
Chapter 4. Drawing lines: conditionals and coordinates in PostScript

We will take up here a number of drawing problems which require some elementary mathematics and a few
new PostScript techniques. At the end we will have, more or less, a complete set of procedures that will draw an
arbitrary line specified by its equation. This is not a difficult problem, but will require understanding a few new
PostScript routines.

1. Drawing infinite lines

In high school you were taught that the equation of a line is of the form

y = mx + b

where m is the slope of the line and b the y-intercept, the height of the point where the line crosses the y-axis.
That is true so far as it goes, but this representation of lines has the fault that not all lines can be written in this
way—some lines have infinite slope and no well defined y-intercept. These are the vertical lines, the lines x = c
for some constant c. In other words, writing lines in slope-intercept form destroys an intrinsic symmetry between
the coordinates x and y. The most versatile way to write lines, preserving this symmetry, is in the form

Ax + By + C = 0 .

Here we must assume that not both A and B are equal to zero, for if they are then we have no condition at all on
x and y. Equivalently, we may assume that

A2 + B2 6= 0

since A2 + B2 = 0 if and only if A = 0 and B = 0. At any rate, the equation for the line can be converted into

y =
−C − Ax

B

as long as B 6= 0. If B is equal to 0 then A cannot be 0, and we can write our line as

x =
−C

A
.

Recall that the geometrical meaning of the constants A and B is that the direction (A, B) is perpendicular to the
line.

The problem we now want to take up is this:

• We are working in PostScript with a coordinate system whose unit is an inch, and with the origin at the
centre of an 8.5′′ × 11′′ page. We want to design a procedure with three arguments A, B, C, whose effect is
to draw the part of the line Ax + By + C = 0 visible on the page.

I recall that arguments for a PostScript procedure are items put onto the stack just before the procedure itself is
called. I recall also that generally the best way to use procedures in PostScript to make figures is to use them
to build paths, not to do any of the actual drawing. Thus the procedure we are to design, which I will call
@make-line@, will be used like this
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@newpath 1 1 1 make-line stroke@

if we want to draw the visible part of the line x + y = 1.

One reason this is not quite a trivial problem is that we are certainly not able to draw the entire infinite line. There
is essentially only one way to draw parts of a line in PostScript, and that is to use @moveto@ and @lineto@ to
draw a segment of the line, given two points on that line. Therefore, the mathematical problem we are looking at
is this: If we are given A, B, and C, how can we find two points P and Q with the property that the line segment
between them contains all of the line Ax+ By + C = 0 which is visible? We do not have to worry about whether
or not the segment PQ coincides exactly with the visible part; PostScript will handle naturally the problem of
ignoring the parts that are not visible. Of course the visible part of the line will exit the page usually at two points,
and if we want to do a really professional job, we can at least think about the more refined problem of finding
them, too. But we will postpone this for now.

Here is the rough idea of our approach. We will divide the problem into two cases: (1) that where the line is
‘essentially’ horizontal; (2) that where it is ‘essentially’ vertical. We could in fact divide the cases according to
what is suggested by our initial discussion—i.e. according to whether or not B = 0. But for technical reasons,
having B near 0 is almost as bad as having it actually equal to 0. Instead, we want to classify lines as ‘essentially
horizontal’ and ‘essentially vertical’. In this scheme, we shall consider a line essentially horizontal if its slope lies
between −1 and 1, and otherwise essentially vertical. In other words, we think of it as ‘effectively’ horizontal if it
is more horizontal than vertical. Recalling that if a line has equation Ax + By + C = 0 then the direction (A, B)
is perpendicular to that line, we have the criterion:

• The line Ax + By + C = 0 will be considered ‘almost horizontal’ if |A| ≤ |B|, otherwise ‘almost vertical’.

