisely expressed by (7.1) of [P3]. It is not, by the way, supposed that

νl can be directly deduced from νm if l|m. This will not be so.
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The idea explained, or rather the wish expressed, in [P3] and in [P4] is that νl could be introduced

as the fixed point of a transformation defined independently of any model. The transformation, which

is intended to be a finite­dimensional approximation to the dynamics of renormalization, was defined

in [P3] and a fixed point was exhibited numerically for l = 2, but no attempt was made to begin the

analysis.

There is no need to consider all l > 0. It clearly suffices, for the purpose of establishing universality,

to consider any sequence {lk} of integers that approaches infinity multiplicatively, for example, the

sequence 2k, k≥ 0. It was also necessary to replace Zl by a subset Yl, or rather to demand that all the

probability measures in Πl assign the measure 0 to points outside Yl. This is easy to arrange even for

the measures associated to percolation models, but begs a question that, sooner or later, will come back

to haunt anyone who attempts to apply the strategy. In essence, the observation is that the finite model

cannot be an approximation to percolation if connections between neighboring intervals are admitted

indiscrimately. So we considered only the functions in a set Yl that is defined by excluding most such

connections. This too entails possible difficulties and it has still to be shown that they do not arise.

To explain this question, consider the dynamical transformation Θl = Θ
(2)
l : Πl → Πl introduced

in [P3, P4]. A basic object is the square with its boundary divided into 4l intervals of equal size.

Suppose we fit four such squares together to form a single large square. The intervals in the sides of

the smaller squares that lie on the boundary of the large square will divide it into 8l intervals of equal

size. We fuse adjacent intervals in pairs to arrive at a division of the boundary of the large square into

4l equal intervals.

If we have for each of the small squares σi,j a point yi,j in Yl, then we can try, using just the

crossings of yi,j , to cross from one of the 4l intervals on the boundary of the large square to another, the

understanding being that we connect a crossing of σi,j to one of σi′,j′ if these two small squares have a

common side and if the two points yi,j and yi′,j′ both reach a common interval in the common side. In

this way, we attach to the collection {yi,j} an element of Zl. Modifying it by removing the connections

between adjacent sides, we arrive finally at a point in Yl. This map of the 4­fold product of Yl with

itself to Yl yields immediately the associated map Θl on measures and it is this map that defines the

dynamics and for which we need to establish the existence of a fixed point νl.

We need to establish not only the existence of a sequence of fixed points

νl1 , νl2 , . . .
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as l1, l2, . . . runs through a sequence of positive integers tending multiplicatively to infinity, but also

that, for any given model M and for each l in the sequence, νl approaches ηl = ηl(M), or rather that,

in the notation of [P3],

lim
k→∞

Γlk
m(νlk) = ηm.

The map Γlk
m is the map on measures attached to the coarsening map Alk → Am, thus to the coarsening

map Zlk → Zm. A small, but essential, technical point aside, this is defined by the condition that the

image of a function z joins two intervals in Am precisely when these two intervals contain intervals in

Alk joined by z.

We have therefore to show that, among other things, ηl is an approximate fixed point of the

transformation Θl. Since we pass from Zl to Yl by suppressing connections between adjacent intervals,

we will have to establish quantitative forms of the following type of assertion. Take the unit square,

divide it in two parts by a central vertical line, and divide this vertical line into l equal intervals.

Then, for l large, the probability that there is a horizontal crossing of the square is approximately the

probability that there is a horizontal crossing without any subpath that moves from one of the l equal

subintervals to an adjacent one.3

The existence of a sequence of fixed points will perhaps be most easily established for the indices

lk = 2k. Because of the numerical results of [P3], it can, in some sense, be taken for granted that

ν2 exists and even, although this is not of much use, that it is close to η2. Since we are now taking

only measures fixed by the three basic symmetries, many of the eigenvalues appearing in Table III of

[P3] are no longer pertinent. The first pertinent ones are 1.6345851, 0.4072630, 0.2445117, 0.1721207,

0.1123677. Thus there is only one that is greater than 1. It is the only eigenvalue that is relevant in

the technical sense. The others are less than 1 and, apparently, rapidly decreasing to 0. The proposed

strategy is to begin with the fixed point at level k = 1 and to establish the existence of the fixed point for

larger k inductively using Newton’s method. This will require, of course, showing that the eigenvalue

structure, one relevant eigenvalue and a rapidly decreasing sequence of irrelevant eigenvalues, is

preserved. Although I briefly outline this strategy in the following paragraphs, I stress immediately,

once and for all, that I have not, perhaps to my shame, begun to think about the estimates that will be

needed. They will not be easy to establish.

Given any point y2k in Y2k , we can construct, by the heaping Φ
(2)

2k of [P3], a point in Y2k+1 ,

basically by the same process as before, except that we map the 4­fold product of Y2k not to Y2k but

3 There are mathematicians, for example O. Schramm or S. Smirnov, who have thought much more

deeply about such questions than I and who have, I believe, partial answers to them.
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to Y2k+1 , as is possible because the side of each square σi,j , i, j = 1, 2, that lies in the boundary of the

large square is already divided into 2k sides. There is also, as in [P3], a coarsening Γ2k+1

2k that maps

Y2k+1 to Y2k . The associated maps on measures yield a repeating sequence

→ Π2k → Π2k+1 → Π2k → Π2k+1 → .

Let Ψk : Π2k+1 → Π2k+1 be the composition Φ
(2)

2k ◦ Γ2k+1

2k of the two distinct maps in this sequence

and, to simplify notation, let ∆k = Θ2k+1 . It is Γ2k+1

2k ◦Φ
(2)

2k . Suppose a fixed point ν2k of Θ2k has been

found. Let ψk be its image in Π2k+1 . It is clear that ψk is a fixed point of Ψk.

The map Ψk is a projection Γ2k+1

2k on Π2k followed by the map Φ
(2)

2k . The tangent map DΓ2k+1

2k at

ψk and, indeed, at any point is also a projection. So the behavior of DΨk is, apart from a preliminary

compression, that of DΦ
(2)

2k . Thus, in order to show that DΨk has, apart from a large number of

additional very small eigenvalues, eigenvalues close to those ofDΘ2k , thereby beginning the induction,

we have to show thatDΓ2k+1

2k does not deform the image of Π2k in Π2k+1 , at least not in a neighborhood

of the fixed point ν2k .

We can express this in terms of matrices. Suppose we choose coordinates in Π2k and Π2k+1 so that

DΓ2k+1

2k = ( I 0 ) .

Let
(

A

B

)

be the matrix of DΦ
(2)

2k at ν2k . Then

DΨk =

(

A 0
B 0

)

, DΘ2k = A.

So we seem to need to show that B is of the form CA, for then

(

I 0
C I

) (

A 0
0 0

) (

I 0
−C 0

)

=

(

A 0
B 0

)

.

It will be important to control the size of C .

