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If G is a reductive group over a local or global field then it is possible to attach to G the endoscopic groups

studied by Shelstad ([16] and the references therein) and myself ([5]). Over the real and complex fields the

introduction of these groups has been amply justified by the work of Shelstad, but over other fields their value

remains doubtful as long as one is unable to establish the possibility of a transfer of orbital integrals ([5]).

If T is a Cartan subgroup ofG over the local fieldF , supposed of characteristic zero, and γ in T (F ) is regular

then the orbital integral of a function f , taken for simplicity to be smooth and of compact support, over the orbit

of γ is

Φ(γ, f) =

∫

T (F )\G(F )

f(g−1γg)dg.

Let F̄ be the algebraic closure of F and A(T/F ) the set of all a ∈ G(F̄ ) such that εσ = σ(a)a−1 ∈ T (F̄ ) for

all σ ∈ Gal(F̄ /F ). Then a → ε = {εσ} yields an imbedding of D(T/F ) = T (F̄ )\A(T/F )/G(F ) in the image

E(T/F ) of H1(F, Tsc) in H1(F, T ), the group Tsc being the inverse image of T in the simplyconnected covering

of the derived group of G. If ε in E(T/F ) is the image of an a in A(T/F ) we set

Φ(γ, ε, f) = Φ(a−1γa, f),

but if ε does not lie in the image of a(T/F ) we set

Φ(γ, εf) = 0.

Finally if κ is a character of the group E(T/F ) we set

Φκ(γ, f) =
∑

ε

κ(ε)Φ(γ, ε, f).

It appears that to transfer orbital integrals one needs methods for studying the asymptotic behavior of

Φκ(γ, f) as γ approaches a singular element. Over the real and complex fields the differential equations it

satisfies provide an effective tool ([2]). Over nonarchimedean fields the germ theory of Shalika is available, but

this is only a first step. However, as Shalika himself pointed out to me, there is a technique at hand for the study

of the asymptotic behavior of integrals on nonarchimedean manifolds, that of Igusa ([4]).
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It will be described in detail in Section 1 and applies to integrals along fibres in a fibering over a curve,

but the fibering, the form defining the measure, and the integrand must satisfy a number of conditions which,

especially those imposed on the fibering, are not easy to create.

The purpose of this paper, which is frankly tentative, is to construct Igusa fiberings which are applicable

to the study of orbital integrals on forms of SL(3). The method is to modify a resolution due to Grothendieck

Springer ([1]) of the morphism from G to the variety of semisimple orbits. The construction is carried out in

Section 2, Section 3 and Section 4 using simple techniques of algebraic geometry. In Section 5 it is verified that

the orbital integrals are defined by integrals of Igusa integrands over the fibres. In a second paper, to be written

jointly with Shelstad, it will be shown, all being well, that for the small class of groups being considered the

results allow the introduction of transfer factors satisfying the conditions of [5].

The present results are thus extremely modest, and can only be a token of my esteem for the mathematical

achievement of André Weil, but it is a token gladly given.

1. Asymptotic behavior of integrals. In this paragraph we review some results of Igusa [4] and develop

them in a form suitable for our purposes. We introduce first of all an Igusa fibering, which is a morphism ϕ from

a smooth variety Y to a smooth, but not necessarily complete curveC on which there is a distinguished point s0.

The point, the two varieties, and the morphism ϕ are all to be defined over a given ground field F , and ϕ is to be

smooth outside ϕ−1(s0). In addition if y0 ∈ ϕ
−1(s0) and λ is a local coordinate on Z at s0 then there are local

coordinates µ1, . . . , µn on Y at y0 which are defined over F and such that ϕ is given by an equation

λ = αµa1
1 · · ·µ

an
n

with ai ∈ Z, ai ≥ 0, and α regular and invertible at y0. Such local coordinates will be called admissible. The

inverse imageϕ−1(s0) is the union of divisors which are smooth, apart from possible selfintersections, and cross

normally. Let e be the set of these divisors and let a(E) be multiplicity of E in ϕ−1(s0).

A form ω defined over F̄ , regular, and of maximal degree will be called an Igusa form if the divisor of its

zeros is contained in ϕ−1(s0). Thus to each divisor E in E we can so associate an integer b(E) > 0 that the

divisor of zeros is ΠE∈eE
b(E)−1. If y0 ∈ ϕ

−1(s0) then in terms of the local coordinates µ1, . . . , µn the form can

be written as

ω = W (µ1, . . . , µn)µ
b1−1
1 · · ·µbn−1

n dµ1 · · ·dµn,

where bi = b(E) if µi = 0 defines a branch of E ∈ E at y0 and bi = 1 if ai = 0.

IfF is a local field then Y (F ) andC(F ) are F manifolds. A smooth function f on Y 0(F ) = Y (F )−ϕ−1(s0)

will be called an Igusa integrand if the following two conditions are satisfied:

(a) The closure of the support of f is proper over C(F ).
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(b) To each E ∈ E there is associated a character κ(E) of F× such that in a neighborhood of a point

y0 ∈ ϕ
−1(s0) the function f is defined by an equation

f(y) = γκ1(µ1) · · ·κn(µn)

where κ1, . . . , κn are unitary characters of F× with κi = κ(E) if µi = 0 defines a branch ofE at y0 but otherwise

identically 1, and where γ is smooth at y0. Thus if F is nonarchimedean, which is the case with which we will

be concerned in this paragraph, γ can be taken to be constant.

The fibering, the form, and the function taken together can be called Igusa data. If λ is a local coordinate

on C at s0 and if we choose a nonzero value λ0 for it we can introduce coordinates µ1, . . . , µn at any point of

ϕ−1(s(λ0)) such that µ1 = λ. Then µ2, . . . , µn serve as local coordinates on ϕ−1(s(λ0)) = Ys(λ0) and the formula

ωλ0 = W (λ0, µ2, . . . , µn)dµ2 · · · dµn =
ω

ϕ∗(dλ)

defines a form of maximal degree on Ys(λ0).

We set

F (λ) =

∫

Ys(λ)

f(y)|ωλ|.

The results of Igusa describe the asymptotic behavior of F as λ→ 0, and yield when they can be applied explicit

formulas for the germs of Shalika. In order to state them we need some notation.

Let Θ be the collection of all pairs (θ, β), where θ is a unitary character of F× and β a positive rational

number, and let E(θ, β) be the set of all E ∈ E such that θa(E) = κ(E) and β = β(E) = b(E)
a(E) . Let e(θ, β) be the

maximal number of branches of divisors in E(θ, β) which cross at a point.

1.1. Proposition. Let F be non-archimedean, q the number of elements in the residue field, and m(λ) =

− logq |λ|. For |λ| sufficiently small there is an expansion

F (λ) = Σθ(λ)|λ|β−1

e(θ,β)∑

r=1

m(λ)r−1Fr(θ, β, f),

where the sum runs over all pairs (θ, β) for which E(θ, β) is not empty, and the constant Fr(θ, β, f) depends

on θ, β, and f but not on λ.

We will indicate the proof of this, referring to [4] for details, even though the results are formulated differently

there, but we want to explain at the same time how the constants Fr(θ, β, f) are calculated.

If 1 ≤ r ≤ e(θ, β) let D = Dr(θ, β) be the variety which in the neighborhood of any point is obtained by

taking the union of all intersections of r distinct branches of divisors in E(θ, β). The points of D through which

pass exactly r branches of divisors in e form an open, dense, and smooth subvariety D̂ of D. We now define a

form ν = νr = νr(θ, β) and a function h = hr = hr(θ, β) on D̂.
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If y ∈ D then we may so choose admissible local coordinates µ1, . . . , µn at y that a given branch of D at y is

given locally by µ1 = · · · = µr = 0. On this branch and near y the form is given by

ν =
W (0, . . . , 0, µr+1, . . . , µn)

αβ

n∏

j=r+1

µ
bj−βaj−1
j dµr+1 · · · dµn

and the function by

h(0, . . . , 0, µr+1, . . . , µn) =
γ

θ(α)

n∏

j=r+1

κj(µj)θ(µ
−aj

j ).

Because β may not be integral the form ν may be multivalued, but it is easily verified that the associated measure

|ν| and the function h are welldefined on D̂.

1.2. Proposition. The constant Fr(θ, β, f) is given by the principal value

PV

∫

D

h|ν|.

The principal value appearing here has still to be defined. To this purpose we fix the local coordinate λ and

confine our attention to

Y ε = {y ∈ Y (F ) | ϕ(y) = s(λ), |λ| ≤ ε},

where ε is small. We agree that at a point y0 /∈ ϕ−1(s0) all local coordinate systems are admissible. We cover

the closure of the support of f by a finite number of disjoint coordinate patches U with admissible coordinates

µ1, . . . , µn satisfying the following conditions.

(i) There are integers Mi, 1 ≤ i ≤ n, such that U is given by the inequalities |µi| ≤ q−Mi . There is also an

integer s = sU (θ, β) such that µi = 0 is a branch of a divisor in E(θ, β) if and only if 1 ≤ i ≤ s.

(ii) If ϕ is given by λ = αµa1
1 · · ·µ

an
n then |α| = q−m is constant on U .

(iii) If ω = W (µ1, · · · , µn)µ
b1−1
1 · · ·µbn−1

n dµ1 · · · dµn then |W (µ1, . . . , µn)| is constant on U .

(iv) If f = γκ1(µ1) · · ·κn(µn) then γ is constant on U .

It is easy to see that any covering of the closure of the support of f can be refined to a covering satisfying

these conditions and that any two such coverings have a common refinement. We shall define PV
∫
Dr
hr|νr| as

a sum
∑

U

PV

∫

Dr∩U

hr|νr|.

IfDr ∩U is empty the principal value is to be zero. So we suppose thatDr ∩U is not empty and thus that s ≥ r.

Let the principal part of
s∏

i=1

1

1− tai
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at t = 1 be
s∑

j=1

cj
(1− t)j

and let A(x) be the polynomial
s∑

j=1

cj(x + 1) · · · (x+ j − 1).