Recall that our coordinate system is in inches, centred on the page. The left hand side of the page is therefore at
xleft = −4.25′′, the right one at xright = 4.25′′. The point is that an essentially horizontal line is guaranteed to
intercept both of the lines x = xleft and x = xright. Why? Since A and B cannot both be 0 and |A| ≤ |B| for a
horizontal line, we must have B 6= 0 as well. Therefore we can solve for y, given x:

y =
−C − Ax

B

where we choose x to be in turn xleft and xright. In this case, we shall choose for P and Q these intercepts. It may
happen that P or Q is not on the edge of the page, and it may even happen that the line segment PQ is totally
invisible, but this doesn’t matter. What does matter is that the segment PQ is guaranteed to contain all of the
visible part of the line.
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P

Q

(A, B)
Ax + By + C = 0

Similarly, an essentially vertical line must intercept the lines across the top and bottom of the page, and in this
case P and Q shall be these intercepts.

So: we must design a procedure in PostScript that does one thing for essentially horizontal lines, another for
essentially vertical ones. We need to use a test together with a conditional in our procedure.

A test is a command sequence in PostScript which returns one of the boolean values @true@ or @false@ on the
stack. There are several that we will find useful: @le@, @lt@, @ge@, @gt@, @eq@, @ne@ which stand for ≤, <, ≥,
>, =, and 6=. They are used backwards, of course. For example, the command sequence

@a b lt@

will put @true@ on the stack if a < b, otherwise false.

Here is a sample from a ghostscript session:

@1 2 gt = false 2 1 gt = true@

A conditional is a command sequence that does one thing in some circumstances. something else in others. The
most commonly used form of a conditional is this:

@boolean ... ... ifelse@

That is to say, we include a few commands to perform a test of some kind, following the test with two procedures
and the command @ifelse@. If the result of the test is @true@, the first procedure is performed, otherwise the
second. Recall that a procedure in PostScript is any sequence of commands, entered on the stack surrounded by
@@ and @@.

A slightly simpler form is also possible:
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@boolean ... if@

This performs the procedure if the boolean is true, and otherwise does nothing.

We now have everything we need to write the procedure @make-line@, except that we need to recall that @x abs@
returns the absolute value of @x@.

@/make-line 8 dict begin /C exch def /B exch def /A exch def

A abs B abs le /xleft -4.25 def /xright 4.25 def /yleft C neg A xleft mul sub B div def /yright ... def xleft yleft
moveto xright yright lineto ... ifelse end def@

I left a few blank spots—on purpose.

Exercise 1.1. Fill in the @...@ to get a working procedure. Demonstrate it with a few samples.

Exercise 1.2. Modify the procedure above to one called @make-line-default@ that works with the default
coordinate system, the one with the origin at bottom left, unit of length one point.

2. Margins

It might be that we don’t want to draw all of the visible line, but want to allow some margins on our page. We
could modify the procedure very easily to do this, by changing the definitions of @xleft@ etc., but this is inelegant,
since it would require putting in a new procedure for every different type of margin. There is a more flexible way.
There is a third command in the same family as @stroke@ and @fill@, called @clip@. It, too, is applied to a path
just constructed. Its effect is to restrict drawing to the interior of the path. Thus

@newpath -3.25 -4.5 moveto 6.5 0 rlineto 0 9 rlineto -6.5 rlineto closepath clip@

creates margins of size 1′′ on an 8.5′′ × 11′′ page with suitable coordinates. If you want to restrict drawing for a
while and then abandon the restriction, you can enclose the relevant stuff inside @gsave@ and @grestore@. The
command @clip@ is like @fill@ in that it will automatically close a path before clipping to it, but as with @fill@ it
is not a good habit to rely on this. The point is that programs should reflect concepts: if what you really have in
mind is a closed path, close it yourself. The default closure may not be what you intend.

3. Coordinates

In the first section of this chapter, we saw how to draw lines when the coordinate system on the page was set up
in a fixed way. In this section we shall see how to draw lines with an arbitrary coordinate system. The secret is
to understand how PostScript translates your drawing commands into actual path drawing on a page.

PostScript deals internally—at least implicitly—with a total of three coordinate systems.