So long as we have not fixed the metrics on Π2k and Π2k+1 , this is not a meaningful demand. What

it might mean ultimately is that if α and β are intervals of length 1/2k on the boundary and α1, α2,

respectively β1, β2, the two subintervals of length 1/2k+1 into which they can be divided and if π′ is

a measure near the fixed point, π its image under Φ
(2)

2k , and π′′ the image of π under Γ2k+1

2k , then the

probability,with reference to π, that αi is connected to βj is approximately independent of i and j and
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approximately determined, in a universal way, thus independently of α and β, by the probability that

α is connected to β.

Our goal is not to find a fixed point of Ψk but of ∆k. The method of Newton, in which one

establishes that a map

π → π −D−1(∆kπ − π),

D being a constant approximation to the tangent map D∆k, is contracting on some domain, is the

obvious technique to apply ([L]). To make it work here, we would like to show that ∆k is close to Ψk.

The maps ∆k and Ψk on measures are both attached to maps

Y2k+1 × Y2k+1 × Y2k+1 × Y2k+1 → Y2k+1

For the first, we heap and then coarsen; for the second, we coarsen and then heap. Were it not that

some connections are suppressed upon coarsening, the second would always yield an element of Y2k+1

connecting more pairs of intervals. There would not, in general, be many more connections if we could

be certain of a condition that I now attempt to explain.

Suppose we have two abutting unit squares T1, T2 and in their common side one of the intervals

α of length 1/2k into which it is divided. Let α1 and α2 be the two halves of α, both of length 1/2k+1.

Suppose y1 and y2 lie in Y2k+1 , the first with respect to one of the two squares and the second with

respect to the other and suppose y1 connects some interval β1 to α1 and y2 connects some interval β2

to α2. Then we want there to be some other interval γ of length 1/2k+1 on the common side such that,

for i = 1 and i = 2, yi connects βi to γ. We cannot expect this always to be so, but we would like it be

so for most βi and most βj with a probability in y1 and y2 that is almost 1 with respect to the measure

ψk, and thus with respect to any measure close to ψk .

Once again, no metric has been defined, but any metric on the measures will have to regard two

measures as close not only if they assign approximately the same measure to each set but also if they

assign equal measures to approximately the same set. Thus two atomic measures c1δy1
and c2δy2

will

have to be regarded as close if c1 is close to c2 and y1 is close to y2. So this condition appears to be what

is necessary to show that when acting upon a neighborhood of ψk, ∆k is close to Ψk.

The measure ψk is the image of ν2k and ν2k is supposed to be an approximation to η2k . Thus ψk

can be expected to be an approximation to η2k+1 . The required property with respect to this measure is,

at least roughly and intuitively, a consequence of a well known property of critical percolation on, say,
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the triangular lattice, which it will be necessary to establish anew for ν2k or ψk in the context of finite­

dimensional approximations to percolation. Suppose each yi is defined by an occupied percolation

path pi. Consider the square S1 of side 1/2k+1 whose center is the common endpoint of α1 and α2. Let

S2 be a second square with the same center and a side a/2k+1, where a is chosen as large as possible

with respect to the condition that neither β1 nor β2 meets S2. Then, as a result of Lemma 7.2 of [K],

with a very high probability (of the order of 1− a−δ, δ > 0) the square S2 contains a path surrounding

S1. This path together with the union of the connected path in p1 from β1 to α1 and the connected path

in p2 from β2 to α2 would, for the triangular lattice, be an occupied path joining β1 to β2.

Whether this strategy or something completely different will ultimately be used to establish

universality in percolation, I do not know. Nor do I know whether I shall ever return to the problem in

a serious way. It is nevertheless a pleasure to remind myself now and again of its depth.

3. The Ising model. The paper [I] is rather long and some of the central numerical conclusions are

easy to overlook. There is one in particular that I want to recall here. Since we are passing to a different

topic, all notation is again free.

Various forms of the Ising model were considered in [I]. They are all defined by a graph Γ on

a surface S, closed or open, with or without boundary. If Π is the set of vertices of Γ, then each

model assigns a probability to each configuration σ : Π → ±1, thus to each configuration of spins.

Each configuration defines a unique partition of the vertices into the maximal subsets of constant sign

that are connected within Γ. For the models of [I], it was possible to attach to each such partition a

collection of simple oriented curves, the contour lines, L1, L2, . . .. There will be, in general, several

such collections attached to each σ because the orientations are arbitrary. Moreover, for most models

there are configurations for which even the unoriented curves are ambiguously defined. Thus to each σ

is attached the finite set Λσ of such collections and to each element λ = {L1, L2, . . .} of Λσ a probability.

Set Λ = ∪σΛσ . It is a set furnished with a probability.

There was, in addition, for each model a notion of mesh ε and the possibility existed of taking

the mesh to 0. Suppose we have on S an oriented curve C that is, at least at first, closed and smooth

(even implicitly analytic) although not necessarily connected. Thus it is the union of a finite number of

simple closed curves. Although some care has to be taken with perhaps degenerate intersections, it is

pretty clear how to attach to each collection λ = {L1, L2, . . .} a distribution δλ on C . The distribution

will, in fact, be a measure, the sum of atomic measures of mass ±1 at each of the intersections of each

Li with C , the sign being determined by the relative orientation of Li and C at the given intersection.
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The map λ → δλ allows us to transfer the probability measure on Λ to a probability measure on the

space of distributions on C . This measure we denote µε to emphasize the dependence on ε. What some

of the numerical experiments of [I] demonstrate, or at least were meant to demonstrate, is that

lim
ε→0

µε = µ = µC = µS
C

exists as a measure on the space of distributions onC and that it is conformally invariant and universal.

As in percolation, the conformal invariance is with respect to a conformal structure determined by the

model. Universality is, of course, also valid only within the family of models defining a given structure.

It is important to observe that the measure will depend on S. It will be important to determine the

extent of this dependence.

The experiments establishing the conformal invariance were not nearly so extensive as those

undertaken in [P2] for percolation. Moreover, conformal invariance refers now to a structure with

more components: the surface S, which may have a boundary, and the curveC , which may or may not

lie in that boundary. So the conformal invariance is sometimes of a different nature than the conformal

invariance for percolation: the pertinent maps refer to a surface and a curve, not simply to a curve and

its interior. For the present purposes, the most important case is that of a compact S without boundary,

which was experimentally the most difficult case of [I] and also the one to which the least space was

given. Indeed, in that paper it is little more than an afterthought.

What I want to do here is to take the existence ofµC for granted and suggest further properties that it

might possess and that might be tested or even established, although proving that it has these properties

is likely to be much harder than the problems for percolation discussed in the previous section. The

measure µC depends strongly on the way C lies in S. We shall here be concerned primarily with

compact S without boundary, thus, for example, with the plane compactified to the Riemann sphere

or with an infinitely long cylinder also compactified to the sphere.4 Numerical experiments for these

examples were discussed toward the end of §3.2 of [I]; they are for me the most suggestive of the paper.

The compact surface S is implicitly endowed with a conformal structure that is determined by the

model – or universality class of models – with which we begin.