We define Ar(y) by

A(x− y) =

s∑

r=1

xr−1Ar(y)

and if

M = m+

s∑

i=1

aiMi +

n∑

i=s+1

aim(µi)

we set

PV

∫

Dr∩U

hr|νr| =

(
1−

1

q

)s−1

PV

∫

Ds∩U

Ar(M)hs|νs|.

The principal value on the right, in which the domain of integration is now Ds ∩ U , remains to be defined.

1.3. Lemma. If Re zj � 0, s < j ≤ n, then

(1.4)

∫

D̂s∩U

Ar(M)hs

n∏

j=s+1

|µj |
zj |νs|

is absolutely convergent, and defines a meromorphic function of zs+1, . . . , zn which is analytic at zs+1 =

· · · = zn = 0.

Once the lemma is proven we can take

PV

∫

Ds∩U

Ar(M)hs|νs|

to be the value at zs+1 = · · · = zn = 0 of the function defined by (1.4).

The integral is a sum of integrals of the form

n∏

j=s+1

∫

|µj |≤q
−Mj

m(µj)
kηj(µj)|µj |

cj+zj−1|dµj |,

where for each j either the unitary character ηj is not trivial or the real number cj is different from 0. The integrals

appearing in the product are clearly convergent for Re cj + zj > 0. If ηj is ramified the jth integral is zero, but if

ηj is unramified and εj its value at a generator of the maximal ideal it is

(
1−

1

q

)(
−1

In q

)k
dk

dzkj

(
ε
Mj

j q−Mj(cj+zj)

1−
εj

qcj+zj

)
.
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Thus the lemma is established.

We need to verify that the definition of principal value is independent of the covering chosen. The first step

is to show that if we take a grid decomposition of a given patch U into patches V then

∑

V

PV

∫

Dr∩V

hr|νr| = PV

∫

Dr∩U

hr|νr|.

A grid decomposition is obtained by choosing for each i an integer Ni ≥ Mi and refining U by patches V with

coordinates φi, µi = µ̄i + φi, |φi| ≤ q−Ni , it being understood that µ̄i = 0 if |µ̄i| ≤ q−Ni . If some of the κi

are ramified, then the condition (iv) will be satisfied only for Ni −Mi sufficiently large, but that is a minor

complication which we choose to ignore.

The refinement can be carried out in stages, taking Nj = Mj + 1 for one j and Ni = Mi for i 6= j. We will

have q patches V0, · · · , Vq−1 with µ̄j = µkj equal to 0 for k = 0 and unequal to 0 for k 6= 0. Suppose first that

j > s. Then it has to be shown that

PV

∫

Ds∩U

Ar(M)hs|νs| =
∑

k

PV

∫

Ds∩Vk

Ar(M)hs|νs|.

This follows readily from the definition once it is observed, as is implicit in the notation, that the functions

Ar(M) appearing on the two sides of the equality are indeed the same. On V0 this is clear because there µj = φj .

On Vk, k > 0,

λ = α(µkj + φj)
aj




∏

i6=j

µai

i



µ
a′j
j ,

with a′j = 0, and µi = φi, i 6= j. Thus on Vk the function α is replaced by

α′ = α(µkj + φj)
aj

and

M ′ = m(α′) +

s∑

i=1

aiMi +

n∑

i=s+1
i6=j

aim(φi) + a′jm(φj) = M.

We next take j ≤ s, supposing to simplify the notation that j is simply s. Then it must be shown that if Br

is defined like Ar but with respect to a1, . . . , as−1 rather than a1, . . . , as, if

M(µ) = m+
∑

i6=s

aiMi +

n∑

i=s+1

aim(µi) + asm(µ),

and

N = m+

s∑

i=1

aiNi +

n∑

i=s+1

aim(µi)
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then (
1−

1

q

)
Ar(M) =

(
1−

1

q

)
Ar(N) +

∫

Ns>m(µ)≥Ms

Br(M(µ))
|dµ|

|µ|
.

Since N = M + as and M(µ) = M on the domain of integration this reduces to

(1.5) Ar(M) = Ar(M + as) +Br(M),

where it is understood that Br ≡ 0 if r > s− 1.

The identity (1.5) is valid for all r if and only

(1.6)

s∑

r=1

xr−1Ar(y)−

s∑

r=1

xr−1Ar(y + as) =

s−1∑

r=1

xr−1Br(y).

This identity need only be verified for y and x integral and x very large. The expression on the left is the coefficient

of tx−y in the Taylor expansion at t = 0 of the principal part at t = 1 of

s∏

i=1

1

1− tai
− tas

s∏

i=1

1

1− tai
=

s−1∏

i=1

1

1− tai
,

which is by definition the right side of (1.6).

Suppose next that we have two coordinate systems φ1, · · · , φn and µ1, · · · , µn on the same patch U and that

µi = fi(φ1, . . . , φn)φi,

if φi = 0 defines a branch of a divisor in E(β, θ), where |fi| = q−Ni is constant on U .

We want to show that the two coordinate systems lead to the same principal value. It follows readily from

the definition of

PV

∫

Ds∩U

Ar(M)hs|νs|

that this will be so if the functionM defined on D̂s∩U by the coordinates µ1, · · · , µn and the functionM ′ defined

by the coordinates φ1, . . . , φn are equal. If near a point of D̂s we have

λ = β

s∏

i=1

µai

i

then

M = m(β) +

s∑

i=1

aiMi

and if

λ = β′
s∏

i=1

φai

i
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then

M ′ = m(β′) +

s∑

i=1

aiM
′
i .

HoweverMi = M ′
i +Ni and

β′ = β

s∑

i=1

fai

i ,

so that

m(β′) = m(β) +
s∑

i=1

aiNi.

To show that the principal value is well defined and independent of the covering by coordinate patches,

we observe that if we have two we can find a grid decomposition of one, that is of each of its patches, which is

also a grid decomposition of the other. So we are immediately reduced to the case of a single patch U with two

coordinate systems φ1, . . . , φn, µ1, . . . , µn. Renumbering the coordinates we may suppose that φi = 0 and µi = 0

define the same divisor for 1 ≤ i ≤ sU (β, θ). Thus µi = fi(φ1, . . . , φn)φi when 1 ≤ i ≤ sU (β, θ) and |fi| 6= 0

on U . After passage to a finer grid decomposition the absolute values |fi| become constant on the patches. The

independence is thus verified.

We now prove Propositions 1.1 and 1.2. It is enough to verify them for a function supported on a coordinate

patch U on which it has the form

f(y) =

n∏

i=1

κi(µi),

while

ω =

n∏

i=1

µbi−1
i dµ1 · · · dµn

and

λ = αµa1
1 · · ·µ

an
n

with |α| = q−m constant on U .

What has to be shown is that for each unitary character θ of F× the function

Θ(s) =

∫

|λ|≤ε

F (λ)θ−1(λ)|λ|s|dλ|

is a rational function of t = q−s whose principal part at t = qβ has a Taylor expansion at t = 0 in which the

coefficient of tn is
(

1−
1

q

)
q−nβ

e(θ,β)∑

r=1

nr−1Fr(θ, β, f)

for n large.
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Following Igusa we obtain

Θ(s) =
|α|s

θ(α)

∫

U

f(y)

n∏

i=1

θ(µ−ai

i )|µi|
ais+bi−1|dµ1| · · · |dµn|

=
|α|s

θ(α)

n∏

i=1

∫

|µ|≤q−Mi

κi(µ)θ−ai(µ)|µ|ais+bi−1|dµ|.

The integral will be zero if any of the characters κiθ
−ai is ramified. Otherwise let εi be the value of κiθ

−ai at a

generator of the maximal ideal. Then

Θ(s) =
|α|s

θ(α)

(
1−

1

q

)n n∏

i=1

(εiq
−ais−bi)Mi

1− εi
qais+bi

.

We suppose that for 1 ≤ i ≤ p we have κi = θai and bi

ai
= β but that for i > ρ one of these two equalities

fails to obtain. Then Θ(s) is the value at z = 0 of

(
1−

1

q

)p ∫

|µj |≤q
−Mj

{
p∏

i=1

(q−ai(s+β))Mi

1− 1
qai(s+β)

}
· |α|s+βhp

n∏

j=p+1

|µj |
z+ajs+bj−1|dµp+1| · · · |dµn|.

The procedure of forming the principal part at t = qβ and then the coefficients of its Taylor series at t = 0 is linear,

depends analytically on any parameter on which the function depends analytically, and is interchangeable with

a passage to the limit. So we can carry it out under the integral sign.

If the principal part of
p∏

i=1

1

1− tai

at t = 1 is
p∑

j=1

cj
(1− t)j

and

A(x) =

p∑

j=1

cj(x + 1) · · · (x+ j − 1)

then the Taylor expansion at t = 0 of the principal part of the function under the integral sign at t = qβ is

∞∑

n=0

A(n)tn+Mq−(n+M)βhp

n∏

j=p+1

|µj |
z+bj−βaj−1

with

M = m(α) +

p∑

i=1

aiMi +

n∑

i=p+1

aim(µi).

So the coefficient of tn for large n is

A(n−M)hp(0, . . . , 0, µp+1, . . . , µn)
n∏

j=p+1

|µj |
z+bj−βaj−1,
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and the propositions are proved.

2. Preliminary constructions. The initial, but not the critical, steps in the construction of the Igusa data

attached to orbital integrals can be carried out in general. We begin with a reductive group G, a quasisplit group

G∗, an isomorphism ψ : G → G∗, and a distinguished pair T
∗ ⊆ B

∗, where B
∗ is a Borel and T

∗ a Cartan

subgroup of G∗. The groups G,G∗,T∗,B∗ are all to be defined over F , but the isomorphism ψ need only be

defined over F̄ . In addition we suppose we are given a Cartan subgroup T of G and a Cartan subgroup T ∗ of

G∗, both defined over F , as well as a commutative diagram

(2.0)

T ∗ η∗
←−−−− T ∗

η

xψT,T∗

T

which is the restriction of
G∗ η∗

←−−−− G∗

η

xψT,T∗

G

The homomorphism η∗ is to be inner, and ψT,T∗ is to be of the form ad h ◦ ψ, with h ∈ G∗(F̄ ). Moreover the

restriction of ψT,T∗ to T is to be defined over F . Since the diagram (2.0) will be fixed we may replace ψ by ad

h ◦ ψ and suppose that ψ = ψT,T∗ . The isomorphism ψ allows us to identify G and G∗ when the F structure is

not being considered.