The first is the physical coordinate system. This system is the one naturally adapted to the physical device you
are working on. Here, even the location of the origin will depend on the device your pictures are being drawn in.
For example, on a Windows computer it is apparently always at the lower left, but on a Unix machine frequently
at the upper left. The basic units of length are the width and the height of one pixel (one horizontal, the other
vertical). This makes sense, because in the end every drawing merely colours certain pixels on your screen or
printer page in one of various colours.

The second is the page coordinate system. This is the one you start up with, in which as before the origin is at
the lower left of the page, but the unit of length is one Adobe point—equal to 1/72 of an inch—in each direction.
This might be thought of as a kind of ideal physical device.
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The third is the system of user coordinates. These are the coordinates you are currently drawing in. When
PostScript starts up, page coordinates and user coordinates are the same, but certain operations such as scale,
translate, and rotate change the relationship between the two. For example, the sequence @72 72 scale@
makes the unit in user coordinates equal to an inch. If we then subsequently perform @4.25 5.5 translate@, the
translation takes place in the new user coordinates. This is the same as if we had done @306 396 translate@ before
we scaled to inches.

At all times, PostScript maintains internally a formula for changing from user to physical coordinates, and
implicitly one to change from user to page coordinates as well. The formula involves six numbers, and looks
like

xphysical = axuser + byuser + e

yphysical = cxuser + dyuser + f

PostScript stores these six numbers a, b, etc. in a data structure we shall see more of a bit later.

Coordinate changes like this are called affine coordinate transformations. One good way to write an affine
coordinate transformation formula is in terms of a matrix:[

x•
y•

]
=

[
a b
c d

] [
x
y

]
+

[
e
f

]
.

The 2×2 matrix is called the linear component of the coordinate transformation, and the vector added on is called
its translation component.

Affine transformations are characterized by the property that they take lines to lines. They also have the stronger
property that they take parallel lines to parallel lines.

It might be useful to track how things go as a program proceeds. As has been mentioned, when PostScript starts
up we have

xpage = xuser

ypage = yuser .

If we perform @306 396 translate@ we then have

xpage = xuser + 306
ypage = yuser + 396 .

If we now perform @72 72 scale@ we have

xpage = 72 xuser + 306
ypage = 72 yuser + 396 .

If we now put in @90 rotate@ we have
xpage = −72 yuser + 306
ypage = 72 xuser + 396 .

4. How PostScript stores coordinate transformations

The data determining an affine coordinate change
[

x•
y•

]
=

[
a c
b d

] [
x
y

]
+

[
e
f

]

are stored in PostScript in an array [a b c d e f ] of length six, which it calls a matrix. PostScript has several
operators which allow you to find out what these arrays are, and to manipulate them.



Drawing lines: conditionals and coordinates in PostScript 6

Command sequence Effect
@matrix currentmatrix@ Puts the current transformation matrix on the stack

The current transformation matrix or CTM holds data giving the current transformation from user to physical
coordinates. For example, we might try this at the beginning of a program and get

@matrix currentmatrix == [1.33333 0 0 1.33333 0 0 ]@

The output we get here depends strongly on what kind of machine we are working on. The one here was a laptop
running Windows 95. Windows 95 puts a coordinate system in every window with the origin at lower left, with
one unit of length equal to the width of a pixel. The origin is thus the same as that of the default PostScript
coordinate system, but the unit size might not match. In fact, we can read off from what we see here that on my
laptop that one Adobe point is 4/3 pixels wide.

Exercise 4.1. What is the screen resolution of this machine in DPI (dots per inch)?

The formalities of the way the command sequence @matrix currentmatrix@ works is that the command @matrix@
just puts an empty matrix array on the stack and @currentmatrix@ puts the current values of a etc. into it.

@matrix defaultmatrix@ Puts the original transformation matrix on the stack

The default matrix holds the transformation from page to physical coordinates. Thus at the start of a PostScript
program, the commands @defaultmatrix@ and @currentmatrix@ will have the same effect.