When considering percolation, we supposed implicitly that we were dealing with translation­

invariant models in the plane. So the resulting conformal structures were parametrized by the upper

4 As a consequence, the measures µε and the limiting measure µC are concentrated on distributions
that annihilate the constant functions. There are other possibilities that lead, in the language of

conformal field theory, to different sectors. They will be ignored.
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half­plane and it was natural to separate the models into universality classes according to the attached

conformal structure. When allowing, as now for the Ising model, models on various surface, each

model defining on the surface one of the very many possible conformal structures on it, the division

into universality classes is not so natural. It is perhaps somewhat better to treat all models as belonging

to one universality class and to consider whatever data, parameters, or set of coordinates that define

the fixed point as referring to all possible S and all possible conformal structures on them. As an

example, whatever information we have to give to define the fixed point must allow us to generate

all the measures µC . For translation­invariant percolation the matter is at first glance simpler as the

symmetric fixed point generates under the action of GL(2,R) all the others. More general models are,

however, attached to less simple conformal structures ([P2]). So, at least in principle, to determine fully

the universal fixed­point even for percolation requires that we be able to calculate crossing probabilities

not only in the plane but also on surfaces with other conformal structures.

For percolation and for the Ising model, there is abundant evidence that there are also conformal

field theories attached to the universality class. What I want to discuss in the remainder of this paper is

their possible relation to the measures µS
C , confining myself to the Ising model for which the evidence

of [I] is available. There would be several steps to the construction. First of all, a Hilbert space H has

to be attached to the parametrized boundary of the unit disk. It will be defined as an L2­space with

respect to one of the measures µS
C . The space H introduced, there is a second, more recondite, collection

of objects to be defined. If the compact surface S with conformal structure together with two families

of parametrized, smooth, oriented, simple closed curves {C1, . . . , Cm} and {C ′
1, . . . , C

′
n} on it, each of

these m + n curves disjoint from all the others and if Σ ⊂ S has as oriented boundary the first set of

curves as oriented together with the other set of curves oppositely oriented, then there is an operator

KΣ : ⊗m
i=1H → ⊗n

j=1H

attached to Σ. These operators are, in fact to depend only on Σ and not on the closed surface S.

They are also to be multiplicative, in the sense that if Σ′ is a second surface with boundary

{C ′
1, . . . , C

′
n}, with the opposite orientation, and {C′′

1 , . . . , C
′′
p }, then

(1) KΣ′ ◦KΣ = αKΣ′′ ,

if Σ′′ is obtained by pasting Σ and Σ′ along ∪n
j=1C

′
j . The relation (1) is a projective relation, valid for

some constant α.



Renormalization fixed point 12

There is to be in addition an action of the circle group eiθ → π(eiθ) on H. Taking as Σ the annulus

with inner radius 1 and outer radius er and setting π(er) = KΣ, we see from (1) that π(er)π(et) =

π(er+t). These two actions together will yield a representation of the semigroup {z ∈ C | |z| > 1}.

More generally, as in the papers of G. Segal ([S]), the operatorsKΣ will yield an action of the semigroup

of annuli with parametrized boundaries and then an action of the direct sum of two copies of the

Virasoro algebra, one holomorphic, one antiholomorphic. There is a final step, the factorization of this

representation into a direct sum of tensor products of an irreducible representation of the holomorphic

algebra and one of the antiholomorphic algebra, and then the factorization of KT in general into the

contribution of a holomorphic conformal field theory and the contribution of an antiholomorphic field

theory. This last step is very elaborate even for such a simple model as the free boson (see [CG] and the

papers there referred to); there is no point at this stage, at least not for me, in speculating on it for the

Ising model. I do, however, find it essential to be quite clear about those properties of the measures µS
C

that permit the introduction ofKΣ. So I begin by reviewing them in the context of the free boson. They

are simple enough theoretically and undoubtedly commonplaces for specialists, but I have no suitable

reference. What is perhaps perfectly obvious to others was not always so to me.

SupposeC = ∪n
i=1Ci is the union of disjoint simple curves and is contained in the compact surface

S. We take S to be without boundary at first, although a similar construction can be made when it has

a boundary, even when some of the curves Ci lie in its boundary. If ϕ is a smooth function on C then

we extend it to a function ϕS that is harmonic on each component of the complement of C in S with

boundary values ϕ. The Dirichlet form

D(ϕ) = D(ϕS) =
1

2π

∫

S

{
(∂ϕS

∂x

)2
+

(∂ϕS

∂y

)2
}dxdy

is a quadratic form that depends only on the conformal structure. If g is any positive constant, we

can introduce the gaussian measure on the distributions that annihilate the constant functions that is

defined by

exp(−gD(ϕ)).

This is the measure µS
C attached to C in S for the free boson. A property of µS

C that seems to be very

important is that its equivalence class, in the sense of mutual absolute continuity, is independent of S,

provided that S is compact without boundary.

In essence, this means that ifS1 andS2 are two such surfaces, then the differenceD(ϕS1
)−D(ϕS2

),

defined at first only for sufficiently smooth ϕ, can be extended to all distributions, or at least, given

our restrictions, to all distributions annihilating the constant functions, or even, the weakest possible
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assertion, just to all distributions outside a set of measure 0 with respect to the gaussian measure.

Before sketching a proof of this, consider some examples.5

Consider first the unit circle C in the Riemann sphere. Let

(2) ϕ(z) =
∑

k>0

akz
k +

∑

k>0

a−kz̄
k, |z| = 1.

The function ϕ extends as ϕSl
to Sl = {|z|≤ 1} in the form given. It extends to Sr = {|z|≥ 1} as

ϕSr
=

∑

k>0

akz̄
−k +

∑

k>0

a−kz
−k.

The form

(3) D(ϕS) = D(ϕSl
) +D(ϕSr

).

The two terms are easily calculated as, for example, in [E]. The first and second terms on the right are

both equal to

(4)
∞
∑

k=1

2kaka−k.

So (3) is

(5)
∞
∑

k=1

4kaka−k.

We can also imbed the unit circle in a torus SA by taking the annulus S bounded byC1 = {z| |z| =

1} and by C2 = {z| |z| = A}, A > 1, and by identifying eiθ with Aeiθ. Then the function ϕ will be

defined on C1 by (2) and on C2 by

(6) ϕ(z) =
∑

k>0

ak

Ak
zk +

∑

k>0

a−k

Ak
z̄k, |z| = A.

We apply (6.4) of [E] with q = A−1 to obtain

(7) D(ϕS) =
∞
∑

k=1

4kaka−k −
∞
∑

k=1

8aka−k
qk

1 − q2k
.

5 In the calculations, I have suppressed the constant term of the functionsϕ. This makes the formulas
more transparent and suffices for our purposes. The formula can easily be extended to include the

constant terms ([E]).
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The two results are not the same, but the difference is a series that converges for the Fourier coefficients

of any distribution on the circle. As a result the measure µC = µS
C obtained from the Riemann sphere

S is absolutely continuous with respect to any of the measures µSA

C and conversely.

We make a similar calculation for the annulus T bounded by the two circles Ci = {z| |z| = Ai},

A1 < A2. We first of all imbed it in the Riemann sphere. The function ϕ on C = C1 ∪ C2 is given

by specifying it as ϕi on Ci. I suppose, for simplicity, that the constant terms of each ϕi are 0. Let

{ak/A
|k|
1 } be the Fourier coefficients of ϕ1 and {bk/A

|k|
2 } those of ϕ2. The Riemann sphere is the union

of the three regions, Sl = {z| |z| < A1}, T , Sr = {z| |z| > A2}. It is clear that

D(ϕS) = D(ϕSl
) +D(ϕT ) +D(ϕSr

).