The isomorphism η allows us to identify the Weyl group of T and T
∗, both of which we label Ω, and to

introduce the Borel subgroup B = η−1(B∗) of G. The Weyl chambers in X∗(T )⊗ R, the module X∗(T ) being

the group of rational characters, may be labelled by ω ∈ Ω. We set W (ω) = ω−1W+ if W+ is the chamber

positive with respect to B, and if W = W (ω) we set B(W ) = B
ω = w−1

Bw, w being a representative of ω in the

normalizer of T . We introduce an action of the Galois group on the set w of Weyl chambers by

σ(B(W )) = B(σT (W )), σ ∈ Gal(F̄ /F ).

Let V be the variety of Borel subgroups of G. It is defined over F although it may have no F valued points.

We call a point (B(W ) |W ∈ w) in V w a regular star if there exists an h ∈ G such that

B(W ) = h−1
B(W )h = B(W )h

for all W . The variety S0 of regular stars is a locally closed subvariety of V w.

If α is a simple root of T in B with associated reflection ε = ε(α) let Pα be the smallest parabolic subgroup

containing B and B
ε. The point (B(W ) |W ∈ w) is called a star if for every ω and every α there is an h such that

B(W (ω)) = h−1
Bh
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and

hB(W (εω))h−1 ⊂ Pα.

The variety S of stars is closed.

The group G acts to the right on S0 and S:

g : (B(W ))→ (B(W )g) = (g−1B(W )g).

The group Ω acts to the left

µ : (B(W ))→ (B′(W ))

with B′(W (ω)) = B(W (ωµ)).

As subvarieties of V w the varieties S0 and S are naturally defined over F , but this is not the F structure we

want. We define the Galois action on S(F̄ ) and S0(F̄ ) by

σ : (B(W ))→ (σ(B(σ−1
T (W )))).

2.1. Lemma. (a) There are natural bijections between the following three sets: (i) T (F̄ )\G(F̄ );

(ii) S0(F̄ ); (iii) the collection of pairs (T ′, ν) where T ′ is a Cartan subgroup of G over F̄ and ν : T → T ′ is

induced by an inner automorphism of G(F̄ ).

(b) If the class T (F̄ )h, h ∈ G(F̄ ), corresponds to e ∈ S0(F̄ ) and to (T ′, ν) then the following conditions

are equivalent: (i) h ∈ a(T/F ); (ii) e ∈ S0(F ); (iii) T ′ and ν are defined over F .

The bijections whose existence is asserted in (a) are given by h → (B(W ) = B(W )h) and h → (T ′, ν) with

T ′ = T h, ν(t) = th = h−1th. The only doubtful point is the equivalence of (ii) in (b) with (i) and (iii). However

σ(B(σ−1
T W )) = (σ(B(σ−1

T W )))σ(h) = B(W )σ(h)

and

B(W )σ(h) = B(W )h

for all W if and only if σ(h)h−1 ∈ T (F̄ ).

We next introduce the variety consisting of all points (g, e) inG×S such that g ∈ B(W ) for allW , the point

e being (B(W )). Let X0 be the open subvariety of pairs (g, e) with g and e regular and let X be its closure. Both

G and Ω act on X and X0, the element h in G taking (g, e) to (h−1gh, eh) and µ ∈ Ω taking it to (g, µ(e)). Let π

be the morphism (g, e)→ g fromX toG. It is proper. There is in addition clearly a unique morphism ϕ : X → T

such that for a given x = (g, e) there is some h in G satisfying

(2.2) B(W+) = h−1
Bh

and

(2.3) ϕ(x) ≡ hgh−1(mod N),

where N is the unipotent radical of B.



Orbital integrals on forms of SL(3) part I 12

2.4. Lemma. (a) We have

ϕ(µ(x)) = µ(ϕ(x)).

(b) The morphism ϕ is defined over F .

Both assertions need only be verified on X0. Multiplying the h appearing in (2.2) and (2.3) on the left by an

element of B does not affect either equation. Thus we may suppose, provided that x is in X0, that

(2.5) B(W ) = B(W )h

for all W . Then g = h−1ϕ(x)h. Passing to µ(x) replaces B(W (ω)) by B(W (ωµ)) which is equal to B(W )mh,

where m is a representative of µ. Thus h is replaced by mh and ϕ(x) by mϕ(x)m−1 = µ(ϕ(x)).

If x = (g, e) lies in X0(F̄ ) then passing to σ(x) we replace g by σ(g) and h in (2.5) by σ(g). Thus hgh−1 is

replaced by σ(hgh−1) and ϕ(x) by σ(ϕ(x)).

The next assertion is an immediate consequence of the basic theory of reductive algebraic groups.

2.6. Lemma. If x = (g, e) lies in X and g is regular and semi-simple then x ∈ X0.

If γ in T (F ) is regular let ϕ−1
γ (F ) = {x ∈ X0(F ) | ϕ(x) = γ}. Let Ωγ be the stabilizer of γ in Ω and Ω0

γ the

subgroup of elements in Ωγ fixed by σT , σ ∈ Gal(F̄ /F ), σT denoting the natural action of σ on the Weyl group

of T .

2.7. Lemma. The morphism π defines a bijection of the orbits of Ω0
γ in ϕ−1

γ (F ) with the stable conjugacy

class of γ in G(F ).

The stable conjugacy class is by definition ([5]) given by

{a−1γa | a ∈ A(T/F )}

and thus is the quotientGγ(F̄ ) ∩ A(T/F )\A(T/F ). Moreover

T (F̄ )\Gγ(F̄ ) ∩ A(T/F ) = Ω0
γ .

On the other hand ifa ∈ A(T/F ) then (a−1γa, (B(W )a)) lies inϕ−1
γ (F ). It is also clear that ifx = (a−1γa, (B(W )a))

lies in X0(F ) then a ∈ A(T/F ). The lemma follows readily.

The variety Y 0 occurring in the Igusa data will be obtained by taking a smooth curve C in T which passes

through the origin s0 where its tangent is regular in the sense that it does not lie in a hyperplane defined by

a root and which contains no other singular point. Then Y 0 will be the inverse image of C0 = C − {s0} in

X0. Since X0 is clearly isomorphic over F to T 0 × T\G, where T 0 is the set of regular elements in T and

(γ, g) → (g−1γg, (B(W )g)) the morphism ϕ is smooth on X0 and Y 0 is smooth. Before carrying out the
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construction of Y itself, which is at the moment possible only in very simple cases, we introduce a form on X0

from which the Igusa form will be derived.

LetM be the variety providing the GrothendieckSpringer resolution. Its points are {(g,B) ∈ G×V | g ∈ B}

and it is smooth. We have a morphism ξ : (g, e) → (g,B(W+)) from X to M . The variety M may be identified

with a quotient B×B G by means of the morphism

(b, g)→ (g−1bg, g−1
Bg)

(cf. [1]).

2.8. Lemma. Let {µi} be a basis for the left-invariant 1-forms on B and {ωj} a basis for the right-invariant

forms on G which vanish on the Lie algebra of B. For each i let νi be a right-invariant form on G whose

restriction to B is equal to µi at the identity. Then the form on B×G which at a× g is given by

(2.9) (∧i(µi, (1− ad a)νi)) ∧ (∧j(0, ωj))

is the pull-back to B × G of a nowhere vanishing form ωM on M of maximal degree. The form ωM is

G-invariant.

The final statement is clear. Otherwise we must verify that (2.9) is Binvariant and that its contraction with

the tangent vector to a curve (exp tXa exp(−tX), exp tXg), X in the Lie algebra of B, is zero at t = 0. Since the

tangent vector is ((ad a−1 − 1)X,X), the first factor being regarded as a leftinvariant vector field on B and the

second as a rightinvariant vector field on G the contraction is certainly zero.

The action of b ∈ B pulls the form (µi, (1 − ad(bab−1))νi) at (bab−1, bg) back to (ad b−1(µi),

(1− ad a)ad b−1(νi)) at (a, g) and ωj back to ad b−1ωj . Since

det(ad b |Lie B)det(ad b |Lie B\Lie G) = det(ad b |LieG) = 1

the invariance is clear.

The basis {ωj} together with the collection {νi} defines a basis for the dual of Lie G and thus a form ωG of

maximal degree on G. A suitable choice of bases leads to any given form. Consequently we may in particular

assume that ωG is defined overF . Suppose in addition that we also have an invariant form ωT of maximal degree

on T and that it is defined over F . Thus the quotient of ωG by ωT is a form ωT\G on T\G.

The set of F valued points of T\G is precisely the image of A(T/F ) in T (F̄ )\G(F̄ ). If γ ∈ T (F ) then

κ(ε)f(a−1γa), where ε = ε(a) is a function on (T\G)(F ) that the following lemma, which in characteristic zero

is contained in Lemma 8.2 of [5] and whose proof we otherwise leave to the reader, shows to be locally constant.



Orbital integrals on forms of SL(3) part I 14

2.10. Lemma. If {εσ} is a 1-cocycle of Gal(F̄ /F ) with values in T (F̄ ) and if all εσ are sufficiently close to

1 then it bounds.

The κorbital integral Φκ(γ, f) is thus equal to

(2.11)

∫

(T\G)(F )

κ(ε)f(a−1γa)|ωT\G|.

However the morphism a→ (a−1γa, (B(a)a)) is an isomorphism of T\Gwith ϕ−1
γ (F ) and it is defined over F .

Thus we may regard ωT\G as a form on and (2.11) as an integral over ϕ−1(F ).

On the other hand if ωX0 is a form of maximal degree on X0 then the quotient
ωX0

ωT
defines a form ωγ on

each fibre.

2.12. Lemma. The form

ωX0 = ξ∗ωM

is defined over F̄ and

ωγ = (
∏

α>0

1− α−1(γ))ωT\G.