@M matrix invertmatrix@ Puts the transformation matrix inverse to M on the stack
@A B matrix concatmatrix@ Puts the product BA on the stack

Here, M is a transformation ‘matrix’ — an array of 6 numbers. As always, PostScript does things backwards. It
applies transformations from left to right, whereas in mathematics it is more conventional to apply right to left.
Of course both are just arbitrary conventions.

@M setmatrix@ Sets the current transformation matrix equal to M

Thus, the following procedure returns the ‘matrix’ corresponding to the transformation from user to page coor-
dinates:

@/user-to-page-matrix matrix currentmatrix matrix defaultmatrix matrix invertmatrix matrix concatmatrix def@

To see why, let C be the matrix transforming user coordinates to physical coordinates, which we can read off
with the command @currentmatrix@. Let D be the be the default matrix we get at start-up. The transformation
from current user coordinates to the original one is therefore the matrix product D−1C acording to mathematical
convention, which must be reversed to agree with PostScript convention.

Exercise 4.2. How can you find out in PostScript how big a pixel (the physical device unit) is?

5. Picturing the coordinate system

In trying to understand how things work with coordinate changes, it might be helpful to show some pictures of
the two coordinate systems, the user’s and the page’s, in different circumstances.

The basic geometric property of an affine transformation is that it takes parallelograms to parallelograms, and so
does its inverse. Here are several pictures of how the process works. On the left in each figure is a sequence of
commands, and on the right is how the resulting coordinate grid lies over the page.
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72 72 scale
4.25 5.5 translate

In this figure, the user unit is one inch, and a grid at that spacing is drawn at the right. Note that there are no
actual lengths in user space. In all these pictures, the choice of scaling in user space is arbitrary.

72 72 scale
4.25 5.5 translate
30 rotate

A line drawn in user coordinates is drawn on the page after rotation of 30◦ relative to what it was drawn as
before.
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72 72 scale
4.25 5.5 translate
30 rotate
0.88 1.16 scale
-18 rotate

Even a combination of rotations and scales can have odd effects after a scale where the x-scale and the y-scale are
distinct. This is non-intuitive, but happens because after such a scale rotations take place in that skewed metric.

6. Moving into three dimensions

It turns out to be convenient, when working with affine transformations in two dimensions, to relate them to
linear transformations in three dimensions.

The basic idea is to associate to each point (x, y) in 2D the point (x, y, 1) in 3D. In other words, we are embedding
the two-dimensional (x, y) plane in three dimensions by essentially shifting it up one unit in height. The main
point is that the affine 2D transformation

[
x•
y•

]
=

[
a c
b d

] [
x
y

]
+

[
e
f

]

can be rewritten in terms of the linear 3D transformation

 x•

y•
1


 =


 a c e

b d f
0 0 1





x

y
1


 .

You should check by explicit calculation to see that this is true. In other words, the special 3 × 3 matrices of the
form 

 a c e
b d f
0 0 1



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are essentially affine transformations in two dimensions. One advantage of this association is that if we perform
two affine transformations successively[

x
y

]
7→

[
x•
y•

]
=

[
a c
b d

] [
x
y

]
+

[
e
f

]
[

x•
y•

]
7→

[
x••
y••

]
=

[
a• c•
b• d•

] [
x•
y•

]
+

[
e•
f•

]

then the composition of the two corresponds to the product of the two associate 3 × 3 matrices
 a• c• e•

b• d• f•
0 0 1





 a c e

b d f
0 0 1


 .

This makes the rule for calculating the composition of affine transformations relatively easy to remember.

There are other advantages, too. A big one involves calculating the effect of coordinate changes on the equations
of lines. The equation of the line

Ax + By + C = 0

can be expressed purely in terms of matrix multiplication as

[ A B C ]


x

y
1


 = 0 .

This makes it simple to answer the following question:

• Suppose we perform an affine coordinate change[
x
y

]
7→

[
x•
y•

]
=

[
a c
b d

] [
x
y

]
+

[
e
f

]
.

If the equation of a line in (x, y) coordinates is Ax + By + C = 0, what is it in terms of (x•, y•) coordinates?