The first and third terms on the right are calculated from (4), the second from (6.4) of [E]. If q = A1/A2,

the result, upon simplifying, is that D(ϕS) equals

∞
∑

k=1

2k{aka−k
2

1 − q2k
− akb−k

2qk

1 − q2k
− bka−k

2qk

1 − q2k
+ bkb−k

2

1 − q2k
}.

Apart from a term that converges for the Fourier coefficients of any distribution on C this is the result

that would be obtained if we took the disjoint union S̃ of two Riemann spheres and imbedded C1 in

the first and C2 in the second to obtain an imbedding of C in S̃. So µS
C and µS̃

C are mutually absolutely

continuous.

We can calculate µC with respect to yet another surface by taking A = A3 > A2 and identifying

A1e
iθ with A3e

iθ to form a torus SA. We again calculate D(ϕSA
) with the help of (6.4) of [E]. If

q1 = A1/A2 and q2 = A2/A3, the result is the sum of

∞
∑

k=1

4k{aka−k + bkb−k}

and

−
2

∑

i=1

∞
∑

k=1

4k{aka−k
q2k
i

1 − q2k
i

+ akb−k
2qk

i

1 − q2k
i

+ bka−k
2qk

i

1 − q2k
i

+ bkb−k
q2k
i

1 − q2k
i

}.

Once again, this second term converges for the Fourier coefficients of any distribution.

It is, more generally, easy to see that ifC = ∪n
j=1Cj is the disjoint union of n simple closed smooth

curves imbedded in a compact Riemann surface S without boundary, then the absolute continuity

class of the measure µS
C is independent of S. I present a rough argument. Suppose that S1 and S2

are two such surfaces to which we give metrics compatible with the Riemannian structure. I show
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only that D(ϕS1
)−D(ϕS2

) is defined for any distribution ϕ. We parametrize C , or more precisely we

parametrize the curves Ci. Suppose that T = ∪n
j=1Tj is a disjoint union of open annuli such that the

imbedding of C in Si, i = 1, 2 extends to a holomorphic imbedding of T into the same Si. Suppose ε

is a smooth function on T that is 1 in a neighborhood of C and 0 near the boundary of T . If ϕ is given

on C , let ϕSi
be the harmonic function on Si − C with boundary values ϕ. The function εϕSi

can be

regarded as a function on T or on S1 and can also be transported to S2. If ∆2 is the Laplacian on S2,

then

(8) ∆2(ϕS2
− εϕS1

) = −∆2(εϕS1
).

Take, at first, S1 to be a disjoint union of Riemann spheres. If ϕ is given by (2) on the curve Ci,

then it is clear that, even if ϕ is a distribution, the function ϕS1
is defined outside of T and that we can

bound any derivative of ϕS1
in the region in ∪Tj where ε 6= 1, the bound depending of course on the

distribution ϕ. If ϕ is given on Cj by (2) with coefficients aj
k, then, for an appropriate integer m > 0, it

can be taken to be a universal constant Am times

n
∑

j=1

∞
∑

k=1

(|aj
k| + |aj

−k|)k
−m.

Moreover, the right side of (8) is 0 where ε = 1. As a consequence, we can bound the derivatives of

∆2(εϕS1
), which is of course 0 where ε = 0. By the standard theory of elliptic differential equations, we

can majorize the functionϕS2
−εϕS1

, which vanishes onT , and its derivatives, and thusD2(ϕS2
−εϕS1

),

in terms of the original distribution ϕ. We can also, of course, majorize the derivatives of ϕS1
− εϕS1

.

To majorize D1(ϕS1
) −D2(ϕS2

), we observe that it is equal to the sum of three terms: the difference

(9) D1(ϕS1
− εϕS1

)−D2(ϕS2
− εϕS1

)

and the difference of the two cross­terms coming from polarization,

(10)
1

2π

∫

∂

∂x
(ϕSj

− εϕS1
)
∂

∂x
(εϕS1

) +
∂

∂y
(ϕSj

− εϕS1
)
∂

∂y
(εϕS1

).

There is now no difficulty in bounding (9) and to bound (10) all we need to do is to integrate sufficiently

often by parts, inserting an appropriate partition of unity. Thus µS1

C and µS2

C are mutually absolutely

continuous when S1 is chosen in the way indicated. By transitivity, the assertion then remains true for

any pair S1 and S2.



Renormalization fixed point 16

There is thus a positive, measurable function ξS2

S1
= ξS2

S1
(C) on distributions integrable with respect

to µS1

C such that

µS2

C = ξS2

S1
µS1

C .

As a consequence, there is a canonical isomorphism f → g =
√

ξS1

S2
f from L2(µS1

C ) to L2(µS2

C ) that

allows us to identify the two spaces and to define HC .

Taking, in particular,C to be the unit circle imbedded in the Riemann sphere, we obtain a canonical

measure and a canonical L2­space that we denote H. Then, provided we have parametrized each Ci,

we can identify HC with ⊗n
i=1H.

Thus if Σ is any oriented Riemann surface with oriented boundary C the union of Cl = ∪m
i=1Ci

and Cr = ∪n
j=1C

′
j , the first with the given orientation of each Ci, the second with the orientation of

each C ′
j reversed, then we may identify HCl

with the tensor product of ⊗m
i=1H and HCr

with ⊗n
j=1H.

We complete Σ to a closed surface S by parametrizing eachCi and eachC′
j and then cappingCl with Sl

and Cr with Sr . One possibility is to cap each Ci and C′
j separately, but this is by no means necessary,

or even desirable. Let S be the resulting surface. The measure µS
C is absolutely continuous with respect

to µS
Cl

× µS
Cr

. Let

(11) µS
C = Z(φl, φr)µ

S
Cl

× µS
Cr
.

Observe that Z is a function of a pair of functions φl and φr on distributions that is integrable with

respect to µS
Cl
×µS

Cr
. So I shall be arguing formally with some fairly fancy notions. There is no difficulty

in making them precise for the gaussian measures that arise for free bosons.

The operator KΣ is to be defined as a map from L2(µS
Cl

) to L2(µS
Cr

) by means of a kernel. This

kernel will necessarily depend on the two measures µS
Cl

and µS
Cr

, but it will have to be shown that the

map from HCl
to HCr

does not. The function Z(φl, φr) will be a factor of KΣ(φl, φr) but not the only

factor. We shall take

(12) KΣ(φl, φr) = ηrl(φl)Z(φl, φr)ηlr(φr).

The two functions ηrl and ηlr are still to be defined.