For the proof we may identify X0 with T 0 × T\G and ωT\G is the quotient
ωT∧ωT\G

ωT
. We choose a

basis {Xi} of Lie T such that ωT (∧iXi) = 1, extend it to a basis {Xi} ∪ {Yi} of Lie B, and finally to a basis

{Xi} ∪ {Yi} ∪ {Zi} of Lie G which we may assume is dual to {νi} ∪ {ωi}. Since ξ is defined by the natural

morphism T × T\G = T ×T G→ B×B G it follows readily from (2.9) that

ξ∗ωM =
∏

α>0

(1− α−1(γ))ωT ∧ ωT\G,

an equality which yields the second half of the lemma. The first is clear. Moreover

σ
(Πα>01− α

−1(γ))

Πα>01− α−1(γ)
= λσ(γ),

σ ∈ Gal(F̄ /F ), vanishes nowhere and σ(ωX0) = λσ(γ)ωX0 .

As a consequence, rather than studying the integral Φκ(γ, f) we prefer to study

(
∏

α>0

|1− α−1(γ)|)Φκ(γ, f) = F κ(γ, f)

=

∫

ϕ−1
γ (F )

mκ(e(x))f(g(x))|ωγ |

where mκ(e) = κ(ε(a)) if e in S0(F ) corresponds to a in A(T/F ).
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We define the Igusa form ω0 on Y 0 by choosing coordinates λ1, . . . , λ` at 1 on T such that C is defined by

λ2 = · · · = λn = 0 and λ1 restricted to C gives the coordinate λ. We suppose moreover that each is defined over

F and that ωT = βdλ1 ∧ · · · ∧ dλ`. We choose ω′ such that

ωX0 = βdλ2 ∧ · · · ∧ dλ` ∧ ω
′

and let ω0 be the restriction of ω′ to Y 0. We take the Igusa integrand fκ to be the restriction mκ(e(x))f(g(x)) to

Y 0 and obtain

Fκ(γ, f) =

∫

Ys(λ)

fκ(y)|ωλ|, γ ∈ C0.

3. Some useful coordinates and a first resolution. We shall construct the variety Y in two stages,

beginning with a resolution S1 of S, and to this end we introduce some affine coordinate patches on S. Each

patch will be associated to a fixed Borel subgroup B∞ and a Borel subgroup B0 in opposition to it, and will be

defined over F if B∞ and B0 are, but this we do not assume. Let N∞ be the unipotent radical of B∞. It is an

affine space and the morphism n→ n−1B0n is an isomorphism of N∞ with the open subvariety V (B∞) ⊆ V of

Borel subgroups in opposition to B∞. Let S(B∞) ⊆ S be formed by those families (B(W )) such that B(W ) is

in opposition to B∞ for all W and let S0(B∞) = S0 ∩ S(B∞). If

S(B∞, B0) = {(B(W )) ∈ S(B∞) | B(W0) = B0}

then (B(W ), n)→ B(W )n is an isomorphism of S(B∞, B0)×N∞ with S(B∞). We have as well

S0(B∞) ' S0(B∞, B0)×N∞.

We fix our attention on S(B∞, B0), setting T0 = B0 ∩ B∞. The inclusion T0 ⊆ B0 allows us to identify Ω

with the Weyl group of T . If (W,β) is a pair consisting of a Weyl chamber and a wall of it, or more precisely a

root defining a wall, then for some unique ω and some simple root α = α(W,β), we haveW = W (ω), β = α ◦ω.

We shall attach to each such pair a coordinate function z(W,β) on S(B∞, B0). To this purpose we fix for

each simple root α two root vectorsXα and X−α such that [Xα, X−α] = Hα with β(Hα) = 2(β,α)
(α,α) for all roots β.

Let Gα be the group whose Lie algebra is spanned by Xα, X−α, Hα.

Now let ε be the reflection corresponding to α(W,β), so that β = 0 is the wall separating W (ω) from

W (εω) = W (ω′). Thus if e = (B(W )) lies in S(B∞, B0) then for some h in N∞, we have

B(W (ω)) = Bh0 and h(B(W (ω′)))h−1 ⊆ GαB0.

As a consequence

hB(W (ω′))h−1 = exp(−zX−α)B0 exp(zX−α).

The coefficient z is uniquely determined and we set z(W,β) = z. Observe that z(W,β) = 0 if and only if

B(W (ω)) = B(W (ω′)).
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3.1. Lemma. The coordinates z(W,β) are regular functions on S(B∞, B0) and determine the point e.

More formally stated the lemma would read:

S(B∞, B0) ' Spec(K(z(W,β))),

K being a field over which B∞ and B0 are defined.

To prove it we introduce paths, which are sequences W0,W1, . . . ,Wp of Weyl chambers such that for each

i the chambers Wi and Wi+1 are distinct but have a wall, βi+1 = 0, in common. Let Wi = W (ωi) and set

αi+1 = ωi(βi+1), so that

ωi = ε(αi) · · · ε(α1)ω0,

where ε(αi) is the reflection associated to αi. It is clear that if hB(W0)h
−1 = B0, with h ∈ N∞ and zj =

z(Wj−1, βj), αj = α(Wj−1, βj) then

hB(Wi)h
−1 = exp(−z1X−α1) · · · exp(−ziX−αi

)B0(exp ziX−αi
) · · · exp(z1X−α1).

Taking W0 to be W+ we see that the point is determined by the coordinates. We see moreover that if C is a

closed path, so that W0 = Wp, then

exp(zpX−αp
) · · · exp(z1X−α1) = 1.

These are polynomial relations among the coordinates and form a complete set of relations. One particularly

simple type of relation results from taking a closed path of length two. If W and W ′ are adjacent and separated

by the wall β = 0 then

z(W ′, β) = −z(W,β).

In general if a star is given then the sequence B(W0), . . . , B(Wp) attached to a path is a gallery in the Tits

building attached to G. It follows readily from [7], especially the section 3.4, that the star is regular if and only if

B(W ′) 6= B(W ) for all pairs of adjacent chambers W,W ′. In particular a star in S(B∞, B0) lies in S0(B∞, B0)

if and only if all its coordinates are nonzero.

The torus T0 acts on S(B∞, B0) and on S0(B∞, B0) by sending e = (B(W )) to et = (B(W )t). Clearly the

coordinates z′(W,β) of et are given by

z′(W (ω), α ◦ ω) = α(t)z(W (ω), α ◦ ω).

Let S′(B∞, B0) be the subvariety of e ∈ S(B∞, B0) such that for each simple root α there is at least one chamber

W (ω) for which z(W (ω), α ◦ ω) 6= 0. The quotient R(B∞, B0) of S′(B∞, B0) by T0 exists and S′(B∞, B0) is a
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principal bundle over R(B∞, B0) with group (T0)ad, the image of T0 in Gad. Let AΣ be the product over the set

of simple roots of the onedimensional coordinate space over F . The group T0 acts on AΣ by

t : x = (xα)→ xt = (α−1(t)xα).

Set

S1(B∞, B0) = S′(B∞, B0)×T0 A
Σ

and

S1(B∞) = S1(B∞, B0)×N∞.

The morphism e→ e× (1, . . . , 1) imbeds S ′ as an open subvariety of S1.

There is a lemma to be verified.

3.2. Lemma. (a) E(B∞)⊗σ F̄ ' σ(S(B∞)) = S(σ(B∞)).

(b) S′(B∞)⊗σ F̄ ' σ(S′(B∞)) = S′(σ(B∞)).

(c) The isomorphism S′(B∞)⊗σ F̄ ' S
′(σ(B∞)) extends to

S1(B∞)⊗σ F̄ ' S1(σ(B∞)).

The isomorphisms in (a) and (b) are formal, S(B∞) and S′(B∞) both being contained in S, which we have

defined as a variety over F by twisting the natural F structure. The equality of (a) is also immediately clear, but

not that of (b).

Suppose e× n lies in S(B∞, B0)×N∞ and e = (B(W )) with

B(W ) = BnWn
0 .

Here

nW = exp(zpX−αp
) · · · exp(z1X−α1),

where z1, . . . , zp are the coordinates attached to a path fromW+ toW . RepresentS(σ(B∞)) asS(σ(B∞), σ(B0))×

σ(N∞). Then σ ∈ Gal(F̄ /F ) takes e× n to e′ × n′ with

(3.3) n′ = σ(nσ−1
T

(W+)n)

and e′ = (B′(W )),

(3.4) B′(W )n
′

= σ(B(σ−1
T (W ))n

′

= σ(B0)
σ(n

σ
−1
T

(W )n)
.

Thus if for simplicity we take X−σ(α) = σ(X−α) then

z′(W,β) = σ(z(σ−1
T (W ), σ−1

T (β))),
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and the equality of (b) follows.

On S1(B∞, B0) we define the elements nW by

nW = exp(xpzpX−αp
) · · · exp(x1z1X−α1)

where xi = xαi
if e1 = e× (xα) and the αi are associated to the path as before. The action on the simple roots

defined by T
∗ is denoted σT

∗ and σT and σT
∗ differ by an element of the Weyl group. Consequently

σ−1
T

∗ (α(W,β)) = α(σ−1
T (W ), σ−1

T (β))

for all W and β. The action of σ ∈ Gal(F̄ /F ) on S1(B∞, B0) ×N∞ which yields the isomorphism of (c) can

then be taken to be

σ : e× (xα)× n→ e′ × (σ(xσ−1

T
∗ (α)))× n

′,

where e′ and n′ are defined by (3.3) and (3.4).

Although it is of no importance for us we note that the following lemma can be proved in exactly the same

way.

3.5. Lemma. The subvariety S′(B∞) is invariant under the action of Ω and this action extends to S1(B∞).

We also note that the dependence of S1(B∞) on the choise of B0 is only apparent.

3.6. Lemma. Any two choices of a Borel subgroup in opposition to B∞ lead to canonically isomorphic

varieties S1(B∞).

Let B0 and B′
0 = Bh0 , h ∈ N∞ be two choices. Then T ′

0 = T h0 and we may take X−α′ = Xh
−α, α

′ being the

root defined by α′(th) = α(t). The isomorphism between S(B∞, B
′
0) ×N∞ and S(B∞, B0) ×N∞ defined by

identifying them both with S(B∞) takes e× n to e′ × n′ where n = hn′ and

z′(W,β) = z(W,β).