For example, if we choose new coordinates to be the old ones rotated by 90◦, then the old x-axis becomes the new
y-axis, and vice-versa.

The equation we start with is

[ A B C ]


x

y
1


 = 0 .

We have 
x•

y•
1


 =


 a c e

b d f
0 0 1





 x

y
1


 ,


x

y
1


 =


 a c e

b d f
0 0 1



−1 

x•
y•
1




therefore

Ax + By + C = [ A B C ]


x

y
1




= [ A B C ]


 a c e

b d f
0 0 1



−1 

x•
y•
1




= [ A• B• C• ]


x•

y•
1•




= A•x• + B•y• + C•
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if

[ A• B• C• ] = [ A B C ]


 a c e

b d f
0 0 1



−1

.

To summarize:

• If we change coordinates according to the formula
x•

y•
1


 =


 a c e

b d f
0 0 1





x

y
1




then the line Ax + By + C = 0 is the same as the line A•x• + B•y• + C• = 0. where

[ A• B• C• ] = [ A B C ]


 a c e

b d f
0 0 1



−1

.

To go with this result, it is useful to know that[
A v
0 1

]−1

=
[

A−1 −A−1v
0 1

]

as you can check by multiplying. Here A is a 2 × 2 matrix and v a column vector. Also that[
a b
c d

]−1

=
[

d/∆ −b/∆
−c/∆ a/∆

]
, ∆ = ad − bc .

Here is a PostScript procedure which has four arguments, a ‘matrix’ M and three numbers A, B, and C, which
returns on the stack the three numbers A•, B•, C• which go in the equation for the transform under M of the line
Ax + By + C = 0.

@/transform-line 8 dict begin /C exch def /B exch def /A exch def /M exch def /Minv M matrix invertmatrix
def A Minv 0 get mul B Minv 1 get mul add A Minv 2 get mul B Minv 3 get mul add A Minv 4 get mul B Minv 5
get mul add C add end def@

In order to understand this, you should know that (1) the items in a PostScript array are numbered starting with
0, and that (2) if A is an array in PostScript, then @A i get@ returns the i-th element of A.

Exercise 6.1. If we set
x• = x + 3, y• = y − 2

what is the equation in (x•, y•) of the line x + y = 1?

Exercise 6.2. If we set
x• = −y + 3, y• = x − 2

what is the equation in (x•, y•) of the line x + y = 1?

Exercise 6.3. If we set
x• = x − y + 1, y• = x + y − 1

what is the equation in (x•, y•) of the line x + y = 1?

7. Drawing lines at last

Recall again that we are looking for a procedure that has three arguments A, B, and C which builds in the current
coordinate system, no matter what it may be, a line segment including all of the visible page. Here is the final
routine we want:
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@/make-line 8 dict begin /C exch def /B exch def /A exch def

/ctm matrix currentmatrix def user-to-page-matrix A B C transform-line matrix defaultmatrix setmatrix make-
line-default ctm setmatrix

end def@

You need to know here that @make-line-default@ is the routine alluded to in the first section that draws lines in
the default coordinate system.

Exercise 7.1. Finish the unfinished procedures you need, and assemble all the pieces into one collection of
procedures that will include this main procedure. Exhibit some examples of how things work.

8. How coordinate changes are made

To each of the basic coordinate-changing commands corresponds a 3 × 3 matrix:

a b scale


 a 0 0

0 b 0
0 0 1




x rotate


 cosx − sinx 0

sin x cosx 0
0 0 1




a b translate


 1 0 a

0 1 b
0 0 1




The effect of applying one of these commands is to multiply the current transformation matrix on the right by the
appropriate matrix.

You can perform such a matrix multiplication explicitly in PostScript. The command sequence

@[a b c d e f] concat@

has the effect of multiplying the CTM on the right (using mathematical conventions) by


 a c e

b d f
0 0 1


 .

You will rarely want to do this. Normally a combination of rotations and scales will do what you want.

Exercise 8.1. After operations

@72 72 scale 4 5 translate 30 rotate@

what is the user-to-page coordinate transformation matrix?