The function ηlr is defined just as ηrl except that the roles of Cl and Cr are interchanged. So it

suffices to define ηrl. The curve Cl is the boundary of two Riemann surfaces, Sl and S′
r = Σ ∪ Sr . So

µSl

C and µ
S′

r

C are both defined, although, as follows for example from the calculation of (3), they will

not be equivalent, in the sense of absolute continuity, to µS
C . The curve Cl is, of course, oriented, and
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we have attached S′
r, also oriented, on the right. The surface S̄′

r, obtained by reversing the orientation

of S′
r is attached on the left.6 Although Cl lies in the boundary of Sl and S̄′

r , we may again define

µSl

Cl
and µ

S̄′

r

Cl
. Because Sl and S′

r are attached to Cl on the same side, the previous arguments can be

extended to compare ϕSl
and ϕS̄′

r
, defined by ϕS̄′

r
(s̄) = ϕ̄S′

r
(s). Here s̄ is simply s ∈ Sr regarded as a

point in S̄′
r. So we can conclude that µSl

Cl
and µ

S′

r

Cl
= µ

S̄′

r

Cl
are mutually absolutely continuous. Thus we

can introduce the Radon­Nikodym derivative ξ
S′

r

Sl
of the second with respect to the first. We define the

positive function ηrl by the relation

ηrl =

√

ξ
S′

r

Sl
.

The kernel KΣ is not necessarily bounded. So the most that we can assert at first is that the

associated operator is densely defined. This is enough for our present purposes. Indeed I want only to

explain why it is well defined projectively, thus up to a constant, independently of the choice of Sl and

Sr and why the multiplicative relation KΣ′ ◦KΣ = αKΣ′′ is valid. It is well to be explicit about the

function of the parametrizations, for they are somewhat extrinsic to the constructions. First of all, they

allow us to identify HCl
and HCr

with tensor products of the space H with itself. Secondly, the gluing

of Σ to Σ′ requires an identification of Cr and C′
l and this can be effected by the parametrizations.

The operator KΣ is defined on L2(µS
C) as

φl → g(φr) =

∫

f(φl)KΣ(φl, φr)dµ
S
Cl
.

Suppose that S̃, defined by S̃l and S̃r , is a second choice for S. Then

f̃(φl) =
√

ξS
S̃
(Cl)f(φl)

and

g̃(φr) =
√

ξS
S̃
(Cr)g(φr).

Thus, in terms of f̃ and g̃, the operator KΣ would be given by a different kernel,

(13)

g̃(φr) =

∫

f̃(φl)

√

ξS̃
S (Cl)KΣ(φl, φr)

√

ξS
S̃
(Cr)dµ

S
Cl

=

∫

f̃(φl)
√

ξS
S̃
(Cl)KΣ(φl, φr)

√

ξS
S̃
(Cr)dµ

S̃
Cl
.

We need to verify that the kernel appearing here is equal to that given by the definition (12) applied

directly to S̃.

6 It may be better to think concretely of the unit circle and to take Sr = {z| |z|≥ 1}. Then S̄r may be

identified with {z| |z|≤ 1}, the point z on Sr becoming in S̄r the point z̄−1.
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As was already observed, the previous arguments that showed that µS1

C and µS2

C were mutually

absolutely continuous can be extended to the case that S1 and S2 have boundaries and some of the

simple closed curves forming C lie in the boundary of both S1 and S2. Thus the four functions ξS̃l

Sl
(Cl),

ξ
S̃′

r

S′

r
(Cl), ξS̃r

Sr
(Cr), and ξ

S̃′

l

S′

l

(Cr) are all defined and

(14) ξS̃
S (Cl)=̇ξ

S̃l

Sl
(Cl)ξ

S̃′

r

S′

r
(Cl), ξS̃

S (Cr)=̇ξ
S̃′

l

S′

l

(Cr)ξ
S̃r

Sr
(Cr)

because, for example,

(15) D(ϕS) = D(ϕSl
) +D(ϕS′

r
).

The dot above the equalities in (14) indicate that they are only valid projectively. From (15) we can only

deduce a relation between gaussian measures up to a constant that will be determined as the quotient

of two determinants.

Let Z̃(φl, φr) be the analogue of Z(φl, φr). Then, as a consequence of (14) and the definition (11),

(16)
Z̃(φl, φr)

Z(φl, φr)
=̇ξS̃

S (C)ξSl

S̃l
(Cl)ξ

S′

r

S̃′

r

(Cl)ξ
S′

l

S̃′

l

(Cr)ξ
Sr

S̃r
(Cr).

The arguments φl and φr have been omitted on the right. >From the analogue of (15) for the decom­

positions S = Sl ∪ Σ ∪ Sr and S̃ = S̃l ∪ Σ ∪ S̃r, we conclude that

(17) ξS̃
S (C)=̇ξS̃l

Sl
(Cl)ξ

S̃r

Sr
(Cr).

Thus

(18) Z̃(φl, φr)=̇Z(φl, φr)ξ
S′

r

S̃′

r

(Cl)ξ
S′

l

S̃′

l

(Cr)

The functions ηrl is the square root of ξ
S′

r

Sl
(Cl) and ηlr is the square root of ξ

S′

l

Sr
(Cr). Let η̃rl and

η̃lr be the analogues of ηrl and ηlr . They are the square roots of ξ
S̃′

r

S̃l

(Cl) and ξ
S̃′

l

S̃r
(Cr).

For Cl there are four measures in play, those defined by Sl, S̃l, S
′
r and S̃′

r . All are absolutely

continuous with respect to each other and there will be obvious relations of transitivity. Making use of

(18), we write the kernel of (13) up to a constant factor as

√

ξSl

S̃l
(Cl)ξ

S′

r

S̃′

r

(Cl)

√

ξ
S′

r

Sl
(Cl)

1

ξ
S′

r

S̃′

r

(Cl)
Z̃(φl, φr)

√

ξ
S′

l

S̃′

l

(Cr)ξ
Sr

S̃r
(Cr)

√

ξ
S′

l

Sr
(Cr)

1

ξ
S′

l

S̃′

l

(Cr)
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We have to verify that the expression to the left of Z̃(φl, φr) is equal to η̃rl and that the expression to the

right is η̃lr . Consider the first and apply the relations of transitivity. The desired relation is immediate.

The most important lesson to be learned from this formal argument is that the relations (14) and

the analogous relations for the decompositions Sl ∪Σ∪Sr and S̃l ∪Σ∪ S̃r are critical to the verification

that the operator KΣ is well defined. So we shall need something similar for the Ising model. We first

verify the multiplicative property for the free boson. With the freedom we now have in the choice of

cappings, this is easy.

After pasting Σ and Σ′ together, we cap Σ on the left with Sl and Σ′ on the right with Sr to obtain

S, a surface that contains both Σ and Σ′ and that can be used to define all three operators KΣ, KΣ′ ,

and KΣ′′ , Σ′′ = Σ ∪ Σ′.

The kernels defining the three operators are given by (12) and its variants for Σ′ and Σ′′, which we

express by adding the appropriate number of primes. When S is chosen as above to be the same for all

three of Σ, Σ′ and Σ′′, then ηlrη
′
rl = 1, ηrl = η′′rl and η′lr = η′′lr . As a consequence, the multiplicativity

becomes

(19)

∫

Z(φl, φm)Z ′(φm, φr)dµ
S
Cr

(φm) = αZ ′′(φl, φr)

where Cr = C ′
l is the curve along which Σ and Σ′ are glued.

Consider (19) as a function of φl for a fixed φr and multiply this function against the measure µS
Cl

.