Recall that the relations T0 ⊆ B0, T
h
0 ⊆ B

h
0 ,T ⊆ B allow us to identify the root systems of all three tori.

We now take two Borel subgroups B∞ and B′
∞ and construct a birational map from S1(B∞) to S1(B

′
∞).

These will allow us to paste together the varieties S1(B∞) to form a variety S1.

We first make the birational map fromS(B∞) toS(B′
∞) defined by the imbeddingsS(B∞) ⊆ S, S(B′

∞) ⊆ S

explicit. We represent both varieties as products S(B∞, B0) × N∞, S(B′
∞, B0) × N∞ with respect to a Borel

subgroup B0 opposite to them both. If e× n is equal to e′ × n′ then n′ is defined by the condition n ∈ B0n
′. Let

e be given by (B(W )) and e′ by (B′(W )), so that

B(W )n = B′(W )n
′

.
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If, for a given W,B′(W ) = Bh
′

0 , h
′ ∈ N ′

∞, and B(W ) = Bh0 , h ∈ N∞, then bh = h′n′n−1, b ∈ B0. Thus if W ′ is

adjacent to W and separated from it by the wall β = 0, so that

B′(W ′) = B(exp z′X−α′ )h′

then

B(W ) = Bexp(z′X−α′)bW = B
exp(z′Xb

−α′)h

0 .

Now −α′ is the negative of the root α = α(W,β), the prime indicating that it is a root of T ′
0 = B′

∞ ∩ B0 in B′
∞.

There is clearly a linear fractional transformation taking 0 to 0, and thus of the form

1

z′
=
a

z
+ c

with a 6= 0, such that

exp z′Xb
−α′ ∈ B0 exp zX−α′.

This z is z(W,β). The two coefficients a = a(W,β) and c = c(W,β) depend on e but only through b, and thus

only on the coordinates of a path from W to W+.

We define the birational map between S1(B∞) and S1(B
′
∞) by

(3.7) x′α′ = xα

and

(3.7) z(W,β) = α(W,β)z′(W,β) + c(W,β)z(W,β)z′(W,β)xα.

The first equation allows us to rewrite the second as

1

x′αz
′(W,β)

=
a(W,β)

xαz(W,β)
+ c(W,β).

This makes it clear that the map takes equivalent points to equivalent points. It defines an isomorphism between

the following two open subvarieties of S1(B∞) and S1(B
′
∞):

(i) {e, (xα), n) | nWn ∈ B0N
′
∞ ∀ W}

(ii) {(e′, (x′α′), n′) | n′Wn
′ ∈ B0N∞ ∀ W}.

We can use these isomorphisms to paste S1(B∞) and S1(B
′
∞) together. Examining the process on the dense

subvarieties S′(B∞), S′(B′
∞) we see that the pasting is welldefined and independent of the choice of B0 and

consistent, and thus defines a prevariety S1.
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3.9. Lemma. The pre-variety S1 is a variety defined over F on which G and Ω act and there is a morphism

p : S1 → S defined over F and compatible with the actions of G and Ω. The morphism p is a birational map

between S1 and the closure of S0 in S.

Since we have patched along subvarieties that were as large as possible the Hausdorff axiom is easily

verified. Lemma 3.2 allows us to define it overF , and the actions ofG and Ω are clear. The morphism p is defined

locally and sends a point e× (xα)× n in S′(B∞, B0)×A
Σ ×N∞ to (B(W )) = (BnWn

0 ).

In general one has to expect that S1 is only a first approximation to a smooth completion of S0. However

for the simple cases with which this paper is ultimately concerned we have the following lemma.

3.10. Lemma. (a) If the Dynkin diagram is of type A1 then S1 = S = P
1 × P

1 is smooth and complete.

(b) If the Dynkin diagram is of type A2 then S1 is smooth and complete and p is surjective.

The first part of the lemma is of course immediate and is included only as a reference. We begin the proof of

the second with some simple remarks applicable to all groups of rank two.

Fix B∞ and B0 and let α′, α′′ be the two simple roots of T0 in B0. Let W0 = W+,W1, . . . ,

W2r−1 be the path C which starts at W+, crosses α′ = 0, and then continues until it returns to W+ through

α′′ = 0. The corresponding coordinates will be denoted z′1, z
′′
1 , z

′
2, z

′′
2 , . . . , z

′
r, z

′′
r . In addition we denoteX−α′ by

X ′ and X−α′′ by X ′′. Then the sole equation to be satisfied is

(3.11) exp z′′rX
′′ exp z′rX

′ · · · exp z′′1X
′′ exp z′1X

′ = 1,

which when examined is seen to consist of r polynomial relations among the 2r coordinates. It can be given

various forms by taking inverses or by permuting the coordinates cyclically.

It is convenient to refer to a diagram of chambers and walls labelled by the corresponding coordinates. For

types A2 this is

1
z ‘‘

2
z ‘‘

z ‘1

3
z ‘‘z ‘2

z ‘3

W0

W1
W 2

W3 W 5

W4

Two equations which follow immediately from (3.11) are:

(3.12)

r∑

i=1

z′i = 0;

r∑

i=1

z′′i = 0.



Orbital integrals on forms of SL(3) part I 21

Thus on S′(B∞, B0) at least two of the z′i and two of the z′′i are not zero. We now take r = 3 and for convenience

read the indices modulo 3. We work on S ′(B∞, B0) and distinguish two possibilities:

(a) There is an i such that z′i 6= 0, z′′i 6= 0, z′i+1 6= 0.

(b) If z′i 6= 0, z′i+1 6= 0 then z ′′i = 0.

If (b) obtains then z′′i 6= 0, z′′i+1 6= 0 imply z′i+1 = 0. Indeed either z ′i 6= 0 or z′i+2 6= 0. Thus if z′i+1 6= 0 either

(z′i, z
′′
i , z

′
i+1) or (z′i+1, z

′′
i+1, z

′
i+2) contradict (b). If (a) obtains then all coordinates are nonzero. This, like many

other things, can best be seen in the Tits building. The condition (a) is that there is no folding at three consecutive

stages in the gallery associated to the path C and the family (B(W )) and thus no folding at all.

For many purposes, in particular for the proof of the lemma, we may replace a point in S(B∞, B0) by a

translate under the Weyl group. Thus we suppose that either (A): for all i both z′i and z′′i are different from zero

or (B): z′′1 = 0, z′3 = 0 but all other coordinates are nonzero.

To prove the first part of the lemma we need only show that S ′(B∞, B0) is smooth at such a point. We have

a morphism m from 2rdimensional affine space to N∞ given by

m : (z′, z′′)→ exp z′′rX
′′ exp z′rX

′ · · · exp z′′1X
′′ exp z′1X

′

and it is enough to show that its Jacobian is of rank r at such a point. Set V ′
i = exp(−z′iX

′), V ′′
i = exp(−z′′i X

′′).

The map on tangent spaces is given explicitly by:

∂

∂z′1
→ X ′;

∂

∂z′′1
→ ad V ′

1 (X ′′);

∂

∂z′2
→ ad V ′

1 ad V ′′
1 (X ′) = ad V ′

1 ad V ′′
1 ad V ′

2(X ′);

∂

∂z′′2
→ ad V ′

1 ad V ′′
1 ad V ′

2(X ′′);

∂

∂z′3
→ ad V ′

1 ad V ′′
1 ad V ′

2 ad V ′′
2 (X ′).

There is a similar formula for the image of ∂
∂z′′3

but it is not necessary, for the images of ∂
∂z′2

, ∂
∂z′′2

, ∂
∂z′3

are already

linearly independent, and thus span the Lie algebra of N∞. This is clear because X ′, X ′′ and

ad V ′′
2 (X ′) = X ′ − z′′2 [X ′′, X ′]

are linearly independent.

To complete the proof of the lemma we need only show that p takes S1(B∞, B0) onto S(B∞,

B0) and that the full inverse image ofS(B∞, B0) isS1(B∞, B0), forS1(B∞, B0) is then the blowup ofS(B∞, B0)

with respect to the ideal generated by {z ′iz
′′
j } and thus proper over it.
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That S′(B∞, B0) × A
Σ → S(B∞, B0) is surjective is tantamount to the claim that if x′i, x

′′
i , 1 ≤ i ≤ 3 are

given with

expx′′3X
′′ expx′3X

′ · · · expx′′1X
′′ expx′1X

′ = 1

then we can find µ′, µ′′ and z′i, z
′′
i , 1 ≤ i ≤ 3 such that at least one of the z ′i and at least one of the z′′i are not zero,

equation (3.11) is satisfied, with of course r = 3, and finally x′i = µ′z′i, x
′′
i = µ′′z′′i for all i.

This is clear if at least one x′i and at least one x′′i are not zero, or if all the coordinates are zero. Therefore

suppose, for example, that all of the x′i are zero but that at least one of the x′′i is not zero. If one of the x′′i

is zero, we take it, with no loss of generality to be x′′1 . Then x′′2 = −x′′3 and we set z′′i = x′′i for all i and

z′3 = 0, z′1 = z, z′2 = −z, z 6= 0.

If none of the x′′i is zero choose z′′1 = x′′1 , z
′′
3 = x′′3 , z

′
1 6= 0 and form the configuration of Borel subgroups

specified by the following diagram of Weyl chambers and coordinates:

3
z ‘‘

W0

W1
W 2

W 5

1
z ‘‘ z ‘1

The Borel subgroups B(W2) and B(W5) will necessarily be in opposition (cf. [7]). Thus the diagram can be

completed by the addition of B(W3) and B(W4). If they are both in opposition to B∞ we will have a point of

S′(B∞, B0) and z′′2 will, as a consequence of (3.12), be equal to x′′2 .

In fact to complete the diagram we choose z′′2 = x′′2 and solve the equation

exp(−z′2X
′) exp(−z′′2X

′′) exp(−z′3X
′) = exp(z′′1X

′′) exp(z′1X
′) exp(z′′3X

′′)

for z′2 and z′3. Setting z′3 = z, z′2 = −z′1 − z we find that this is equivalent to

exp zX ′A exp(−zX ′) = B

with

A = exp(z′1X
′) exp(−z′′2X

′′), B = exp(z′′1X
′′) exp(z′1X

′) exp(z′′3X
′′).