The result on the right side is a conditional probability of φl with respect to the measure µS
Cl∪C′

r
and the

given φr. The result on the left is the integral over φm of the conditional probability of φl with respect

to µS
Cl∪Cr

and φm of the conditional probability of φm with respect to µS
C′

l
∪C′

r
. The Markov property

of the gaussian measures, in essence a result of the relations (14) and (15), then yields (19).

4. Possible construction of a conformal field theory. After this cavalier discussion of the free boson,

we return to the construction of [I] to see whether it is reasonable to hope that it offers some analogue

of (15). It is best to work with the Ising model on a triangular lattice or, if we want to consider models

other than translation­invariant planar models, on triangulated surfaces S. The advantage, ultimately

of no importance, is that there is no ambiguity about the level curves attached to a given configuration

σ. We choose barycenters for each triangle and each edge of the triangulation and join the barycenter

of an edge to the barycenters of the two triangles in which it lies. This yields for each edge a broken

segment crossing it. The level curve or total, unoriented contour curve attached to a given configuration

is a possibly disconnected curve formed as the union of some of these broken segments, those crossing
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an edge whose two vertices are assigned opposite spins in σ. The elements λ of Λσ are obtained by

assigning an orientation to each connected component of the level curve. For the triangular lattice or

for triangulated surfaces the probability of λ ∈ Λσ is more easily defined than for other models. It is

the probability of the configuration σ divided by 2lσ if lσ is the number of connected components in

the level curve of σ. Thus 2lσ is also the number of elements in Λσ .

I only want to consider the analogue of (14) or (15) at the level of a finite triangulation. There is

no question in this paper of proving anything beyond this level or even of pursuing the experiments

of [I] further. So let S be closed and compact and let C be a smooth curve, thus the union of a finite

number of simple closed parametrized curves, that divides S into two disjoint pieces, Sl and Sr . It is

best to suppose – this is clearly a technical issue to be resolved when the time comes to pass to the limit

in the mesh – that the level curves cut C transversely. Then each element λ in Λσ defines two sets of

points on C , the set X of points at which C crosses it with positive orientation and the set Y of points

at which C crosses it with negative orientation. Varying σ and choosing for each σ all possible λ, we

obtain a collection of pairs (X,Y ), possibly repeated and each with a probability, that of λ. The sum of

the probabilities is 1. We denote by µΠ
C(X,Y ) the sum over all occurrences of (X,Y ) of the probability

of the individual occurrence. Then
∑

(X,Y )

µΠ
C(X,Y ) = 1.

As in [I], µΠ
C may also be considered a measure on distributions. A function f on C is sent by the

distribution associated to (X,Y ) to the number
∑

f(X)−
∑

f(Y ).

Each vertex σ of the graph Γ is surrounded by a star Stσ that is spanned by the barycenters of the

simplices (points, edges and triangles) containing the vertex. Consider the set ΠC of vertices such that

Stσ meets C . The set of vertices not in ΠC is divided into two parts, those lying in Sl and those lying

in Sr . We denote the two parts by Πl and Πr .

The meaning of (14), which we now want to interpret at the level of the finite triangulation, is that

the measure µΠ
C is of the form

(20) ξSl(C)ξSr(C)νC ,

where νC is a measure that is independent of the choice of Sl and Sr and where, for example, ξSl(C)

is a function of (X,Y ) that depends only on Sl but not on Sr . In fact, it will depend on the collection
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Θl of edges connecting points of Πl to other points of Πl or to points in ΠC and the graph they define.

Given (20), we could introduce the Radon­Nikodym derivatives

ξSl

S′

l

(C) =
ξSl(C)

ξS′

l (C)

and the essential factors ηrl and ηlr . There would be, by the way, nothing canonical about such a

factorization since νC is clearly not uniquely determined. Different ν lead, however, to the same

Radon­Nikodym derivatives. The measure ν may have no limit as the mesh decreases to 0, so that in

the limit, when the mesh becomes zero, it is purely fictitious and, as for the free boson, only the Radon­

Nikodym derivatives survive. For the Ising model there appears to be an additional complication,

so that we cannot simply take the definition (12) at the finite level and then pass to the limit. Before

explaining the difficulty, it is useful, as a supplement to the discussion of the free boson, to take a few

lines to explain to what the definition (12) reduces at the finite level when (20) is available, not only for

a curve C that divides S into a left part Sl and a right part Sr but also for a curve C = Cl ∪ Cr that

separates S into three parts Sl, Σ and Sr as in the definition of the operator KΣ.

For such a curve, the analogue of (20) takes the form

µΠ
C = ξSl(Cl)ξ

ΣξSr(Cr)νCl
× νCr

.

The formula (20) applied to Cl and Cr yields

µΠ
Cl

= ξSl(Cl)ξ
S′

r(Cl)νCl
, µΠ

Cr
= ξS′

l (Cr)ξ
Sr(Cr)νCr

.

The map

f → F = f
√

ξSl(Cl)
√

ξS′

r (Cl)

identifies HCl
= L2(µΠ

Cl
) with L2(νCl

). The map

g → G = g

√

ξS′

l (Cr)
√

ξSr(Cr)

identifies HCr
= L2(µΠ

Cr
) with L2(νCr

).

The kernel KΣ defined by (12) is

(21)

√

ξS′

r(Cl)

ξSl(Cl)

ξSl(Cl)ξ
ΣξSr (Cr)

ξSl(Cl)ξS′

r(Cl)ξ
S′

l (Cr)ξSr(Cr)

√

ξS′

l (Cr)

ξSr(Cr)
.

We have suppressed the two variables φl and φr . Integrated against f with respect to the measure µΠ
Cl

,

this kernel yields the image g of f under the operator KΣ. The argument of f is φl, that of g is φr .
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Expressed in terms of F and G and an integration with respect to νCl
, the kernel of KΣ is the product

of (21) with
1

√

ξSl(Cl)ξS′

r(Cl)
ξSl(Cl)ξ

S′

r(Cl)

√

ξS′

l(Cr)ξSr(Cr)

When all possible cancellations in the product are carried out, nothing is left but ξΣ. The multiplicative

property then reduces to a relation similar to (19),

∫

ξΣ(φl, φ)ξΣ
′

(φ, φr)dνCr
(φ) = αξΣ

′′

.

We return to the Ising model and the apparent failure of (20). Given (X,Y ), the σ that generate it

are defined by a triple: σl on the vertices of Πl, σr on the vertices of Πr, and σC on the vertices of ΠC .

The configuration σ is determined up to a global sign on each component of S by the level curve λ.

The Boltzmann weight is not affected by these global signs. That factor βC of the Boltzmann weight for

σ contributed by edges joining vertices in ΠC is determined by (X,Y ) alone. The Boltzmann weight

is a product of this factor and two other factors, βl and βr , the first the product of the contributions

from the edges in Θl crossing that part λl of the level curve that lies in Sl, the second the product of

the contributions from the edges in Θr that cross λr . The number lσ of connected closed curves in λ is

given by lσ = ll + lr + lC , where ll is the number of closed curves lying entirely in Sl, lr the number

lying entirely in Sr, and lC the number that meetC . So, apart from the normalizing factor given by the

partition function,

(22) µΠ
C(X,Y ) = 2|S|βC

∑

λl

∑

λr

βlβr

2ll+lr+lC
,

the sum being over all possible λl and λr compatible with the given collection (X,Y ) of positively and

negatively oriented crossings of C . The exponent |S| is the number of connected components of S.

It is the term 2lC in the denominator of (22) that prevents the factorization of (20). So we might

attempt to modify the construction. There are two pairings of X with Y associated to compatible λ

and (X,Y ),. If, as is implicit in the notation, we have been careful with our orientations on C , then

at each xi ∈ X , i = 1, . . . , N one component of λ crosses from Sr into Sl. Let yi be the first point

at which it crosses back into Sr. The first pairing is Wl = {(x1, y1), . . . , (xN , yN )}. The second,

Wr = {(y′1, x
′
1), . . . , (y

′
N , x

′
N )}, is defined in the same way, except that the roles of Sl and Sr are

reversed. These two collections together define a distribution on C × C ,

f →
∑

i

f(xi, yi) −
∑

i

f(y′i, x
′
i),
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f being a function on C ×C . Taking f(x, y) = g(x)− g(y), we recover twice the original distribution,

f →
∑

{g(xi) − g(yi) − g(y′i) + g(x′i)} = 2
∑

i

{g(xi)− g(yi)}

because {xi} = {x′i} and {yi} = {y′i}. This construction does not demand the global existence of Sl

and Sr; it simply requires that C be oriented.

The measure on the collection Λ of all possible level curves defines one, µΠ
C×C , on the family of

collections

(23) W = (Wl,Wr) = ({(x1, y1), . . . , (xN , yN )}, {(y′1, x
′
1), . . . , (y

′
N , x

′
N )})

associated to the λ in it. To calculate µΠ
C×C(W ), we first construct λl in Sl compatible with the first

componentWl ofW , and λr in Sr compatible with the second,Wr . If we join them at the points where

they meet on C , they form together a λ compatible with W and all such λ are so obtained. Once the

collection λ of oriented level curves is fixed, the configuration σ is determined up to the choices of

global sign. Since lC is determined by W alone, we write lC = lW . The relation (22) now becomes

(24) µΠ
C×C(W ) = 2|S|−lW βC{

∑

λl

βl

2ll
}{

∑

λr

βr

2lr
},

|λl| and |λr| being the number of closed curves in λl and λr respectively, and lW being the number of

closed curves in λ that meet C . It is a number that is determined by W alone. The formula (20) for the

measure on the collection of W follows from (24).

Unfortunately measures on distributions on C × C , and this is what might result from (24) on

passage to the limit over decreasing mesh, have a number of disadvantages that make them unsuitable

for the construction of a conformally invariant theory. For example, there is no possibility that when

C has more than one connected component the absolute continuity class of µS
C×C is independent of S

either at the finite level or in the limit. So we have to find our way back to pairs (X,Y ).

The object W is a pair (Wl,Wr) and there are maps Wl → (X,Y ) and Wr → (X,Y ). Consider

the matrix with entries a(Wl,Wr) = 2−lW . If the entries could be written as

(25) a(Wl,Wr) = αb(Wl)b(Wr),

α a constant, then the right side of (24) would become

2|S|αβC{
∑

λl

b(Wl)βl

2ll
}{

∑

λr

b(Wr)βr

2lr
}.
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Passage to the level of (X,Y ) requires summing over all pairs (Wl,Wr) for which the image of both

Wl and Wr is (X,Y ). The mass of (X,Y ), again apart from the normalization given by the partition

function, would be

(26) µΠ
C(X,Y ) = 2|S|αβC{

∑

λl,Wl→(X,Y )

b(Wl)βl

2ll
}{

∑

λr,Wr→(X,Y )

b(Wr)βr

2lr
}.

This is the factorization required.

There is no possibility that the simple representation (25) of a(Wl,Wr) exists, but as we are passing

to a limit so much is not required. The relation (25) has presumably only to hold approximately except

for a collection of (X,Y ) whose measure tends to zero as the mesh does. This statement will be easier

to understand once we examine the matrix A(X,Y ) = (a(Wl,Wr)) more carefully. It depends on

(X,Y ), X and Y being two sets of points with the same number n of elements. We label them both

as {1, . . . , n}. It is likely that the probability that n is less than any given bound is going to zero with

the mesh. The family Wl is nothing but a permutation r of {1, . . . , n} and Wr a permutation s−1. The

number lW is the number γ(rs−1) of cycles in rs−1. Thus A(X,Y ) is the matrix of

(27) R = Rn =
∑

r

2−γ(r)r

in the regular representation of the symmetric group on n symbols with its standard basis.

We can decompose the regular representation into irreducible constituents τ . Since (27) is clearly

a central element in the group algebra, it is represented as a scalar matrix in each of these constituents.

If absolute precision is not demanded, then the approximate form of (25) is that, as n increases, the

eigenvalues of τ(R), all of which are equal, divided by the eigenvalue for the trivial representation

approach zero, provided that τ is not trivial. The vector (b(W )) would then have all its components

equal. As a somewhat unexpected conclusion to a lecture on percolation and the Ising model, I therefore

briefly describe the necessary representation theory of the symmetric group, which I take from [J].

5. Calculations for the symmetric group. We begin with the calculation of τ(R) for the trivial

representation. It is given by a generating function, the coefficient of xn being the eigenvalue for the

symmetric group on n symbols divided by n!. For a given n we give the cycle lengths as ij cycles of

length j, for j = 1, 2, . . ., with
∑

j ijj = n. The number of cycles corresponding to these lengths is

n!
∞
∏

j=1

(
(j − 1)!

j!
)ij

1

ij !
= n!

∞
∏

j=1

(
1

j
)ij

1

ij !
.
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Observe that when ij = 0 the corresponding factor is 1, so that it is permissible to write an infinite

product. It is to be multiplied by
∏

j

1

2ij
.

Multiplying by xn, dividing by n!, and summing over all possible families of nonnegative integers ij ,

we obtain for the generating function the result

∞
∏

j=0

exp(xj/2j) = exp(− ln(1 − x)/2) =
1

(1 − x)1/2
.

Thus the eigenvalue of Rn for the trivial representation is

(28).
1

2

3

2
. . . (n−

1

2
).

We can expect that this is the largest eigenvalue of Rn.

A similar calculation for the one­dimensional representation τ(r) = sgn(r), but with division by

(−1)nn!, yields the series of (1−x)1/2. The quotient of the eigenvalues ofRn in the two representations

is thus

(−1)n−1
1
2

1
2

3
2 . . .

2n−3
2

1
2

3
2 . . .

2n−1
2

=
(−1)n−1

2n− 1
,

confirming our hopes.

The general irreducible representation τ is given as τµ, where µ is a partition of the set {1, . . . , n}.