Since A is congruent to B modulo the derived group of N∞ and z′′2 6= 0 this is possible.

It must finally be verified that if e × (µ′, µ′′) in S′(B′
∞, B0) × A

Σ maps to a point in S(B∞, B0) then it is

equivalent to a point in S ′(B∞, B0)× A
Σ. This is however an easy consequence of (3.7) and (3.8). For example

the image of S′(B∞, B0)×T {0} in S1(B∞, B0) is independent in B∞ and isomorphic to R(B∞, B0).

There are two observations that it will be useful to record now for use in the next paragraph. We have

introduced two types (a) and (b) of points in S′(B∞, B0).
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3.13. Lemma. (i) For a point of type (a) all coordinates z′i and z′′i are non-zero.

(ii) For a point of type (b) exactly one coordinate z′i0 and one coordinate z′′j0 are non-zero. Moreover

j0 ≡ i0 + 1(mod 3), so that the corresponding walls are collinear.

This we have already seen. It means that there are four types A, and B1, B2, B3. For type Bi the coordinate

z′′i is 0.

3.14. Lemma. If e×(xα′ , xα′′)×n in S′(B∞, B0)×A
Σ×N∞ and e′×(x′α′ , x′α′′)×n′ in S′(B′

∞, B
′
0)×A

Σ×N ′
∞

have the same image in S1 then e and e′ are of the same type.

This follows readily from (3.8), which shows that z′(W,β) = 0 if and only if z(W,β) = 0, and allows us to

assign a type to points in S1.

4. The final desingularization. Let X1 be the closure of X0 in G × S1, which of course contains G0 × S0

as an open subvariety, G0 being the set of regular semisimple elements in G. Let Y1 be the closure of Y 0 in X1.

Then Y 0 will be an open subvariety of Y1. We will modify Y1 along a subvariety of Y1 − Y
0 to obtain Y .

We begin by covering Y1 with open subvarieties whose structure can be examined in detail. We can project

Y1 to S1. Let Y1(B∞) and Y1(B∞, B0) be the inverse images of S1(B∞) and S1(B∞, B0). Then Y1(B∞) is open

and Y1(B∞) ' Y1(B∞, B)×N∞. It is also easily seen that Y1(B∞, B0) is the closure of its intersection with Y 0.

There is an inner automorphism taking the pair T0, B0 to T,B. Let C0 be the inverse image of C . We also use λ

as a parameter on C0.

A point y0 in Y1(B∞, B0) has the form (s(λ0)n0, e0), s(λ0) ∈ C0, n0 ∈ N0, e0 ∈ E1(B∞, B0). We consider

the equations satisfied by a point y = (s(λ)n, e) in Y 0 ∩ Y1(B∞, B0) near y0. Let p(e) = (B(W )). Let

Y j1 (B∞, B0), j = 1, 2, 3 be the open subvariety of points of typeA orBj andY j1 (B∞) = Y j1 (B∞, B0)×N∞. Since

the varieties Y j1 (B∞) are permuted amongst themselves by the Weyl group, it suffices to consider Y 1
1 (B∞, B0).

The proof of Lemma 3.10 shows that we may take z′1, z
′′
1 , z

′′
3 as coordinates on S′(B∞, B0) near e0. Since z′′3 6= 0

at e0 we may take x = µ′z′1, y = −µ′′z′′3 , and V = −
z′1
z′′3

as coordinates on S1(B∞, B0) near e0.

On S0 we use λ as coordinate and we specify coordinates u, v, w for n ∈ N0 by the relation

n = expuXα′ exp vXα′′ expw[Xα′ , Xα′′ ].

Since B(W2) and B(W5) are in opposition when y lies in Y 0 the conditions s(λ)n ∈ B(Wi), 0 ≤ i < 6, reduce to

s(λ)n ∈ B(Wi) for i = 1, 2, 5. They can be used to solve for u, v, and w.

Observing that (
1 0
x 1

)(
β 0
0 1

)(
1 u
0 1

)(
1 0
−x 1

)

is upper triangular if and only if xu = 1− β−1 we find, for example, that

(4.1) xu = λb(λ)
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with λb(λ) = 1− α′(s(λ)−1). The other equations are

(4.2) yv = λc(λ)

with λc(λ) = 1− α′′(s(λ)−1), and

xyV w = λ(d(λ) − V c(λ))

where λd(λ) = 1 − α′(s(λ)−1)α′′(s(λ)−1). Thus b(λ), c(λ), d(λ) are all regular and invertible at λ = 0 and

d(0) 6= c(0), for it has been assumed that the tangent to C lies in no singular hyperplane. Set U = d(λ) − V c(λ)

and rewrite the final equation as

(4.3) xyV w = λU.

It is convenient to consider the two regions

Y 11
1 (B∞, B0) = {y ∈ Y 1

1 (B∞, B0) | U 6= 0}

and

Y 12
1 (B∞, B0) = {y ∈ Y 1

1 (B∞, B0) | V 6= 0}

separately. They clearly cover Y 1
1 (B∞, B0), at least in a neighborhood of λ = 0.

4.4. Lemma. Y 11
1 (B∞, B0) is non-singular.

We may choose x, y, V , and w as coordinates.

4.5. Lemma. Y 12
1 (B∞, B0) is non-singular except at x = y = U = u = v = w = 0.

We deduce from (4.1), (4.2), (4.3) the following equations on Y 12
1 (B∞, B0) ∩ Y

0:

(4.6) xu = M1yv, xw = M2vU, yw = M3uU,

in which M1,M2,M3 are nowhere vanishing functions and M2 = M1M3. Replacing the coordinates u and v by

u′ = M3u and v′ = M2v one simplifies the equations and verifies the lemma readily, showing of course at the

same time that Y 12
1 (B∞, B0) is defined by the equations (4.6) and either of the expressions (4.1) or (4.2) for λ.

If the group is an inner form ofSL(3) we can now defineY by takingy11(B∞, B0) = Y 11
1 (B∞, B0), y

11(B∞) =

Y 11(B∞, B0) ×N∞, and by taking Y 12(B∞, B0) to be the result of blowing up Y 12
1 (B∞, B0) at x = y = U =

u = v = w = 0, Y 12(B∞) to be Y 12(B∞, B0)×N∞, and then pasting. Since we are in effect simply blowing up

along the singular subvariety of Y1 the pasting is possible and yields, thanks to the universal property of blowing

up ([3], Proposition 7.14), a smooth variety Y defined over F . The composition of Y → Y1 ↪→ X1 → X with

π : X → G or ϕ : X → T yields morphisms π : Y → G and ϕ : Y → C .
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4.6. Proposition. All three of Y, π, and ϕ are defined over F . The morphism π × ϕ is proper and ϕ is an

Igusa fibering.

We have only to verify the last point. At the same time we see what further modification is necessary when

G is an outer form, and in addition note various properties of ϕ.

On Y 11(B∞) the morphism ϕ is defined by

λ = αxyV w,

whereαhere and below denotes a regular function that vanishes nowhere on the region under consideration. Thus

there are four divisors of λ = 0 : E′
1(x = 0);E′′

1 (y = 0);E1
2(V = 0);E3(w = 0). The regionsY 21(B∞), Y 31(B∞)

yield in addition divisors E2
2 , E

3
2 .

On Y 12
1 (B∞) = Y 22

1 (B∞) = Y 32
1 (B∞) = Y 12

1 (B∞, B0) × N∞ we use the coordinates x, y, U,

u′, v′, w. On Y 12(B∞) we take one of these to be 1 and multiply them all by an additional coordinate t.

We examine several domains separately, giving the expression for ϕ and labelling the divisors of λ = 0, two

divisors having the same label only if they overlap.

Fixed Independent

variable coordinates λ Divisors

(i) x = 1 y, v′, U, t αt2yv′ E′′
1 (y = 0), E3(v

′ = 0), E5(t = 0)
(ii) y = 1 x, u′, U, t αt2xu′ E′

1(x = 0), E3(u
′ = 0), E5

(iii) u′ = 1 y, v′, w, t αt2yv′ E′
1(v

′ = 0), E4(y = 0), E5

(iv) v′ = 1 x, u′, w, t αt2xu′ E′′
1 (u′ = 0), E4(x = 0), E5

(v) w = 1 u′, v′, U, t αt2u′v′U E′
1, E

′′
1 , E4(U = 0), E5

(vi) U = 1 x, y, w, t αt2xyw E′
1, E

′′
1 , E3(w = 0), E5

A variant of Hilbert’s Theorem 90 shows that a divisor through a point overF is locally defined by a function

over F if and only if it is fixed by the Galois group. Thus to verify that Y → C is an Igusa fibering one need only

verify that any two divisors in ϕ−1(C0) with a point in common lie in different orbits under the Galois group. If

the form is inner then an orbit is contained in one of the sets {E ′
1}, {E

′′
1 }, {E

1
2 , E

2
2 , E

3
2}, {E3}, {E4}, {E5}. Since

the Ei2, i = 1, 2, 3 are mutually disjoint this condition is clearly satisfied. However if the form is outer then E ′
1

and E′′
1 form a single orbit, and a further blowing up is necessary in order to separate them.

Thus we blow up along the variety which on each of Y j1(B∞) is given by x = y = 0, does not meet the

domains (i)(iv), in (v) is given by u′ = v′ = 0, and in (vi) by x = y = 0. The proposition (4.6) is still satisfied but

one more divisor E6 is added to ϕ−1(C0). The exponent a6 = a(E6) is clearly 2, and the others appear above.
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4.7. The exponents a(E), E ∈ E, are a′1 = a′′1 = a1
2 = a2

2 = a3
2 = a3 = a4 = 1, a5 = a6 = 2.

To define the form ω0 on Y 0 we introduced the variety M . There is of course a morphism M → T defined

in the same way as ϕ. Let N be the inverse image of C . Then ξ takes Y 0 into N and may be extended to

ξ : Y → N . We choose λ1, . . . , λ` as at the end of section 2 and let ωN be the restriction to N of a form ω′′ such

that ωM = βdλ2 ∧ · · · ∧ dλ` ∧ ω
′′. Then

ω = ξ∗ωN

is an extension of ω to Y . It will be an Igusa form.