The properties of τµ are described in [J]. First of all, there is an ordering on partitions, the partition

λ = {l1 ≥ l2 . . .} dominating the partition µ = {k1 ≥ k2 ≥ . . .} if and only if
∑j

i=1 li ≥
∑j

i=1 ki for

all j. The representations τµ have the property that τµ is contained exactly once in the representation

ιµ induced from the trivial representation of the subgroup fixing the partition µ and every other

representation contained in this induced representation is equivalent to a τλ, λ ≥ µ.

The trace of ιµ(Rn) is readily calculated. Let µ = {k1, . . . , ks}. Then the trace of ιµ(R) is obtained

by taking the sum over all decompositions of {1, . . . , n} into s subsets of respectively k1, . . . , ks

elements of the product of the traces of Rkl
with respect to the trivial representation of the symmetric

group on kl elements, thus

tr(ιµ(Rn)) =
n!

k1! . . . ks!

s
∏

j=1

1

2

3

2
. . . (kj −

1

2
).
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To compute the trace of τµ, we use the determinantal form appearing on p. 74 of [J]. Writing

formally ιµ = [k1] . . . [ks] when µ = {k1, . . . , ks}, we can treat any formal determinant

(29)
∣

∣ [mi,j ]
∣

∣

that is of size s × s and in which
∑

imi,r(i) = n is independent of the permutation r as a linear

combination of induced representations,

∑

r

sgn(r)[m1,r(1)][m2,r(2)] . . . [ms,r(s)].

If in (29) mi,j = 0, then [mi,j ] is a multiplicative identity, whereas if mi,j < 0 then [mi,j ] is the

multiplicative zero.

The determinantal form described and proved in [J] expresses τµ in this way. If µ is given by

k1 ≥ k2 ≥ . . . ≥ ks, then

(30) τµ =
∣

∣ [ki − i+ j]
∣

∣.

Since the dimension of ιµ, µ = {k1, . . . , ks}, n =
∑

ki, is n!/k1! . . . ks!, this yields a simple formula for

the dimension of τµ. It is

(31) n!

∣

∣

∣

∣

1

(ki − i+ j)

∣

∣

∣

∣

.

It also yields a simple formula for the trace of τµ(Rn) as

n!

∣

∣

∣

∣

1
2

3
2
. . . (ki − i+ j − 1

2
)

(ki − i+ j)!

∣

∣

∣

∣

.

The eigenvalues of τµ(Rn) are calculated as the quotient

(32)

∣

∣

∣

∣

1
2

3
2
...(ki−i+j− 1

2
)

(ki−i+j)!

∣

∣

∣

∣

∣

∣

∣

∣

1
(ki−i+j)

∣

∣

∣

∣

.

Factorials of negative numbers are of course infinite. Moreover, the entry in the determinant of the

numerator is to be taken to be 1 when k − i+ j = 0.
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For a partition consisting of a single term, this clearly agrees with our previous formula. As an

additional confirmation, take the simple partition ofn given byµ = {1, 1, . . . , 1}. Then the determinant

of (31) is
∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1
2!

1
3!

1
4!

. . .
1 1 1

2!
1
3! . . .

0 1 1 1
2!

. . .
0 0 1 1 . . .
. . . . . . .

∣

∣

∣

∣

∣

∣

∣

∣

∣

Multiplying this determinant by

1 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 0 0 . . .
−1 1 0 0 0 . . .
2! −2! 1 0 0 . . .
−3! 3! −3!

2 1 0 . . .

4! −4! 4!
2! − 4!

3! 1 . . .
. . . . . . . .

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

we obtain the determinant of an upper­diagonal matrix with entries 1, 1/2, 1/3, . . . along the diagonal.

So the formula (31) yields 1. The determinant in the numerator of (32) is

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
2

1
2

3
2

2!

1
2

3
2

5
2

3!

1
2

3
2

5
2

7
2

4!
. . .

1 1
2

1
2

3
2

2!

1
2

3
2

5
2

3! . . .

0 1 1
2

1
2

3
2

2!
. . .

0 0 1 1
2 . . .

. . . . . . .

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

If it is multiplied by

1 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 0 0 0 . . .
−2 1 0 0 0 0 . . .
−8 4 1 0 0 0 . . .
−16 8 2 1 0 0 . . .
− 128

5
64
5

16
5

8
5

1 0 . . .
. . . . . . . . .

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

the result is again an upper­diagonal matrix but now with entries 1
2
,−1

2
1
2
,−3

2
1
3
,−5

2
1
4
, . . . along the

diagonal. To pass from one row of the matrix to the next we multiply the nonzero entries by 2k/(2k−3),

add one entry equal to 1, and the necessary zeros.

Suppose µ = {k1, k2}, k1 ≥ k2, k1 + k2 = n. Then the denominator of (32) is equal to

1

k1!k2!

(

1 −
k2

k1 + 1

)

.

The numerator is equal to

1
2
. . . (k1 −

1
2
)

k1!

1
2
. . . (k2 −

1
2
)

k2!

(

1 −
k2(k1 + 1

2
)

(k2 −
1
2
)(k1 + 1)

)

.
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The quotient is to be divided by (28). This yields

1
2
. . . (k1 −

1
2
)1
2
. . . (k2 −

1
2
)

1
2
. . . (n− 1

2
)

(

1 −
k2(k1 + 1

2
)

(k2 −
1
2
)(k1 + 1)

)

/

(

1 −
k2

k1 + 1

)

The second term of the numerator is universally bounded and the denominator is at least (k1−k2+1)/k1.

The first term of the terminator is bounded by a universal constant times

Γ(k1 + 1
2
)Γ(k1 + 1

2
)

Γ(N + 1
2
)

= O((
k1

n
)k1(

k2

n
)k2),

the constant implicit in this relation being universal. The quotient clearly goes to 0 as n approaches

infinity, independently of the ratio of k1/k2 > 1. I have not yet tried to establish something similar

for arbitrary k1 ≥ . . . ≥ ks. Experiments can, however, begin without a full understanding of the

eigenvalues of τ(Rn).

6. Final remarks. Even if the constructions of §4 have something to offer, it is not clear how to set about

convincing oneself that they can indeed be made, thus that the pertinent scaling limits exist, or that

the intuitive arguments that we sketched can be rendered effective. For experiments, one might begin

with models on the Riemann sphere or, by conformal invariance, with translation­invariant models

in the plane or on a cylinder. The construction is also possible for percolation, and for percolation

experiments will be easier to perform.

Neither for percolation nor for the Ising model do I see at all clearly what information might be

contained in the operators KΣ. If they can be defined, it is more than likely, indeed almost certain, that

they contain not only the expected unitary conformal field theories but also nonunitary ones.

Even if experiments establish that the reflections of this paper are well founded, the problem of

proving that the scaling limits exist will remain. There may be some analogue of the finite­model

for percolation described in [P3], although its definition will have to be more elaborate, not alone

but in part because there is a dependence in the Ising model not present in percolation. Crossing

probabilities for regions that do not overlap are independent in percolation. The measures µC will, on

the contrary, change even when the conditioning data are taken from outside C , although the influence

diminishes with increasing distance. It can be taken into account, but whether it can be taken into

account effectively so that dynamical systems of manageable size result is another matter. For the

construction of a conformal field theory, it may very well be better to work directly with definitions

based on (26), and for finite models it may be best to begin with the factorization given by that formula.
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