4.8. The exponents b(E), E ∈ E, are b′1 = b′′1 = 2, b12 = b22 = b32 = 3, b3 = 4, b4 = 1, b5 = 5, b6 = 4.

The exponents can be calculated on Y ij(B∞, B0) and are those of the form ξ∗(dλ ∧ du ∧ dν ∧ dw). On

Y 11(B∞, B0) they are determined by the Jacobian

∂(λ, u, ν, w)

∂(x, y, V, w)
.

Since we are only interested in the divisor of this function we may replace V by V ′ = V
U

, and are led to

∂(xyV ′w,A(xyV ′w)yV ′w,B(xyV ′y)xV ′w,w)

∂(x, y, V ′, w)

= AB
∂(xyV ′w, yV ′w, xV ′w,w)

∂(x, y, V ′, w)
= ABxyV 2w3.

This gives b′1, b
′′
1 , b

1
2, and b3. The other exponents are evaluated in a similar fashion.

The universality of blowing up implies that the groupsG and Ω act on Y0. IfE ∈ E let Ê be the complement

in E of its intersection with the other divisors. The morphism π maps Ê onto a unipotent orbit in G, of which

there are three, the regular, the semiregular, and that of the identity.

4.9. The divisors Ê3 and Ê5 map to the identity, Ê′
1, Ê

′′
1 , Ê

1
2 , Ê

2
2 , Ê

3
2 , and Ê6 to the semi-regular orbit, and

Ê4 to the regular orbit.

5. The Igusa integrand. That the support of fκ is proper over C(F ) follows immediately because f has

compact support and the morphism from Y to G × C is proper. Moreover f(g(y)) is clearly locally constant.

Thus the only point to verify is that mκ(e(y)) has locally the form

(5.1) mκ(e(y)) = γ

n∑

i=1

κi(µi),

where κi is trivial if µi = 0 is not a divisor of ϕ−1(s0) and is constant along divisors. Parts of the argument are

quite general and with these we begin.
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We first take G to be quasisplit, so that G = G∗, T = T ∗, and η = η∗, and we choose two opposed Borel

subgroups B0 and B∞ defined over F . Since the pair (T∗,B∗) is conjugate under G(F ) to (T0, B0) we may

suppose T
∗ = T0,B

∗ = B0. To each point e in S0(F ) we may attach, according to Lemma 2.1, an element

a in A(T/F ) and thus a cocycle {εσ} of Gal(F̄ /F ) with values in T (F̄ ). Our first goal is to express {εσ} on

S0(B∞) = S0(B∞, B0)×N∞ in terms of the coordinates z(W,β).

We choose h inG(F̄ ) so that ν is g → h−1gh and setwσ = σ(h)h−1, σ ∈ Gal(F̄ /F ). It lies in the normalizer

of T . In order to define the coordinates z(W,β) we have had to choose for each simple root α of T0 in B0 root

vectors Xα, X−α, and thus Hα = [Xα, X−α]. They define a subgroup Gα and an isogeny ξα : SL(2)→ Gα. Let

wα be the image of (
0 −1
1 0

)

in G. Let α∨ be the coroot corresponding to the root α and if z 6= 0 lies in a field containing F define zα
∨

in T by

µ(zα
∨

) = z(µ,α∨),

for all characters µ.

5.2. Proposition. Let ω− be the element of the Weyl group taking positive roots to negative roots and let

w− be a representative of it in the normalizer of T0. Set W− = ω−(W+). If σ ∈ Gal(F̄ /F ) let ωσ be the

image of wσ in the Weyl group and let ε(αj) · · · ε(α1) be a reduced expression for ω−ω
−1
σ ω−1

− as a product of

reflections associated to simple roots. Let σ(X−α) = σT0(X−α) = uαX−σ(α), σ
−1(αi) = α′

i, and let

zκ = z(W (ε(α′
κ−1) · · · ε(α

′
1)ω−ω

−1
σ−1 , ωσ−1ω−ε(α

′
1) · · · ε(α

′
κ−1)α

′
κ)).

Then

σ → wσhσ(w−1
− )wαj

(σ(zj)uαj
)α

∨
j · · ·wα1(σ(z1)uα1)

α∨
1 w−h

−1

is a cocycle of Gal(F̄ /F ) with values in T (F̄ ) and its class is that of {εσ}.

We will begin the proof with a lemma. Let e = (B(W )). We choose ν and nW ,W ∈ w, such that

B(W+) = Bν0 , B(W ) = BnW ν
0 .

If for simplicity we write σT (W ) = σ(W ) we have

σ(BnW ν
0 ) = B

σ(nW ν)
0 = B

nσ(W )ν

0

Thus σ(nW )σ(ν)ν−1n−1
σ(W ) lies in B0. Since it also lies in N∞ it is 1. Consequently

σ(ν)ν−1 = σ(n−1
σ−1(W+))
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and

σ(nσ−1(W ))σ(n−1
σ−1(W+))n

−1
W = 1.

If ω = ε(αp) · · · ε(α1) is a reduced expression for ω ∈ Ω set

ωi = ε(αi) · · · ε(α1), ω0 = 1, Wi = W (ωi), βi = ω−1
i−1αi,

and

zi = z(Wi−1, βi).

If W = W (ω) then

nW = exp(zpX−αp
) · · · exp(z1X−α1).

Let Nω be the connected subgroup of N0, the unipotent radical of B0, whose Lie algebra is spanned by {Xα |

α > 0, ωα < 0}.

5.3. Lemma. We have

nW ∈ N0wαp
z
α∨

p
αp · · ·wα1z

α∨
1

α1 Nω.

The equality (
1 0
z 1

)
=

(
1 z−1

0 1

)(
0 −1
1 0

)(
z 0
0 z−1

)(
1 z−1

0 1

)

shows that

exp zX−α = exp(z−1Xα)(wαz
α∨

) exp(z−1Xα).

This equality will allow us to verify the lemma by induction on p.

Let ω′ = εω, ε = ε(α), and suppose that ω′ = εε(αp) · · · ε(α1) is a reduced expression for ω′. LetRω = {β >

0 | ωβ < 0}. Then β > 0 lies in Rω if and only if β = 0 separates W (ω) and W+. Thus

Rω′ = Rω ∪ {ω
−1α}.

Set

w = wαp
z
α∨

p
αp · · ·wα1z

α∨
1

α1

and suppose nW = uwu′, u ∈ N0, u
′ ∈ Nω . If W ′ = W (ω′) then

nW ′ = exp zX−αnW

with z = z(W,ω−1α), and we must show that

wαz
α∨

exp z−1Xαuw ∈ N0wαz
α∨

wNω .
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Let Nα
0 ⊆ N0 be the connected subgroup of N0 whose Lie algebra is spanned by {Xβ | β > 0, β 6= α}. Then for

some n ∈ Nα
0 and some y,

wαz
α∨

exp z−1Xαu = wαz
α∨

n exp yXα ∈ N0wαz
α∨

exp yXα.

But for some x and some choice of Xω−1(α)

exp yXαw = w expxXω−1(α).

This proves the lemma, and we return to the proposition.

If W− the negative Weyl chamber and nW− = u′w−u with u, u′ in N0 then the torus T (e) = ∩WB(W ) is

B(W−) ∩B(W+) = T huν

and the cocycle {εσ} is given by

εσ = σ(huν)ν−1u−1h−1 = wσh(σ(u)σ(ν)ν−1u−1)h−1

Set

cσ = (w−1
− )wαj

(σ(zj)uαj
)α

∨
j · · ·wα1(σ(z1)uα1)

α∨
1W− .

It is enough to show that for some t ∈ T (F̄ ),

σ(u)σ(ν)ν−1u−1 ∈ N∞cσN∞h
−1σ(t)t−1h,

the proposition then following from the unicity of the Bruhat decomposition and the fact that εσ ∈ T (F̄ ).

We have

σ(u)σ(ν)ν−1u−1 = σ(u)σ(n−1
σ−1(W+))u

−1.

We use the relations nW− = u′w−u and

σ(nσ−1(W−))σ(n−1
σ−1(W+))n

−1
W−

= 1

to see that this lies in

N∞σ(w−1
− )σ(nW−)σ(n−1

σ−1(W−))w−N∞.

Thew− which appears here is a representation ofω− determined bynW− and thus by e, while the proposition

is stated for an arbitrary representative. We shall show that it is valid for the particular representative chosen.

However if we replace w− by w−t, t ∈ T0(F̄ ), then we multiply cσ on the right by ωσ(σ(t))t−1 or

h−1(σ(hth−1)ht−1h−1)h.
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Observe that ωσ is in the Weyl group of T0 and not of T , and consequently represented by h−1(σ(h)h−1)h =

h−1σ(h). Thus if the proposition is valid for one choice of w− it is valid for all.

Define B
∗(W ) as we defined B(W ), but with T

∗ replacing T , and define an action of Gal(F̄ /F ) on w by

σ(B∗(W )) = B
∗(σ∗(W )).

Then σ∗(W±) = W±. Since

B
∗(W ) = B(W )h

we have

σ(W ) = ωσ(σ
∗(W )).

In particular

σ−1(W−) = ωσ−1W−.

Modifying the notation of the proposition we let ε(αi) · · · ε(α1) be a reduced expression for ω−ω
−1
σ−1 and

ε(αm) · · · ε(αi+1) be a reduced expression for ω−ωσ−1ω−1
− . Then ε(αm) · · · ε(α1) is a reduced expression for ω−.

Consequently, with an obvious notation,

nW−n
−1
σ−1(W−) = exp zmX−αν

· · · exp zi+1X−αi+1

and

σ(nW−n
−1
σ−1(W−)) = expσ(zm)σ(X−αm

) · · · expσ(zi+1)σ(X−αi+1 ).

Since ε(σ(αm)) · · · ε(σ(αi+1)), where it is understood that σ(αk) = σT0(αk), is a reduced expression for

σ(ω−ωσ−1ω−1
− ) = ω−ω

−1
σ ω−1

− , the proposition follows from Lemma 5.3.

It is useful to supplement it by another. Let Θ be a subgroup of the quotient by T of the stabilizer of T in the

group of automorphisms of G. Suppose that Θ is a semidirect product Θ2 o Θ1 and that there is a set of roots

{β1, · · · , βr} of T in G invariant under Θ1 and such that Θ2 is generated by the reflections εi = ε(βi) subject to

the sole relations

(εiεj)
mij = 1.

Here mii = 1. However if i 6= j then εkεj acts as a rotation on the plane of β∨i , β
∨
j and mij is its order.

5.4. Proposition. Suppose that for each i we are given xi = x(βi) in F× and that βi → x(βi) is constant

on orbits of Θ1 in {β1, · · · , βr}. There is then a unique cocycle δ of Θ with values in T (F̄ ) such that

δθ = 1, θ ∈ Θ1, and δεi = x
β∨

i

i .
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The cocycle is clearly unique and it is enough to show that it is well defined on Θ2, which means that for

each i and j

(x
β∨

i

i εi(x
β∨

j

j )εiεj(x
β∨

i

i εi(x
β∨

j

j )) · · · (εiεj)
m−1(x

β∨
i

i εi(x
β∨

j

j )) = 1.

If i = j this is clear because

εi(x
β∨

i ) = x−β
∨
i

for all x. If i 6= j set ε = εiεj . The product on the left is

xµi εi(xj)
ν

with

µ = β∨
i + εβ∨

i + · · ·+ εm−1β∨
i

and

ν = β∨
j + εβ∨

j + · · ·+ εm−1β∨
j .

Since ε is a nontrivial rotation in the plane of {β∨
i , β

∨
j } both µ and ν are zero.

If θ = θ2 o θ1 and ε(βi1) · · · ε(βij ) is an expression for θ2 as a product of reflections then

δθ = ε(βi1) · · · ε(βij−1)(x
β∨

ij

ij
)ε(βi1) · · · ε(βij−2)(x

β∨
ij−1

ij−1
) · · · ε(βi1)(x

β∨
i2

i2
)x
β∨

i1

i1
.

If Θ ⊇ {ω−σTω
−1
− | σ ∈ Gal(F̄ /F )} then σ → ω−(δω−σTω

−1
−

) defines a cocycle of Gal(F̄ /F ) with values in

T (F̄ ). Consequently, if we denote by s the number of Θ1orbits in {β1, · · · , βr}, the proposition provides us with

a continuous homomorphism δ of (F×)s into H1(F, T ), indeed into E(T/F ), and allows us to associate to any

character κ of this group one of (F×)s.

Suppose for example that for each simple root α we choose xα ∈ F
× and in the cocycle of Proposition 5.2

we multiply zj by xαj
. This multiplies the value of the cocycle at σ = wσ × σ

∗ by

h(ω−(ε(α1) · · · ε(αj−1)(x
α∨

j
αj )ε(α1) · · · ε(αj−2)(x

α∨
j−1
αj−1 ) · · ·x

α∨
1
α1 ))h−1.

Since ε(α1) · · · ε(αj) is a reduced expression for ω−ωσω
−1
− , the cocycle itself is multiplied by δ({xα}), defined

provided that xα = xσ∗(α) for all α and σ. As h is given, we have used it to identify roots of T and T0.

In this example we have taken Θ2 = Ω. Similar considerations apply to any Θ2. The collection of roots

∆′ = {ωβi | 1 ≤ i ≤ r, ω ∈ Θ2}, the Θ2roots, allow us to introduce a new decomposition of X∗(T ) ⊗ R into

chambers W ′, on which Θ2 acts simply transitively. These chambers will have walls γ′ = 0, and to each pair

(W ′, γ′) we can associate one βi = β′(W ′, γ′), where W ′ = ω−1W ′
+, γ

′ = βi ◦ ω. Here ω ∈ Θ2 and W ′
+ is the

chamber defined by βj > 0, 1 ≤ j ≤ r. Suppose that W+ ⊆W
′
+. A wall (W,γ) for Ω will be said to be a Θ2 wall

if γ ∈ ∆′. Then W is contained in a chamber W ′ of which γ = 0 is a wall. Set β′(W,γ) = β′(W ′, γ).
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Ifω = ε(βi1) · · · ε(βij ) is a reduced expression forω as an element of Θ2 then a reduced expression for it in Ω is

obtained simply by substituting reduced expressions for the ε(βik). The only Θ2hyperplane separating ε(βik)W+

from W+ is βik = 0. Thus the only Θ2hyperplane separating ε(βi1) · · · ε(βik)W+ from ε(βi1) · · · ε(βik−1
)W+ is

ε(βi1) · · · ε(βik−1
)βik = 0.

Consequently if ω = ε(α1) · · · ε(α`) is the reduced expression for ω obtained from the reduced expressions

for the ε(βik) then the sequence βi1 , ε(βi1)βi2 , . . . , ε(βi1) · · · ε(βij−1)βij is just the subsequence of Θ2roots in

α1, ε(α1)α1, . . . , ε(α1) · · · ε(α`−1)α`.

Supposing then that Θ2 contains {ω−σTω
−1
− | σ ∈ Gal(F̄ /F )} and that the xi, 1 ≤ i ≤ r, are cho

sen as in Proposition 5.4 we multiply the zk appearing in the cocycle of Proposition 5.2 by xi each time that

ε(α1) · · · ε(αk−1)αk is a Θ2wall of ε(α1) · · · ε(αk−1)W+ with β′(ε(α1) · · · ε(αk−1)

W+, ε(α1) · · · ε(αk−1)αk) = βi. The effect is to multiply its class by δ({xi}).

Referring to Proposition 5.2 we observe that

ωσ−1ω−(ε(α′
1) · · · ε(α

′
k−1)α

′
k) = ω−(ω−ωσ−1σ−1ω−1

− (ε(α1) · · · ε(αk−1)αk)).

Since the collection of Θ2roots is invariant under Θ andω−ωσ−1σ−1ω−1 ∈ Θ we conclude that ε(α1) · · · ε(αk−1)αk

is a Θ2root if and only if ω−1
− ωσ−1ω−(ε(α′

1) · · · ε(α
′
k−1)α

′
k) is.

We can now verify for a quasisplit group thatmκ(e(y)) has the form (5.1) in a neighborhood of a point y0 in

Y . We may work on Y 11(B∞, B0) or on one of the regions into which Y 12(B∞, B0) has been divided, the groups

B∞, B0 being defined over F . The admissible coordinates may differ from the coordinates used previously, for

they are not necessarily defined over F . However any admissible coordinate defining a divisor in E will be the

product of one of these with a regular function which does not vanish in the neighborhood.

On Y 12(B∞, B0) all points are of type A. Thus z(W,β) will be equal to xz̄(W,β) or yz̄(W,β), according to

α(W,β) is α′ or α′′, where z̄(W,β) is regular and does not vanish at e(y0). The class of the cocycle of Proposition

5.2 depends locally only on the coordinates x and y. On the individual regions we have (i) x = x̄, y = νȳ, (ii)

x = µx̄, y = ȳ, (iii) x = νηx̄, y = νȳ, (iv) x = µx̄, y = µηȳ, (v) x = µξx̄, y = νξȳ, (vi) x = µx̄, y = νȳ, where

µ, ν, η, ξ denote admissible local coordinates and x̄, ȳ are regular and do not vanish in the neighborhood and thus

do not affect the local behavior of mκ(e).

When we blow up µ = ν = 0 in (v) and (vi) to obtain Y 12(B∞, B0) for an outer form thenE′
1 and E′′

1 cease

to have F valued points and near an F valued point on E6 we can write x = µx̄, y = µȳ or x = µξx̄, y = µξȳ.

We see immediately thatmκ(e) will be locally the product of a constant function and one ofκ(δ(1, ν)), κ(δ(µ, 1)), κ(δ(νη, ν))

or κ(δ(µξ, µξ)),

Θ2 being taken to be Ω and Θ1 the image of Gal(F̄ /F ) in the group of outer automorphisms.
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Near a point of type B we have to consider smaller Θ2. Take for example the region Y 11(B∞, B0). We

will have x = µx̄, y = νȳ (or x = µx̄, y = µȳ if the form is outer) and V = ξV̄ . Apart from a constant factor,

mκ(e) will be the product of κ(δ(µ, ν)) (or κ(δ(µ, µ)) with Θ as before and a factor associated to a smaller Θ.

Since the point is assumed to be rational and of type B1 the Galois group must leave the line through the walls

associated to z′′1 , z
′
3 invariant. Let β be the root associated to this wall and let Θ2 = {1, ε(ω−β)). Let Θ1 be the

group of automorphisms fixing ω−β. Then Θ ⊇ {ω−σTω
−1
− }. Applying ω− to the walls to which z′1, z

′
2, z

′′
2 , z

′′
3

are attached does not yield a Θ2wall and z′i = µz̄′i, i = 1, 2, z ′′i = νz̄′′i , i = 2, 3. However ω− applied to the walls

to which z′3 and z′′1 are attached does yield a Θ2wall and z′1 = µξz̄′1, z
′′
1 = νξz̄′′1 (or µξz̄′′1 for an outer form). The

factor attached to the smaller Θ is κ(δ(ξ)).

Since a form of SL(3) is either quasisplit or anisotropic it remains to verify (5.1) for an anisotropic group.

For this we use a lemma which follows readily from the construction of Y .

5.5. Lemma. If y0 ∈ Y and p(e(y0)) = (B(W )) then

dim∩W (B(W ) ≥ 2.

If y0 is an F valued point then ∩WB(W ) is defined over F . Thus if the group G is anistropic it must be a

Cartan subgroup T ′, for it is solvable. To each Weyl chamber W ′ in X∗(T ′) ⊗ R is associated a Borel subgroup

B(W ′) and there is a map η : W → η(W ) = W ′ such that B(W ) = B(η(W )). If W and W1 are adjacent then

either η(W ) and η(W1) are adjacent or η(W ) = η(W1). Hence the collection {η(W ) |W ∈ w} forms a connected

family of Weyl chambers lying in no halfplane, for otherwise ∩B(W ) would properly contain T ′. We conclude

that η is bijective, that e(y0) lies in S0, and hence that mκ(e) is constant in a neighborhood of e(y0).
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